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ABSTRACT 
Data Mining has many applications in the real world. One of 

the most important and widely found problems is that of 

classification. Recently, distance preserving data perturbation 

has gained attention because it mitigates the privacy/accuracy 

trade-off by guaranteeing perfect accuracy. Many important 

data mining algorithms can be efficiently applied to the 

transformed data and produce exactly the same results as if 

applied to the original data. e.g.,distance-based clustering and 

k-nearest neighbor classification. In this research paper we 

analysis Euclidean distance-preserving data perturbation for 

k-nearest neighbor classification as a tool for privacy-

preserving data mining.  
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1. INTRODUCTION 
Data mining is a well-known technique for automatically and 

intelligently extracting information or knowledge from a large 

amount of data, however, it can also disclosure sensitive 

information about individuals compromising the individual’s 

right to privacy [1]. A number of effective methods for 

privacy preserving data mining have been proposed. But most 

of these methods might result in information loss and side-

effects in some extent, such as data utility-reduced, data 

mining efficiency-downgraded, etc. That is, an essential 

problem under the context is trade-off between the data utility 

and the disclosure risk. This paper provides an analysis of the 

Euclidean distance preserving methods for k-nearest neighbor 

classification as a tool for privacy preserving data mining. 

2. DISTANCE PRESERVING 

PERTURBATION 
This section offers an overview of distance preserving 

Perturbation: its definition, application scenarios, etc. 

Throughout this chapter (unless otherwise stated), all matrices 

and vectors discussed are assumed to have real entries. All 

vectors are assumed to be column vectors and M′ denotes the 

transpose of any matrix M. An m × n matrix M is said  

to be orthogonal if M′ M = In, the n × n identity matrix. If M is 

square, it is orthogonal if and only if M′ = M−1 [2]. The 

determinant of any orthogonal matrix is either +1 or −1. Let 

On denotes the set of all n × n, orthogonal matrices. 

2.1 Definition and Fundamental Properties 
To define the distance preserving transformation, let us start 

with the definition of metric space. In mathematics, a metric 

space is a set S with a global distance function (the metric d) 

that, for every two points x, y in S, gives the distance between 

them as a nonnegative real number d(x, y). Usually, we 

denote a metric space by a 2-tuple (S, d). A metric space must 

also satisfy 

1. d(x, y) = 0 iff x = y (identity), 

2. d(x, y) = d(y, x) (symmetry), 

3. d(x, y) + d(y, z) ≥ d(x, z) (triangle inequality). 

A metric space (S1, d1) is isometric to a metric space (S2, d2) if 

there is a bijection T: S1 → S2 that preserves distances. That 

is, d1(x, y) = d2(T(x), T(y)) for all x, y є S1. The metric space 

which most closely corresponds to our intuitive understanding 

of space is the Euclidean space, where the distance d between 

two points is the length of the straight line connecting them. 

In this chapter, we specifically consider the Euclidean space 

and define d(x, y) = ||x − y||, the l2-norm of vector x − y. A 

function T : Rn → Rn is distance preserving in the Euclidean 

space if for all x, y є Rn, ||x − y|| = ||T(x) − T(y)||. Here T is 

also called a rigid motion. It has been shown that any distance 

preserving transformation is equivalent to an orthogonal 

transformation followed by a translation [2], . In other words, 

there exists MT є On and vT є Rn such that T equals x є Rn → 

MT x + vT . If T fixes the origin, T(0) = 0, then vT = 0; hence, 

T is an orthogonal transformation. Henceforth we assume T is 

a distance preserving transformation which fixes the origin – 

an orthogonal transformation. Such transformations preserve 

the length (l2-norm) of vectors: ||x|| = ||T(x)|| (i.e., given any 

MT є On, ||x|| = ||MTx||). Hence, they move x along the surface 

of the hyper-sphere centered at the origin with radius ||x||. 

From a geometric perspective, an orthogonal transformation is 

either a rigid rotation or a rotoinversion (a rotation followed 

by a reflection). This property was originally discovered by 

Schoute in 1891 [3]. Coxeter [4] summarized Schoute’s work 

and proved that every orthogonal transformation can be 

expressed as a product of commutative rotations and 

reflections. To be more specific, let Q denote a rotation, R a 

reflection, 2q the number of conjugate imaginary eigenvalues 

of the orthogonal matrix M, and r the number of (-1)’s in the n 

− 2q real eigenvalues. The orthogonal transformation is 

expressible as QqRr(2q + r ≤ n). Especially, in 2D space, 

det(M) = 1 corresponds to a rotation, while det(M) = −1 

represents a reflection. 

2.2 Generation of Orthogonal Matrix  

Many matrix decompositions involve orthogonal matrices, 

such as QR decomposition, SVD, spectral decomposition and 

polar decomposition. To generate a uniformly distributed 

random orthogonal matrix, we usually fill a matrix with 

independent Gaussian random entries, then use QR 

decomposition. Stewart [5] replaced this with a more efficient 

idea that Diaconis and Shahshahani [6] later generalized as 

the subgroup algorithm. We refer the reader to these 

references for detailed treatment of this subject. 

