
International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 18, November 2014

29

K-Means Clustering based Task Allocation Model for

Distributed Real-Time System

Urmani Kaushal

Mody University of Science and
Technology

Lakshmangarh, Sikar,
Rajasthan, India

Avanish Kumar
Bundelkhand University

Jhansi, U.P.
India

Narendra Kumar
Mody University of Science and

Technology
Lakshmangarh, Sikar,

Rajasthan, India

ABSTRACT

The distributed real-time system [DRTS] is the great platform

for parallel application. Multiple tasks will be formed of the

parallel application, which are to be allocated over the nodes

available in DRTS. Numbers of tasks are much more than

available nodes in the system. The tasks should be grouped or

clustered in a very efficient manner and allocated over the

nodes of the system efficiently for the minimization of overall

system cost and maximization of system performance.

Task allocation is NP-hard problem. A model based on k-

mean clustering has been proposed in this paper. In the

suggested model, the limitation of memory and the number of

tasks allowed over the processor has been considered.

MATLAB 7.11.0 has been used to simulate the proposed

model.

Keywords

Distributed Real Time System, k-mean cluster, NP-hard,

Parallel Application, Task Allocation.

1. INTRODUCTION
Task allocation problem in DRTS deals with finding

appropriate assignment of tasks to available nodes in the

system so that the system performance can be maximized. A

large body of literature exists for providing the solution and

models of task allocation. In the literature [1-10] several

models for allocation, like graph theoretical, integer

programming, fuzzy logic based, genetic algorithm based,

simulated annealing based and heuristic methods have been

proposed [10,11].

Graph theoretical models proposed in [1,9] makes the use of a

graph to represent tasks. By performing a min-cut algorithm

on the graph it reduces the inter task communication cost.

In integer programming method [2] implicit enumeration

algorithm is used. Here constraints can be enforced easily.

In Genetic Algorithm (GA), a unique encoding scheme with

Partially Matched Crossover (PMX) is being used. In this

approach a population of strings is being created and

Reproduction, Crossover, and Mutation operations are

performed over it to get the desired allocation [12].The

simulated annealing (SA) is based on exponential cooling

schedule of Newtonian cooling process. The number of

iterations should be chosen at each step of experimentation

[13].

In fuzzy logic based model proposed in [14] two round of

operation have been performed for the task allocation. In this

model each node is associated with to a learning agent. These

agents in turn evaluate themselves by using fuzzy

approximate reasoning.

Task assignment model proposed in [2,4,15] has used the

clustering to reduce inter task communication cost first and

then device the mechanism to assign the task clusters to

appropriate processor or node. While clustering the execution

cost of tasks has not been taken into consideration.

By efficient allocation of load available in the form of

clusters, performance can be improved of distributed system.

For this purpose load sharing policies can be adopted while

allocation.

Load sharing policies can be either static or dynamic. Static

load sharing policies do not require system state information

in making load distribution decisions [7]. Dynamic policies

make their load distribution decisions based on the current

system state. Dynamic load sharing policies provide

significant performance improvements compared to static

policies [5]. This paper considers dynamic load sharing in

heterogeneous distributed systems.Most of the models ignore

programs’ needs, real load conditions and users’ activities

[16]. The task allocation is a NP-complete problem. The task

allocation algorithms proposed in [4,5,7,8,15,17,18] are using

static load sharing policy.

The objective of the model proposed in this paper is to

maximize the overall performance of distributed system by

efficient allocation mechanism. A new heuristic method for

task allocation has been proposed and deployed here.

The inter task communication should be avoided while

making the decision of task allocation to the available

processors. The decision of task allocation over any node

depends on the number of tasks already in execution on it. At

the same time, available memory capacity of the processing

node should be greater than the required memory by the task.

The above constraints should be considered while designing

the strategies for task allocation.

We ask that authors follow some simple guidelines. In

essence, we ask you to make your paper look exactly like this

document. The easiest way to do this is simply to download

the template, and replace the content with your own material.

2. PROBLEM FORMULATION
The parallel application should complete its execution over a

DRTS in lesser cost than over a standalone system. The

parallel applications running over the DRTS is having m

number of tasks which are to be allocated on n number of

nodes of the distributed system for execution. This allocation

of task should be done in such a manner that inter task

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 18, November 2014

30

communication can be reduced. Execution constraints of the

tasks must be fulfilled. A processor can hold a limited number

of tasks and memory is also the limit. So these constraints had

been taken into consideration in the proposed model, which

provide an optimal solution for the assignment of the set of

“m” tasks of programs over the set of “n” processors / nodes

(where, m > n) DRTS.

Performance enhancement of the distributed system is the

objective of this problem and it will be achieved by

appropriate allocations of tasks over the system.

