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ABSTRACT 
In this paper, we have obtained existence, uniqueness, and 

error bound of deficient quartic spline interpolation. 
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1. INTRODUCTION 
Piecewise linear and higher degree interpolation are widely 

used schemes for Piecewise Polynomial approximation.  But 

at joint of two linear pieces, piecewise linear functions have 

corners and therefore to achieve  a prescribed accuracy 

usually more data are required then higher order method 

therefore higher order method are beneficial for best 

approximation.  In the direction of higher order method, 

Kopotun [4] has obtained univariate splines equivalence of 

moduli of smoothness and application. Marker and Remier [5] 

have investigate an unconditionally convergent method for 

computing zero's of splines and polynomials.(also we refer to 

Howell and Varma [ 6], Dikshit and Rana [2 ] ,Rana [ 7.8], 

Agrwal and Wong [9]  and Gmeling –Mayling [10] )  

2. EXISTENCE AND UNIQUENESS 
Let a mesh on [0, 1] be given by 

1....100:  nxx
j

xP  which such that 

ixixih  1  for i = 0, 1,....n-1. Let 4 denotes the set of 

all algebraic polynomials of degree not greater than 4. For a 

function s defined over p, we denote the restriction of s over 

 1, ixix  by is . The class  PS ,4  of deficient quartic 

splines defined over p is given by 

4],1,0[1:{),4(  isCssPS  for i = 0, 1,....n-1} 

Where in  PS ,4*  denotes the class of all deficient quartic 

spline ),4( PS which satisfies the boundary condition. 

)0()0( xfxs   

)()( nxfnxs     (2.1) 

For a given function f, are introduced the following 

interpolatory condition. 

 ifis  )(    (2.2) 

   ifis      (2.3) 

   ifis  ''     (2.4) 

Where  
ihixi 3

1
1   

iihixi   12

1
1  for i = 1,2,......n 

Problem 1.1 : For given functional values and derivative 

     ififif  ',,  along with )0(xf  and  nxf .  There 

exist a unique  PSs ,4  which satisfy (2.2) - (2.4) condition.   

Let Q(Z) be a Polynomial of degree 4 on [0,1], then it is easy 

to verify that 
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Where   







 32
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3 2444244 tttttP   

 
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


  412328223814 tttttP  

  







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2

7

25 ttt
t
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We are now set to answer Problem 1.1 in theorem 2.1. 

Theorem 2.1: There exist a unique deficient quartic spline in 

 PS ,4*  which satisfies the interpolatory condition (2.2) - 

(2.4). 

Proof of Theorem 2.1 : Let 
 

ih

ixx
t


  10  t  then in view 

of condition (2.1) - (2.4), we now express equation (2.5) in 

terms of restriction is  of s in  1, ixix  as follows :- 

 

               

      )7.2(

'

514
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tPxstP

xstPfhtPftPfxs

i

iiiiii



   

Since  baCs ,1 , we have form  (2.7) 

  112

1

2
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1812 








 isihihihxisisih  

         1132112

81
 ifihifihihififih   

    ifihifih  '141'8      (2.8) 

We can easily see that excess of the absolute value of the 

coefficient of ii mxs )(  (say) dominant for the sum of the 
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absolute values of the coefficient of 1im  and 1im  in (2.8) 

under the condition of Theorem 2.1.  Therefore the coefficient 

matrix of the system of equation (2.8) is diagonally dominant 

and hence invertible.  Thus, the system of equation has unique 

solution, this complete the proof of theorem (2.1). 

3. ERROR BOUNDS 
In this section of the paper error bounds i.e. 

   xsfxe rrr  )(  r = 0,1 are obtained for the spline 

interpolant of Theorem 2.1 by following approach used by 

Hall and Meyer [ 3]. We shall denote by  xfiL ,  the unique 

quartic agreeing with 

          1&,',, ixfixfififif   

and let  1,05Cf  . Now consider a first continuously 

differentiable quartic spline s of theorem 2.1. We have for 

1 ii xxx  

     xisxfxsxf  )(

       xisxfiLxfiLxf  ,,   (3.1) 

Thus it is clear from (3.1) that in order to get the bounds of 

e(x), we have to estimate pointwise bounds of both the terms 

on the right hand side of (3.1). By a well known remainder 

theorem of Cauchy (See Davis [ 1]), we see that 
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Where  xf
x

F
)5(

10
max


  

We next proceed to obtain bound for    xsxfL ii , . It 

follows from (2.4) that 

           tPxetPxexsxfL iiii 514,       (3.3) 

Thus 

           tPxetPxexsxfL iiii 514,       (3.4) 
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2
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t
tttPtP 10 t  

 tK   (Say)      (3.5) 

Now, using (3.5) in (3.4), we have 

        tkxexexsxfL iii 1(,max,   (3.6) 

Setting    ixe
ni

jxe
1.....2,1

max


  

and ih
ni

h
1....2,1

max


   (3.7) 

We see that (3.6) may be written as  

       tkjxexsxfiL ,   (3.8) 

It is clear from (3.8) that in order to estimate the bounds of 

 xe  first we have to obtain the upper bounds of  jxe . 

Replacing )( jxs  by  jxe  in ( 2.8), we get 
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Where        4
1
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Observing that  fE  is a linear functional which is zero for 

polynomials of degree 4 or less and applying the Peano 

theorem (See Davis [1 ]). We have 

 
 
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Now from (3.11), it follows that  

    


 1
1

4

!4

1
jx

jx
dyyxEFfE   (3.12) 

In order to evaluate the integral of the right hand side of (3.12) 

we rewrite the expression (3.10) in the following symmetric 

form of xj, thus 
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     
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 412

1
 jhyyxjh      11  jyjx  (3.13) 

From the above expression it is follows that  




  4yxE  is 

non-negative for 11  jxyjx . 