 

 



International Journal of Computer Applications (0975 – 8887)  

Volume 105 – No. 2, November 2014 

35 

2.3 Data Perturbation Model 
Orthogonal transformation-based data perturbation can be 

implemented as follows. Suppose the data owner has a private 

database Xn×m, with each column of X being a record and each 

row an attribute. The data owner generates an n × n 

orthogonal matrix MT , and computes 

Yn×m = MTn×nXn×m 

The perturbed data Yn×m is then released for future usage. 

Next we describe the privacy application scenarios where 

orthogonal transformation can be used to hide the data while 

allowing important patterns to be discovered without error. 

Orthogonal transformation has a nice property that it 

preserves vector inner product and distance in Euclidean 

space. Therefore, any data mining algorithms that rely on 

inner product or Euclidean distance as a similarity criteria are 

invariant to orthogonal transformation. Put in other words, 

many data mining algorithms can be applied to the 

transformed data and produce exactly the same results as if 

applied to the original data, e.g., KNN classifier, perception 

learning, support vector machine, distance-based clustering 

and outlier detection. We refer the reader to [7] for a simple 

proof of rotation-invariant classifiers. 

 

In this study we have Students result database of Vikram 

University, Ujjain. I randomly selected 7 rows of the data with 

only 7 attributes (Marks of Foundation, Marks of 

Mathematics, Marks of Physics, Marks of Computer Science, 

Marks of Physics Practical, Marks of Computer Science 

Practical and Marks of Job Oriented Project). 

With this data we have generated a noise matrix with the help 

of orthogonal transformation and this resultant noise data set 

is multiplied with the original data set to form the perturb 

data. We have evaluated Euclidean Distance of original and 

perturbed data with pdist() fuction of Matlab. We have plotted 

the graph 1.1 which shows the comparison between Euclidean 

Distances of original data and perturbed data after applying 

Distance Preserving Perturbation.  

 

 

The above graph shows that the Euclidean Distance among 

the data records are preserved after perturbation. Hence the 

data perturbed by Euclidean Distance Preserving Perturbation 

can be used by various data mining applications such as k-

means clustering, hierarchical clustering etc. And we get the 

same result as obtained with the original data. 

3. CLASSIFICATION 
Classification is the process of building a classifier from a set 

of pre-classified (labelled) records. It discovers a pattern 

(model) that explains the relationship between the class and 

the non-class attributes [8]. A classifier is then used to assign 

(predict) a class attribute value to new unlabeled records. 

Classifiers also help to analyze the data sets better. They are 

expressed in different ways such as decision trees, sets of 

rules. 

One of the techniques for building decision trees is based on 

information gain [8]. This technique first calculates the 

entropy (uncertainty) in estimating the class attribute values in 

the whole data set. It then divides the whole data set into two 

parts, based on an attribute, where each part contains a subset 

of values of the attribute and the other part contains the set of 

remaining values of the attribute. The attribute value that sits 

in the border of the two sets of values is also known as the 

splitting point. 

Due to the division of the data set, the uncertainty in 

estimating the class attribute value changes which depends on 

the distribution of the class values. For example, let us assume 

that the domain size of the class attribute of a data set is two. 

In an extreme case, if all records belonging to one division 

have one class value and all other records belonging to the 

other division have the other class value then the uncertainty 

gets reduced to zero resulting in the maximum information 

gain. The decision tree building algorithm picks the best 

splitting point, among all possible splitting points of all non-

class attributes, that reduces the uncertainty the most. The best 

splitting attribute is the root node of a decision tree and the 

best splitting point is the label on the edges. The same 

approach is applied again on each division of the data set and 

this process continues until the termination condition is met, 

resulting in a decision tree classifier. 
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4. EXPERIMENT RESULT BASED ON 

THE KNN (K-NEAREST 

NEIGHBOUR) CLASSIFICATION 
We have taken the original data which is result set of students 

and we have taken the subset of the original dataset and 

named it training. And we formed the group corresponding to 

training dataset. We have classified the original dataset in 

these groups on the basis of the training dataset with the 

knnclassify() function of matlab. And same classification 

applied on the perturbed data using the same function. We 

have used silhouette function for plotting graph of the 

classified data generated by the original data and also for 

plotting graph of the classified data generated by perturbed 

data. 

 

 

As shown in the above graph the classification of original data 

and perturbed data remains same. 

5. DISCUSSION 
It is proved by the experimental result that we get the same 

result after applying classification to the perturbed data as 

after applying classification to the original data. Hence we can 

say that data perturbed by this technique can be used in 

classification techniques.  

The tremendous popularity of K- nearest classification has 

brought to life many other extensions and modifications. 

Euclidean distance is an important factor in k-nearest 

classification. In Distance preserving perturbation technique 

the Euclidean distance is preserved after perturbation. Hence 

the data perturbed by this technique can be used in various 

clustering and classification techniques. 

6. CONCLUSION 
In this research paper, we have analyzed the effectiveness of 

Distance preserving perturbation and we considered the use of 

distance-preserving maps (with origin fixed) as a data 

perturbation technique for privacy preserving data mining. 

This technique is quite useful as it allows many interesting 

data mining algorithms to be applied directly to the perturbed 

data and produce an error-free result, e.g., K-means clustering 

and K-nearest neighbor classification. 
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