
International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 2, November 2014

29

Analysis of Axis Aligned Bounding Box in Distributed

Virtual Environment

Elfizar

Department of Information System
University of Riau

Pekanbaru 28293, Indonesia

Sukamto
Department of Information System

University of Riau
Pekanbaru 28293, Indonesia

ABSTRACT

Axis Aligned Bounding Box (AABB) is the simple method

for object collision detection, but it has limitation in detection

process. In decades, some better methods have been generated

such as Oriented Bounding Box (OBB) and HPCCD.

Unfortunately, these methods are not used in DVE. This paper

aims to analyze why most DVEs still use AABB in detecting

objects collision in the environment. This research begins

with developing the suitable DVE. The DVE should make

many users collaborate with each other, and it has physics

activities such as gravity pole, movement, etc. Each user is

able to create objects and they should be visible to other users.

To detect the object collision, AABB is implemented in the

DVE. Further, to analyze the collision detection process and

the performance of DVE, there are two parameters used, i.e.

runtime and frame rate of simulation application. The

experiment results show that adding the computation

workload into AABB on DVE increases the runtime

significantly compared with regular application. The lack of

performance is also shown by the application frame rates in

which strictly decrease so that the DVE performance

degrades.

General Terms

Distributed Virtual Environment, Distributed Simulation

Keywords

AABB, Collision detection, Distributed Virtual Environment

1. INTRODUCTION
Virtual Environment (VE) is environment that imitates the

real environment and makes user feel as residing in the real

world. Some activities and situation in this environment

should meet the real environment requirements. As the VE

involves some users locating in different places geometrically,

it is known as Distributed Virtual Environment (DVE).

Currently, DVE has been used widely in many applications

such as training, education, games, social communities, etc.

Even DVE has been used as a powerful tool for autism

children training [1].

An aspect in a real world influencing VE is a constraint that

two objects are not able to occupy the same point in a space at

the same time. Generally, object representation in VE does

not allow penetration between objects. Therefore, to develop a

simulation environment that represent a real world this

constraint should be satisfied. One of important tasks is to

detect collision among objects. Collision detection is a

mechanism that is able to detect when and where the objects

will collide [2].

Collision detection can be classified into two categories, i.e.

discrete and continue. Discrete collision detection is a method

that just detects the collision at a certain time, for instance at

time t. Its consequence is that this method misses many

collision detections between two consecutive configurations.

It is called tunneling problem. Discrete collision detection

does not require many computations so that the process is

faster.

Continue collision detection can address the tunneling

problem because it uses interpolation algorithm to examine

the collision in a continue movement. It yields accurate

solution for collision detection. Unfortunately, this method is

slower than discrete method [3]. One of approaches used in

continue collision detection is bounding volume that can be

done by using box, sphere, etc. Axis Aligned Bounding Box

(AABB) [4] is a method included in this category.

Because of its reliability in detection process, continue

collision detection methods have been used by many

researches to invent the new faster method. [5] have used

linear interpolation between model vertices and computed the

first time of collision occurred based on hierarchy selection as

well as done basic testing between triangle pairs [6].

Another approach that has been used to accelerate the

continue collision detection is using parallel computation [7].

It is inspired by the capability improvement of current

processor/CPU that uses multi cores. [8] have yielded parallel

collision detection algorithm which run parallel on computers

with eight cores CPU and on 16 cores. Each computer gives

collision detection speed of 7x and 13x faster, respectively.

Besides using multi processors, acceleration of collision

detection speed has been done by using some Graphics

Processing Unit (GPU). In contrast to the CPU, GPU

processors are very suitable for parallel computation. It is

caused by the number of GPU cores is greater than CPU

cores, and GPU has more bandwidth than CPU [9-12].

Because bandwidth of both CPU and GPU is restricted, it is

required to integrate CPU and GPU in order to compute the

collision detection among objects. [13] have used four cores

CPU and two GPU. The results show that acceleration can be

achieved from 50% to 80% compared with using just CPU for

the same test model.

Unfortunately, the improvement in these researches is not

followed by the implementation of the resulted methods into

DVE. DVE is still using simple method to do the collision

detection among objects such as measuring distance between

objects [14], and AABB. It affects the DVEs generated by

developers in which they give inaccurate collision detection in

their environment.

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 2, November 2014

30

This paper aims to analyze the implementation of AABB in

DVE and to find the answer that why many DVEs still use

simple method especially AABB in order to do the collision

detection in the environment. Even there are many other

reliable methods available.

The contribution of this paper is a thorough analysis of AABB

implementation in DVE. The result can be used by other

researches to find out a method that is more accurate than

AABB and suitable to be used in DVE.

Following this section, Section 2 describes AABB as a

method used in this research. The proposed model is

presented in Section 3. Further, the results and analysis are

presented in Section 4. Finally, Section 5 delivers the

conclusion.

