
International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 17, November 2014

31

Data Relationship Query in Relational DB, NoSQL DB

and Graph DB

Kay Thi Yar

University of Computer Studies, Yangon

Khin Mar Lar Tun
University of Computer Studies, Yangon

ABSTRACT

Every nation has vast amount of census data and analysis of

these data is the value for nation as source citations,

correlating and corroborating sources, relevance or findings

contradictions. These census data may relate in any form

based on family group records, friendship, co-worker and etc.

In this paper, our nation, Myanmar's census data is used as

source citations for searching relationship between two

distinct persons based on unique National Registration Card

(NRC) Number. The Myanmar census data involve person

name, date of birth, gender, occupation, parent names,

relationship with householder, NRC number and detail

parent’s family records including jobs and etc. NRC number

is the unique identification number for every citizen in

Myanmar. The aim of this paper is to observe the efficient

data storage form for those related data among three types of

database structure; relational DB, NoSQL DB, graph DB. The

observation is done by retrieving data relationship from these

databases using their query form. In relational database,

personnel data is stored as table structure while in NoSQL

databases like key-values store, column-family store and

document store, personnel data is stored as key-values pair,

column oriented and document oriented structure respectively.

In graph database, personnel data is stored as graph structure

with persons as nodes and relationship between them as

edges. Then the query processing time is compared based on

retrieving related data from those databases by using their

relevant query system and find out which query process can

produce the optimal running time. The experimental results

show that graph database is more powerful in retrieving

relationship over relational and NoSQL databases and it can

provide better performance when handling in highly

interconnected data compared to relational and NoSQL

databases.

Keywords

Relational Database, NoSQL Databases, Graph Database,

Data Model, Query Model.

1. INTRODUCTION
In today's world, the great majority of people around the globe

are citizens of the information society. In real world, in

addition to search personal information of each person,

searching connections between them is interesting issue in our

society to acquire related information and personnel history.

Nowadays, social network like Facebook is the best medium

for communication, sharing knowledge and information. For

people, to contact with each other and to interchange

information between them, searching relationship between

persons is necessary and vital matter. Classic relational

databases use two-dimensional table for data creation and

their Structure Query Language have a limitation when it

comes to data aggregation, which is used for business

intelligence and data mining [2]. Moreover, multi-table

queries are not effective for huge data queries. Data

aggregation becomes impossible on very large volumes of

data when it comes to memory and time consumption. The

problem with relational model is that it has some scalability

issues that is performance degrades rapidly as data volumes

increases [4]. This led to the development of a new data

model like NoSQL and graph databases. Though the concept

of NOSQL was developed a long time ago, it was after the

introduction of database as a service (DBaaS) that it gained a

prominent recognition. Because of the high scalability

provided by NOSQL, it was seen as a major competitor to the

relational database model. Unlike RDBMS, NoSQL databases

are designed to easily scale out and when they grow [3]. Most

NoSQL systems have removed the multi-platform support and

some extra unnecessary features of RDBMS, making them

much more lightweight and efficient than their RDBMS

counterparts. The NoSQL data model does not guarantee

ACID properties (Atomicity, Consistency, Isolation and

Durability) but instead it guarantees BASE properties

(Basically Available, Soft state, Eventual consistency) [5]. It

is in compliance with the CAP (Consistency, Availability,

Partition tolerance) theorem. In recent years, new graph

database technology emerged for the compliment of relational

and NoSQL databases of storing and effectively retrieving

huge volumes of relationship data. Graph database can store

complex and dynamic relationships of highly connected data

like person information. It can also make easier for developers

to work with when navigating connected data [9]. Now, it is

used in industries as diverse as healthcare, retail, oil and gas,

media, and gaming. With pros and cons of each DB structure,

the searching of data relation using each DB’s standard query

system is explored in this paper. Retrieving data from these

databases perform differently. The query processing for data

relation search makes the query statement complex and

retrieving process lengthy in relational DB compared to graph

DB. In this paper, query statements for data relationship

searching and processing time are compared. The rest of this

paper is organized as follows: Section 2 describes the census

data scheme of every citizen in Myanmar. Section 3 express

the overview of relational database and also presents its data

model, query model and weakness of relationships. Section 4

describes the overview of NoSQL databases and also presents

its data model and limitation of relationships. Section 5

describes the overview of graph database and also presents its

data model, query model and strength of relationships. Section

6 shows the experimental results. Finally, conclusion and

future work are stated in section 7.