Thus, we see that  
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Thus, we have following from (3.12) when, we appeal to 

(3.14). 
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Combining (3.7), (3.9), (3.12) with (3.15) we have 
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Now making the use of equation (3.2) and (3.7) in (3.1) and 

then using (3.16) along with (3.8) we see that 
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Thus, we prove the following. 

Theorem 3.1 : Suppose s(x) is the quartic spline interpolant of 

Theorem 2.1 and  1,05Cf   then 
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Where  tC
t

K
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max


  given by (3.18) Also we have 
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Equations (3.18) and (3.16) respectively prove the inequality 

(3.20) and (3.19) of Theorem 3.1. 

Now, we shall show that inequality (3.19) is best possible in 

the limit. Consider  
!5

5x
xf  , we can easily see that by 

Cauchy formula given in [1] that 
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Moreover, for equally spaced knots we have from (3.9) that 
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Consider for a moment 
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We have from ( 3.8) 
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Combine (3.21) and (3.24) we have 
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From (3.25), it is clearly observed that (3.19) is best possible 

proved that we could prove that 

     
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5
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h

jxejxejxe   (3.26) 

In fact (3.26) is attained only in the limit, the difficulty will 

take place in the boundary condition     00  nxexe . 

However it can be shown that as we move many subinterval 

away from the boundaries  
12

5h
jxe  . For that we shall 

apply (3.22) indutively to move away from the end condition

    00  nxexe . 

First step in this direction is to show that   0jxe  for 

j=0,......n which can be prove by contradiction assumption. 
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Let   0jxe  for some j=1,....n-1.   

Now, a making use of (3.20) 
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This is a contradiction. Hence   0jxe  for j = 0,.....n. 

Now from equation (3.22) 
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Now again using (3.27 ) in (3.22) we have 
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Repeated use of (3.22) follows that 
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Now it can be easily see that r.h.s. of (3.28) 
12

5h
  and hence 

in the limiting case 

 
12

5h
jxe     (3.29) 

which verifies (3.19) inequality.  Thus corresponding to the 

function   ,
!5

5x
xf  (3.28) imply 

12

5h
  in the limit for 

equally spaced knots.  This completes the proof of theorem 

3.1. 

 

4. CONCLUSION 

In this paper, we have obtained existence, uniqueness, and 

error bound of deficient quartic spline interpolation. 

5. REFRENCES 
[1] Davis, P.J. Interpolation and approximation, Blaisdell 

New York 1969 

[2] Dikshit,H.P. and Rana, S.S. Cubic Interpolatory splines 

with non uniform Meshes J.Approx.  Theory Vol 45, 

no4(1985) 

[3] C.A. Hall and Meyer, W.W.; Optimal error bounds for 

cubic spline Interpolation J. Approx. Theory, 58 (1989), 

59-67. 

[4] Kopotun K.A. : Univariate spline equivalence of moduli 

of smoothness and application . Mathematics of 

computation 76 (2007), 930-946. 

[5] Marken, K. and Reimer's M. An unconditionally 

convergent Methods for computing Zero's of Splines and 

Polynomials. Mathematics of computation 76 (2007) 

845-866. 

[6] Howell, G and Varma, A.K. Best error bound for quartic 

spline interpolation J. Approx. theory 58 (1989), 59-67. 

[7] Rana, S.S. Quartic spline interpolation, Jour. of 

approximation Theory 57 (1989), 300-305. 

[8] Rana, S.S., Convergence of a class of deficient 

interpolatory splines, Rocky Mount. Journal of Math. 18 

(1988) 825-831. 

[9] R.P. Agrawal and P.J.Y. Wang, Error Inequalaties of 

Polynomial Interpolation and their application. Kumar 

Academic Publisher, 1993. 

[10] R.H.J.G. Gmelig - Meyling. On Interpolation by 

Vibariate Quintic Spline of classd C2 (Constructive 

theory of function 87) (Eds. Sundov et.al.) (1987) 153-

61. 

[11] Deboor, C.A. Practical Guide to Splines, Applied 

Mathematical Science, Vol. 27 Spoinger, Varlag, New 

York 1979. 

[12] Hall, C.A. and Meyer, W.W., J. Approximation Theory 

16 (1976), pp 105-122. 

[13] Howell, G. and Verma, A.K. Best Error Bound of 

Quartic Spline Interpolation, J. Approx. Theory 58 

(1989), 58-67. 

[14] Davis, P.J. Interpolation and approximation, New York, 

1969. 

[15] Dubey, Y.P. Best Error Bounds of Spline of degree six. 

Int.Jour. of Mathematical Ana. Vol. 5 (2011), pp. 21-24. 

[16] Gemlling, R.H.J. and Meyling, G. in Interpolation by 

Bivartate Quintic Splines of Class Construction of 

Theory of function 87 (ed) Sendor et al (1987) 152-61. 

[17] Rana, S.S. and Dubey, Y.P. Best ERror Bounds of 

Quintic Spline Interpolation J. Pune and App. Math 28 

(10) 1937-44 (1997). 

[18] Rana, S.S. and Dubey, Y.P. Best Error Bounds of 

deficient quartic spline interpolation, Indian Journal Pune 

and Appl. Math 30(4) (1999), 385-393. 

[19] Meir, A. and Sharma, A. Convergence of a class of 

interpolatory spline J. Approx. Theory (1968), pp. 243-

250. 

 

IJCATM : www.ijcaonline.org 