2. AABB METHOD
Each object in VE is covered by a box as illustrated in 2D by

Figure 1. In three-dimensional (3D), this box is drawn

aligning with each axis in coordinate system (X,Y,Z). Hence,

it is called Axis Aligned Bounding Box (AABB) [4].

Fig 1: A box covering a ball object in 2D

When each side of box is projected onto each axis, then two

objects can be determined whether they collide with each

other. Figure 2 shows two objects that do not collide in 2D

because projection intervals of both objects in X-axis do not

overlap (K1-L1 and K2-L2 intervals do not overlap).

Fig 2: Non-overlapping projection intervals

 Further, Figure 3 shows two colliding objects because

projection intervals overlap on both axis (X, and Y).

Therefore, two objects are called colliding in VE when

projection intervals overlap on each axis (X,Y,Z).

3. THE PROPOSED MODEL

3.1 DVE Analysis and Design
Using the DVE, user is able to create one or more objects.

User can create dynamic objects that can move in the

environment. Objects created by a user can be visible by other

users. In other words, each user has the same display in the

same interface, time and point of view for the number of

objects, and what happening to the environment.

Fig 3: Overlapping projection intervals

Because there are many objects residing in VE, the possibility

of object collision is very high. Hence, VE should have a

method to handle the collision. The AABB method is used for

this task. Another important thing is VE should meet the real

condition. For example, VE should have gravity pole, and

when an object collides with other objects then the result of

this collision will change the position and physics of objects.

Fig 4: Interaction between user and application

Based on all requirements above, interaction between user and

DVE application can be illustrated by Figure 4. Furthermore,

Figure 5 shows algorithm of the application. As user creates

an object in VE, the application does the collision detection

between the object and other object using the AABB method.

3.2 Implementation of AABB in DVE
Experiments run on computers with dual core processors, and

memory of 1 GB RAM. DVE is developed by using C,

OpenGL, and Open Dynamics Engine (ODE) as simulation

engine. The implementation is run by using Linux operating

system.

This research uses two scenarios. The first scenario is running

the AABB as collision detection method in DVE, and the

second scenario is adding the workload to the AABB and then

run it in DVE. The second scenario means that the DVE uses

another method, which has more workload than AABB.

K1 L1 K2 L2

X

Y

L2 K1

Y

L1 K2

X

DVE
User

Object

Object, collision

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 2, November 2014

31

Fig 5: Application algorithm

Fig 6: Two 3D objects created by user

4. RESULTS AND DISCUSSION
With the application, Figure 6 illustrates two 3D objects

created by users in VE. The objects are boxes with varying

positions and sizes. These boxes are dynamic objects falling

from a certain high to the ground. Figure 6 also shows that VE

has physics activities as real world. For instance, it has gravity

pole and collision detection. User can change point of view by

using translation or pan-tilt options.

Fig 7: Bounding box of an object

Using AABB on object creates a box covering that object as

illustrated in Figure 7. From the figure, the box is made align

with three coordinates (X,Y,Z). The collision between two

objects is determined by using their boxes. Furthermore,

Figure 8 shows two pair of objects that collide and not collide

with each other. Two objects are called colliding when their

bounding boxes projections overlap in three coordinates: X-

axis, Y-axis, and Z-axis. As seen in the figure, pair of objects

that is far from the user position does not collide because the

projections of objects on one axis do not overlap. It is

different from another pair of objects that collides because all

projections onto three coordinates overlap.

Fig 8: Two pairs of objects with and no collision

To analyze DVE, there are two parameters used in the

research, i.e. runtime and frame rate for both scenarios. The

workload addition for second scenario is counting sum of

integer numbers from 1 to 1,000. Adding the complexity of

O(n) to AABB should not affect the AABB itself because the

overall AABB complexity does not change. Unfortunately,

the application runtime of second scenario increases

significantly compared with first scenario for ten times

experiment as shown in Table 1.

Initialize VE

Display VE

create

object?

Display object

Create object with different

positions and size

Collision detection

Collision response

Collision

occurs?

Y

Y

N

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 2, November 2014

32

Table 1. Runtime measurement

Experiment Scenario I (s) Scenario II (s)

1 0.01 0.1

2 0.01 0.1

3 0.015 0.12

4 0.015 0.1

5 0.01 0.1

6 0.015 0.1

7 0.01 0.12

8 0.015 0.1

9 0.015 0.1

10 0.01 0.1

Average 0.0125 0.104

Further, Figure 9 illustrates the difference between two

scenarios. There is addition almost 0.1 second to the second

scenario, even the simple C program to execute the workload

addition only needs 0.03 second. Thus, execution of addition

workload in DVE needs much time compared with simple C

program.

Table 2. Application frame rates

Experiment Scenario I (fps) Scenario II

(fps)

1 240 160

2 240 160

3 245 160

4 240 155

5 240 150

6 240 160

7 240 160

8 230 165

9 245 165

10 240 165

Average 240 160

Table 2 shows the frame rates of application for both

scenarios. The measurement is conducted for ten times

experiment. Figure 10 also depicts the difference between

both scenarios. In contrast to the runtime, the frame rates of

the second scenario decrease significantly compared with the

first scenario in order to execute the addition workload. There

is the disparity of 80 frames per second (fps). The workload

addition given to second scenario causes the performance of

DVE degrades and automatically reduces user experience in

using the DVE.

