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ABSTRACT

In this paper, we have obtained existence, uniqueness, and
error bound of deficient quartic spline interpolation.
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1. INTRODUCTION

Piecewise linear and higher degree interpolation are widely
used schemes for Piecewise Polynomial approximation. But
at joint of two linear pieces, piecewise linear functions have
corners and therefore to achieve a prescribed accuracy
usually more data are required then higher order method
therefore higher order method are beneficial for best
approximation. In the direction of higher order method,
Kopotun [4] has obtained univariate splines equivalence of
moduli of smoothness and application. Marker and Remier [5]
have investigate an unconditionally convergent method for
computing zero's of splines and polynomials.(also we refer to
Howell and Varma [ 6], Dikshit and Rana [2 ] ,Rana [ 7.8],
Agrwal and Wong [9] and Gmeling —Mayling [10] )

2. EXISTENCE AND UNIQUENESS
Let a mesh on [0, 1] be  given by
P:0=Xxg  <X|<..<X,=1 which such that

hi =X1 i~ % fori=0, 1,..n-1. Let 77, denotes the set of

all algebraic polynomials of degree not greater than 4. For a
function s defined over p, we denote the restriction of s over

%%, 1] by S;. The class 8(4, P) of deficient quartic
splines defined over p is given by

S@P)={s:seclol)s; ez, fori=0,1,..n-1}

Where in S*(4,P) denotes the class of all deficient quartic
spline S(4, P) which satisfies the boundary condition.

s(xg)=f(Xp)
s(Xp)=Tf(x,) 2.1)

For a given function f, are introduced the following
interpolatory condition.

s(ej)="f (o) (2.2)
sl =115 23)
sli)=10q) (2.4)

1
Where ¢, =Xi—1+§hi
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Problem 1.1 : For given functional values and derivative
flog) £(8;) £'(7;) along with f(xy) and f(x,). There
exist a unique seS(4, P) which satisfy (2.2) - (2.4) condition.

Let Q(Z) be a Polynomial of degree 4 on [0,1], then it is easy
to verify that

o-0(2 )+ 2yl rst0+ ey oty (22

Where H(t):t[%—‘l—(ft+324tz _162t3}

P, (t)=t[32 —176t +288t> —144t°]

P, (t)=t[4 — 24t + 441> —24t3 |

P4(t):[1—8t+23tz ~ 283 +12t4}

t 7.2 o3 4
Pz(t)=| —— +—t“ -8t° +6t 2.6
5()[ >*2 } (26)

We are now set to answer Problem 1.1 in theorem 2.1.

Theorem 2.1: There exist a unique deficient quartic spline in
S*(4,P) which satisfies the interpolatory condition (2.2) -

(2.4).
(X— Xi)

i
of condition (2.1) - (2.4), we now express equation (2.5) in

Proof of Theorem 2.1 : Let t= 0<t<1 then in view

terms of restriction S; of sin |x;,x; , 1] as follows :-
s,(0)= f(a; )P, (t)+ T (B, )P, (t)+h, (3, )Py (t)+(x,)
P, (t)+s(x;,, JPs (t) (27)

Since s eC1[a,b], we have form 2.7)

13, ) 1
2 Sj 1+ (X)(f‘hi —175 N j+5 hi_1Si41

By eyl by e )10 )

ey £lq_g)raty g 0 )] (2.8)

We can easily see that excess of the absolute value of the
coefficient of S(Xi ) =M, (say) dominant for the sum of the

20



absolute values of the coefficient of M,_, and M,,; in (2.8)

under the condition of Theorem 2.1. Therefore the coefficient
matrix of the system of equation (2.8) is diagonally dominant
and hence invertible. Thus, the system of equation has unique
solution, this complete the proof of theorem (2.1).

3. ERROR BOUNDS

In this section of the paper error bounds i.e.
e"(x)=f® —s"(x) r = 0,1 are obtained for the spline
interpolant of Theorem 2.1 by following approach used by
Hall and Meyer [ 3]. We shall denote by L;[f,x] the unique

quartic agreeing with

Flag ) 108 ) £0i) 10 )& £l 1)
and let feC>[01]. Now consider a first continuously
differentiable quartic spline s of theorem 2.1. We have for
X; SX<Xiy

| ()= s00|=|f (x)-5; (x)

s| (x) —Li[f,x]+|Li[f,x]—si (xj (3.2)

Thus it is clear from (3.1) that in order to get the bounds of
e(x), we have to estimate pointwise bounds of both the terms
on the right hand side of (3.1). By a well known remainder
theorem of Cauchy (See Davis [ 1]), we see that

oot @0
£©) (xj

We next proceed to obtain bound for ‘Li[f ,x]—si (X} It
follows from (2.4) that

LLF x5 () <GP (0) +e(x )R] @)

Thus
IL[f,x]-s (x)<[e(x )P, (t) +e(x.. )R] (B4

Now since F>4(t):[1—8t+23t2 —283 +12t4}

|f(x)- Li[f,x]<F

Where F= max
0<x<1

and Ps(t)z{—;—tz

[P (t)+[Ps( Hl 2)2(1- 3t)( j‘ 0<t<1

_8t®+ Gtﬂ therefore

=K(t) (Say) 3.5)
Now, using (3.5) in (3.4), we have

L[ s <max{e(, ),

Setting ‘e(xj]:__ max ~ |e(xil

k() @6)

and h=_ max b (3.7
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We see that (3.6) may be written as

L [, x]-s(x S‘e(xj )k(tj (3.8)

It is clear from (3.8) that in order to estimate the bounds of
|e(x)| first we have to obtain the upper bounds of ‘e(xj 1 .
Replacing S(X ) by e( ) in (2.8), we get