2.1 Assumptions
In the proposed task allocation model following assumptions

[1,2,4,18] have been made:

1 The processors available in the system is not having any

specific interconnection structure and they are heterogeneous

in nature.

2 The parallel application is the collection of m independent

tasks, which are to be allocated over a set of n available nodes

processors with different attributes.

3The tasks will not be relocated once allocated on processors

without completing its execution.

4The inter task communication cost (ITCC) between the tasks

in the same cluster will be zero.

5The clusters will be formed in accordance with processors /

nodes available in the system.

6 For clustering data points will be the collection of vectors

i.e. ECM (,).

7 Number of tasks m will be greater than the number of

processors n every time while making the allocation decision

(m>>n) as in real life situation.

2.2 Proposed Mathematical Model for

Task Allocation
In this section, a task allocation model has been developed to

find the optimal system cost so that system performance could

be enhanced. Effective allocation of parallel applications’

tasks may increase the performance of the distributed system.

Execution cost, inter task communication cost, memory

required by each task and the task accommodation capacity of

processor should be known for the allocation of tasks.

Obtaining all such information of tasks and processors / nodes

is beyond the scope of this paper. The clustering has been

done at two levels in the model, one at initial stage by using k-

mean algorithm and the second at the time of allocation.

TMSV (Task& Memory Status Vector) data structure and

TMSV‘s Collection proposed in [5] are being used to solve the

problem in this paper.

2.2.1 Execution Cost
The task allocation given as: X: T→P, X (i) = l. For the task

allocation X, the execution cost ecij represents the execution of

task ti on processor Pj[4]. For the task allocation X, execution

cost of nth processor can be calculated as:

EC X = 𝑒𝑐𝑖𝑗 𝑥𝑖𝑗

m

j=1

n

i=1

 (1)

𝑤𝑒𝑟𝑒, 𝑥𝑖𝑗 = 0,𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒
1 𝑖𝑓𝑖𝑡 𝑡𝑎𝑠𝑘𝑖𝑠𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑𝑡𝑜 𝑗 𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟

2.2.2 Communication Cost (CC)
The cost incurred because of data exchange between ti and tj
allocated over different processors represented by ccij. ccij = 0

is the constraint if tasks ti and tj are residing on the same node

or processor[5].

2.2.3 Task Clustering
The total distance of each data point of a cluster from the

cluster mean i.e. the compactness of cluster (Zki) can be

evaluated as

 Xi-𝑋k
2

xiICk

= Zki

𝑚

𝑖=1

 Xi-𝑋k
2 (2)

Zki is an indicator variable designating the fittingness of the ith

data point Xi to be a part of the kth cluster [5].

Where,

Cluster Mean calculated as:

Xk =
1

m k

 XixiICk

Total number of points allocated to cluster k is

𝑚k = Zki

𝑚

𝑖=1

Overall goodness of clustering using indicator variables

defined as:

εk = Zki

𝑘

𝑘=1

 Xi-𝑋k
2

𝑚

𝑖=1

 (3)

𝑋k should be calculated to minimize the value of εk.

3. PROPOSED TASK ALLOCATION

TECHNIQUE AND ALGORITHM

3.1 Technique
In the addressed problem, There are two sets, P = {P1, P2, P3,

…….Pn}and T = {t1, t2, t3, …….tm}of „n‟ processors and ‘m’

tasks respectively. Execution Cost Matrix ECM(,)of order m x

n contains the cost of each task over every processor and Inter

Task Communication Cost Matrix ITCCM (,) of order m x m

stores the communication cost of tasks.

By minimizing the total system cost, the performance could

be enhanced. There are m tasks to be processed over n

processors and the number of tasks is more than the number

of processors (m>n), so tasks should be clustered into k

clusters. k clusters are to be allocated on n processors. For

clustering, k-mean clustering algorithm will be used. Each

task with its processing cost over every processor is forming a

vector. Therefore, m vectors of task will be framed intended to

be placed in k clusters.

Find k initial points for each cluster represented by task

vector. These points represent centroids. Assign each task

vector to the cluster that has the closest centroid. When all

task vectors have been assigned, recalculate the positions of k

centroids. Repeat the work of assignment and recalculation of

centroid’s positions until the centroids no longer move. This

produces a separation of the task vectors into clusters from

which the metric to be minimized is calculated by using

equation (2) [5].

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 18, November 2014

31

Modify the ECM (,) according the k clusters by adding the

processing time of those tasks that occurs in the same cluster.

Modify the ITCCM(,) by putting the communication zero

amongst those tasks that are in the same cluster.