Fig 9: Application runtime for both scenarios

Fig 10: Application frame rates for both scenarios

5. CONCLUSION
This paper has been analyzed AABB method implemented in

DVE. There are two parameters used in the research:

application runtime and frame rates. To compare the

performance of DVE, this research uses two scenarios i.e.

DVE uses AABB method, and DVE uses AABB method with

addition workload.

DVE application always updates its environment. It is busy to

update their objects behaviors and appearances. This

characteristic causes the computation time to execute the

addition workload given to the AABB method increases

significantly. Even the addition workload only requires a little

time when it is executed by using the simple C program.

In contrast to the application runtime, adding workload to

AABB method causes DVE frame rates decrease. The frame

rates of the second scenario are lower than the first one. It

makes the performance of DVE degrade and finally gives less

user experiences.

As finding of the research, those two results give the answer

of that why the modification methods resulted by the last

researches are not used in the current DVE. Using

modification method that has higher complexity than AABB

increases the runtime of DVE significantly. Unfortunately, it

also decreases the DVE frame rates. In fact, the case is that

AABB method has many limitations.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 3 5 7 9

ti
m

e
 (

se
co

n
d

)

Experiment

Scenario I

Scenario II

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10

Fr
am

e
 r

at
e

 (
fp

s)

Experiment

Scenario I

Scenario II

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 2, November 2014

33

In future work, investigating a better method used in DVE is

needed. To address the increasing of runtime and decreasing

of application frame rate, separating the collision detection

engine from simulator will be considered in order to reduce

the simulator workload.

6. ACKNOWLEDGMENTS
This research is funded by University of Riau in research

scheme of Fundamental Research. Thanks to reviewers for the

valuable feedbacks to this paper.

7. REFERENCES
[1] Parsons, S., Mitchell, P., and Leonard, A. 2005. Do

adolescents with autistic spectrum disorders adhere to

social conventions in virtual environments?. Autism,

9(1), 95-117.

[2] Bergen, G.V.D. 2004. Collision detection in interactive

3D environments. Morgan Kaufmann publishers, San

Francisco.

[3] Sulaiman, H.A., and Bade, A. 2011. Continuous collision

detection for virtual environments: A walkthrough of

techniques. Electronic journal of computer science and

information technology, 3(1), 1-7.

[4] Bergen, G.V.D. 1997. Efficient collision detection of

complex deformable models using AABB trees. Journal

of Graph Tools, 2(4), 1-13.

[5] Tang, M., Curtis, S., Yoon, S.E., and Manocha, D. 2009.

ICCD: Interactive continuous collision detection between

deformable models using connectivity-based culling.

IEEE Transactions on Visualization and Computer

Graphics, 15(4), 544-557.

[6] Curtis, S., Tamstorf, R., and Manocha, D. 2008. Fast

collision detection for deformable models using

representative-triangles. In Proceedings of the 2008

Symposium on Interactive 3D Graphics and Games, 61-

69.

[7] Shellshear, E., Bitar, F., and Assarsson, U. 2013. PDQ:

parallel Distance Queries for Deformable meshes.

Graphical Models, 75(2), 69-78.

[8] Tang, M., Manocha, D., and Tong, R. 2010. MCCD:

Multi-core collision detection between deformable

models using front-based decomposition. Journal of

Graphical Models, 72, 7-23.

[9] Lauterbach, C., Garland, M., Sengupta, S., Luebke, D.,

and Manocha, D. 2009. Fast BVH construction on GPUs.

Computer Graphics Forum, 28(2), 375-384.

[10] Choi, K.W., Negrut, D., and Thelen, D.G. 2013. GPU-

based algorithm for fast computation of cartilage contact

pattern during simulations of movement. In Proceedings

of ASME 2013 Summer Bioengineering conference.

[11] Tang, M., Tong, R., Narain, R., Meng, C., and Manocha,

D. 2013. A GPU-based streaming algorithm for high-

resolution cloth simulation. Computer Graphics Forum,

32(7), 21-30.

[12] Avril, Q., Gouranton, V., and Arnaldi, B. 2014. Collision

detection: broad phase adaptation from multi-core to

multi-GPU architecture. Journal of Virtual Reality and

Broadcasting, 1-13.

[13] Kim, D., Heo, J.P., and Yoon, S. E. 2009. HPCCD:

Hybrid parallel continuous collision detection using

CPUs and GPUs. Computer Graphics, 28(7), 1791-1800.

[14] Nassiri, N., Powell, N., and Moore D. 2010. Human

interactions and personal space in collaborative virtual

environments. Virtual Reality, 14, 229-240.

IJCATM : www.ijcaonline.org