13
2hjej_1+ej()( hj_1- 2hjj+ hj_18j41

Sy ey b e ey el bony ol o
A )] o 1o o1, )y

——hj L f (J+1 - E(f (3.9)

Where [(x y4] 1[hjl y)i—hj<aj,1—y)+4]
+s{h“¢jyghj(ﬂjly)a } RO 3
+16thJ 1(71 yF (ShJ 1—1—23hjj
4
(Xj_y)4+ _%hj—l[xj+1 —YJ (3.10)
+

Observing that E(f) is a linear functional which is zero for

polynomials of degree 4 or less and applying the Peano
theorem (See Davis [1]). We have

E(f)= JXJJ +11fify) [(x—y)‘ﬂdy (3.11)

Now from (3.11), it follows that

1 .
|E(f ]:EF jj((], +11 E(x-y),*dy (3.12)

In order to evaluate the integral of the right hand side of (3.12)
we rewrite the expression (3.10) in the following symmetric
form of x;, thus

E{(X—y)4 }
+
1
:_Ehj—lxj+hj_y]4
ﬁijSXj_Hl
Slej-yf+7emsf
78h;
2 I
-1
26(x —y)13+ hﬂ

Syspj=rj

y)3+69hJ2(xj —y)2 +
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Ey)“ﬂsz( ~yPh o6l ~yPh2

y)13+4h4

3 7.4 B
26 _y)+_hj—1} %i 1= B SYSX

~h, [72(Xj - y)4 ~132x; - y)ghj y+9ef - y)2h12_1

3 4
32(XJ —y)1j_l+4hj_l]

]l_y<ﬂj 1—71 -1

1
DEhJ [Xy*y*hj_l]4 Xj_léySaJ—_l(B.lS)

From the above expression it is follows that E[(x— y)ﬂ is

non-negative for x; _q<y<x

j j+1-

Thus, we see that
1Xj+1fE E(x—y)4dy=4 h:h? . +h: ,h2| (3.14)
JJ_ + iMj-1FNj-an) '

Thus, we have following from (3.12) when, we appeal to
(3.14).

4 4
3
Combining (3.7), (3.9), (3.12) with (3.15) we have

[E(f)<

(3.15)

..... n—l
2Nt 2 hl—l

Now making the use of equation (3.2) and (3.7) in (3.1) and
then using (3.16) along with (3.8) we see that

r;: t[t—%)(t_%Jz(l_t*L‘e(xj]k(t) (3.17)

P12, ‘( “J‘ Fh[h [J_ hq (3.16)

le(x)<F —

ZZ_TF{ ;j(t_%jz(l_t)( FS_'fK()
—hOF [C(t) (3.18)
Where [C(t)= ét(l_%][t_%f(l_t% +%

Thus, we prove the following.
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Theorem 3.1 : Suppose s(X) is the quartic spline interpolant of
Theorem 2.1 and f eC°[02] then

h° 5
|e(x]SKE‘f (x)( (3.19)
Where K= max |C t) given by (3.18) Also we have
0<t<1
5
‘e(x ]<h— max  f2(x) (3.20)
1739 g<x<1

Equations (3.18) and (3.16) respectively prove the inequality
(3.20) and (3.19) of Theorem 3.1.

Now, we shall show that inequality (3.19) is best possible in

5
the limit. Consider f(x):);—l, we can easily see that by

Cauchy formula given in [1] that

);—?_Li [;—5' ] rj [t(l t)(t—%}( —%f] (3.21)

Moreover, for equally spaced knots we have from (3.9) that

5 5
X 3 1 h
E{?]—Zej 1+29 +— ej+1—? (322)
Consider for a moment
e(xj):1 =elXj _q1/=eXj 11 (3.23)

We have from ( 3.8)

L [f,x]-s(x)=

Combine (3.21) and (3.24) we have

2
(sl t(l_t)[t_%j (t_;jm(t) (325

12 10

Qa0+Qst) =Tk 324

From (3.25), it is clearly observed that (3.19) is best possible
proved that we could prove that

e(xj _1)=e(xj )=e(xj +1)=§ (3.26)

In fact (3.26) is attained only in the limit, the difficulty will
take place in the boundary condition e(xo):e(xn)zo.

However it can be shown that as we move many subinterval
5

away from the boundariese(xj)—>—2. For that we shall

apply (3.22) indutively to move away from the end condition
elxg J=elx J=0.
First step in this direction is to show that ekxj)zo for

j=0,......n which can be prove by contradiction assumption.
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Let e(xj)<0 for some j=1,....n-1.

Now, a making use of (3.20)

5 5
h ( ] 3. .1 _hY .
E_‘er >2€j_1+Eej +Eej+li? i.e. 3>39

This is a contradiction. Hence e(xj )20 forj=0,....n.

Now from equation (3.22)

Ee.—E_ZQ. _le.
271 3 j-1 57j+1
Since €; >0
2.5 . _
:ejsgh forj=12,...n-1 (3.27)

Now again using (3.27 ) in (3.22) we have

Repeated use of (3.22) follows that
5 2
e(x-)§£ 1-§+[§J ..... (3.28)
=9 3 (3

5
Now it can be easily see that r.h.s. of (3.28) —>|I—2 and hence

in the limiting case

e(x j )—)% (3.29)

which verifies (3.19) inequality. Thus corresponding to the
x2 h®
function f(x):?, (3.28) imply e in the limit for

equally spaced knots. This completes the proof of theorem
3.1

4. CONCLUSION

In this paper, we have obtained existence, uniqueness, and
error bound of deficient quartic spline interpolation.
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