In the process of assigning k clusters to n processors, next

level of clustering will be done on the basis of ecil (execution

cost) constraint. If there is any change in the clusters the ECM

(,) and ITCCM (,) should be recalculated accordingly. Once

the final assignments are in hand, the optimal cost of

assignment is to be computed using eq. (1). The objective

function to calculate total system cost is as follows:

Total Cost =EC + CC (4)

3.2 Proposed Algorithm
The algorithm consists of following steps:

Step-1: Start

Step-2: Read the number of processors in n, number of tasks

in m, number of clusters in k.

Step-3: Read the ECM(,) of the task of order n x m, ITCCM

(,)of order m x m,TMSV Collection, Memory Requirement of

each task

Step-4: Apply k-mean clustering algorithm on ECM (,)

Step-5: Store Cluster Information CIM

Step-6: For all clusters

Ifthe cluster can’t be assigned because of TMSV

Collection or Memory Requirement over any

processor than

 mark it as restricted assignment

Step-7: Check if any of cluster can’t be assign because of

TMSV Collection or memory requirement over all processors

then

 Goto Step 7

Step-8: Add the processing cost of tasks in each cluster and

update ECM (,)

Step-9: Update the ITCCM (,)on the basis of CIM

Step-10: Divide Modified ECM (,) in n column matrix

Step-11: Sort each column matrix

Step-12: For each column matrix i=1 to n

 For j=1 to m

 If tj is not assigned

 Assign tj on Pi processor

 Else

If cost on pre assignment > cost

of current assignment

 Assign tj on Pi processor

Else

 Skip current assignment

End if

End if

 End for

 End for

Step-13: Modify TMSV Collection according to the

assignment made.

Step-14: Calculate total EC and ITCC

Step-15: Calculate the Optimal Cost by eq. (4)

Step-16: End

4. IMPLEMENTATION
To illustrate the proposed algorithm, which is implemented in

MATLAB is using the following data set. It assumed that

Execution Cost Matrix, ITCC Matrix and TMSV‟s Collection

table are given for each task in units of time. Given a set of

seven tasks {T1,T2,T3,T4,T5,T6,T7} and a set of three processors

{P1, P2, P3}. Execution Cost Matrix has been given in Table 1.

Table 1: Execution Cost Matrix

 P1 P2 P3

T1 15 25 15

T2 10 10 30

T3 40 25 20

T4 5 20 5

T5 10 15 10

T6 10 5 5

T7 15 20 5

Inter-task communication detail has been provided in Table 2.

Memory requirement of all tasks is in the Table 3. The detail

of memory capacity and the number of tasks allowed by the

each node is given in Table 4. Clustering information is

provided in Table 5. The Final allocation of all tasks is

provided in Table 6. Table 7 shows the final optimized system

cost.

Table 2: Inter Task Communication Cost Matrix

 T1 T2 T3 T4 T5 T6 T7

T1 0 1 5 4 2 7 8

T2 0 2 0 9 5 1

T3 0 4 2 2 5

T4 0 3 1 6

T5 0 9 5

T6 0 1

T7 0

Table 3: Memory Requirement of Tasks in Units

T1 T2 T3 T4 T5 T6 T7

5 6 3 2 1 2 3

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 18, November 2014

32

5. CONCLUSION
The model proposed in this paper is based on effective two

level clustering and straightforward and efficient algorithm to

obtain optimal system cost. The task allocation is done under

load sharing scheme by allocating the task dynamically. ITCC

had been reduced by effective two levels clustering in this

model. The overall complexity of the proposed algorithm is

O(m2).

Table 4: TMSV’s Collection

Processor No. of Tasks

(Maximum)

Memory Capacity

(Maximum)

Tasks Assigned Available Task Capacity Memory Available

P1 9 40 0 8 40

P2 6 30 0 4 30

P3 4 10 0 4 10

Table 5: Cluster Information

Cluster Clustered Tasks Restricted Assignment Final Assignment

C - 1 T3 - P3

C - 2 T1, T4 , T5 , T6 , T7 P2 P1

C - 3 T2 P2 P3

Table 6: Status of TMSV’s Collection after Allocation

Processor No. of Tasks

(Maximum)

Memory Capacity

(Maximum)

Tasks Assigned Available Tasks Capacity Memory Available

P1 9 40 C - 2 4 27

P2 6 30 - 6 30

P3 4 10 C – 1, C - 3 2 1

Table 7: Optimal System Cost

Processors Cluster Processor Load

Optimal System Cost

EC ITCC EC + ITCC

P1 C - 2 10

70 8 78 P2 - -

P3 C – 1, C - 3 60

In the illustrated problem, the number of the tasks is much

more than the number of processors of the DRTS. To measure

the performance of the model a problem has been solved. In

this problem many constraint have been taken into

consideration. Before allocation of tasks on the processor,

node’s memory capacity has been checked and the number of

tasks allowed by the processor has also been checked.

Restricted assignments given by the initial phase of the

algorithm has also been considered at the time of the

allocation.

6. ACKNOWLEDGMENTS
We gratefully acknowledge support from Dean and faculty

members of Department of Computer Science, FASC, Mody

University Science and Technology, Lakshmangarh, Sikar and

Department of Mathematical Sciences & Computer

Applications, Bundelkhand University, Jhansi for the same.

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 18, November 2014

33

7. REFERENCES
[1] B. Ucara, C. Aykanata, K. Kayaa and M. Ikincib, "Task

Assignment in heterogeneous computing system," J.

Parallel Distrib. Comput., vol. 66, pp. 32-46, 2006.

[2] P.-Y. RICHARD MA, E. Y. S. LEE and M. TSUCHIYA,

"A Task Allocation Model for Distributed Computing

Systems," IEEE Transactions on Computers, vol. C 31,

no. 1, pp. 41-47, January 1982.

[3] A. Elsadek and B. E. Wells, "A Heuristic model for task

allocation in heterogeneous distributed computing

systems," The International Journal of Computers and

Their Applications, vol. 6, no. 1, pp. 0-35, March 1999.

[4] K. Govil and A. Kumar, "A Modified and Efficient

Algorithm for Static Task Assignment in Distributed

Processing Environment," International Journal of

Computer Applications, vol. 23, no. 8, pp. 1-5, June

2011.

[5] U. Kaushal and A. Kumar, "Improving the Performance

of DRTS by Optimal Allocation of Multiple Tasks under

Dynamic Load Sharing Scheme," International Journal of

Scientific & Engineering Research, vol. 4, no. 7, pp.

1316-1321, July 2013.

[6] U. Kaushal and A. Kumar, "Modified Clustered

Approach for Performance Escalation of Distributed

Real-Time System," in ICT and Critical Infrastructure:

Proceedings of the 48th Annual Convention of Computer

Society of India- Vol II, S. C. Satapathy, P. Avadhani, S.

K. Udgata and S. Kakshminarayana, Eds.,

Vishakapatnam, Springer International Publishing, 2014,

pp. 9-16.

[7] U. Kaushal and A. Kumar, "Performance Intensification

of DRTS under Static Load Sharing Scheme,"

International Journal of Computer Applications, vol. 71,

no. 16, pp. 55-59, June 2013.

[8] U. Kaushal. A. Kumar and N. Kumar, "Algorithm for

Performance Improvement of DRTS Under Static Load

Sharing Scheme," IUP Journal of Information

Technology, vol. 9, no. 3, pp. 43-52, September 2013.

[9] H. S. Stone, "Multiprocessor scheduling with the aid of

network flow," IEEE Trans. Software Eng., vol. SE 3,

pp. 85-93, January 1977.

[10] R. Mohan and N. P. Gopalan, "A Modified Parallel

Heuristic Graph Matching Approach for Solving Task

Assignment Problem in Distributed Processor System,"

I.J. Information Technology and Computer Science, vol.

5, no. 10, pp. 78-84, 2013.

[11] Karimi, F. Zarafshan and A. b. Jantan, "A New Fuzzy

Approach for Dynamic Load Balancing Algorithm,"

International Journal of Computer Science and

Information Security, vol. 6, no. 1, pp. 1-5, 2009.

[12] Sahu and R. Tapadar, "Solving the Assignment problem

using Genetic Algorithm and Simulated Annealing,"

IAENG International Journal of Applied Mathematics,

vol. 36, no. 1, pp. 762-765, February 2006.

[13] G. Attiya and Y. Hamam, "Task allocation for

maximizing reliability of distributed systems:A simulated

annealing approach," J. Parallel Distrib. Comput., vol.

66, no. 10, p. 1259 – 1266, 2006.

[14] Z. Khan, R. Singh and R. Alam, "Tasks Allocation Using

Fuzzy Inference in Parallel And Distributed System,"

Journal of Information and Operations Management, vol.

3, no. 2, pp. 322-326, 2012.

[15] K. Govil, "A Smart Algorithm for Dynamic Task

Allocation for Distributed Processing Environment,"

International Journal of Computer Applications, vol. 28,

no. 2, pp. 13-19, 2011.

[16] G. A. Geist and V. S. &Sunderam, "Concurrency:

Practice and Experience," Network Based Concurrent

Computing on the PVM System, vol. 4, no. 4, pp. 293-

311, 1992.

[17] Folliot and P. Sens, "Load Sharing and Fault Tolerance

Manager," High Performance Cluster Computing

Architectures, p. 841, 2008.

[18] P. Yadav, M. Singh and K. Sharma, "An Optimal Task

Allocation Model for System Cost Analysis in

Hetrogeneous Distributed Computing Systems: A

Heuristic Approach," International Journal of Computer

Applications, vol. 28, no. 4, pp. 30-37, August 2011.

IJCATM : www.ijcaonline.org