2. THE CENSUS DATA SCHEME
The data scheme for the census data structure of a person in

this paper includes as follows:

- Person Name, NRC No, Date of Birth, Place of Birth, Race,

Nationality, Religion, Gender, Marital Status, Job Title,

Department, Organization, Job Location, Phone No, Hobby,

Favorite Music, Favorite Movie, Permanent Address, Current

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 17, November 2014

32

Address, Native Town, Father Name, Father’s NRC No,

Father's Job, Mother Name, Mother's NRC No, Mother's Job,

Name of Siblings, Name of Children, Wife/Husband's Name,

Wife/Husband's NRC No, Wife/Husband's Job..

3. RELATIONAL DATABASE
Relational databases have been evolved for storing large

amounts of structured data as tabular form where each column

represents a field and each row represents a record. Tables can

be related or linked with each other with the use of foreign

keys or common columns. They are the database technology

of choice for most traditional data-intensive storage and

retrieval applications. Retrievals are usually accomplished

using SQL, a declarative query language.

3.1 The Relational Database Design for

The Census Data
The data scheme for the census data in relational database is

as follows:

CREATE TABLE `person` (

 `person_id` decimal(15,0) NOT NULL,

 `name` varchar(30) DEFAULT NULL,

 `father_id` decimal(15,0) DEFAULT NULL,

 `mother_id` decimal(15,0) DEFAULT NULL,

 `husband_id` decimal(15,0) DEFAULT NULL,

 `wife_id` decimal(15,0) DEFAULT NULL,

 `gender` varchar(10) DEFAULT NULL,

 `marital_status` varchar(20) DEFAULT NULL,

 `nrc_no` varchar(30) DEFAULT NULL,

 `race` varchar(30) DEFAULT NULL,

 `nationality` varchar(30) DEFAULT NULL,

 `religion` varchar(30) DEFAULT NULL,

 `date_of_birth` date DEFAULT NULL,

 `permanent_address` varchar(100) DEFAULT NULL,

 `current_address` varchar(100) DEFAULT NULL,

 `native_town` varchar(30) DEFAULT NULL,

 `job_title` varchar(50) DEFAULT NULL,

 `department` varchar(50) DEFAULT NULL,

 `organization` varchar(100) DEFAULT NULL,

 `job_location` varchar(80) DEFAULT NULL,

 `phone_no` varchar(30) DEFAULT NULL,

 `hobby` varchar(30) DEFAULT NULL,

 `Alive_Death` varchar(10) DEFAULT NULL,

 PRIMARY KEY (`person_id`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

CREATE TABLE `relationship` (

 `relationship_id` decimal(15,0) NOT NULL,

 `primary_person_id` decimal(15,0) NOT NULL,

 `secondary_person_id` decimal(15,0) NOT NULL,

 `senior` varchar(30) DEFAULT NULL, PRIMARY KEY

(`relationship_id`,`primary_person_id`,`secondary_person_id`

)

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

CREATE TABLE `relationshiptype` (

 `relationship_id` decimal(15,0) NOT NULL,

 `relationship_Type` varchar(30) DEFAULT NULL,

 `remark` varchar(100) DEFAULT NULL,

 PRIMARY KEY (`relationship_id`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

CREATE TABLE `singertable` (

 `singerId` int(11) NOT NULL,

 `singerName` varchar(50) DEFAULT NULL,

 PRIMARY KEY (`singerId`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

CREATE TABLE `songtable` (

 `songId` int(11) NOT NULL,

 `songName` varchar(100) DEFAULT NULL,

 `singerId` int(11) DEFAULT NULL,

 PRIMARY KEY (`songId`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

CREATE TABLE `movietable` (

 `movieId` int(11) NOT NULL,

 `movieName` varchar(500) DEFAULT NULL,

 PRIMARY KEY (`movieId`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

CREATE TABLE `favoritemusictable` (

 `personId` int(11) DEFAULT NULL,

 `singerId` int(11) DEFAULT NULL,

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 17, November 2014

33

 `songId` int(11) DEFAULT NULL

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

CREATE TABLE `favoritemovietable` (

 `personId` int(11) DEFAULT NULL,

 `movieId` int(11) DEFAULT NULL,

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

3.2 Relational Queries
Example Query 1 is the relational SQL query statement for

retrieving the relationship between “U Zay Yar” and “Mg Zar

Ni Linn”. These two persons' relationship is “father and eldest

son”. To search for relationship, we need to create all

necessary tables for storing personnel information. Firstly,

respective person_ids of U Zay Yar and Mg Zar Ni Linn are

retrieved from person table. And then, senior column is

retrieved from relationship table that are matched with

primary_person_id and secondary_person_id that are equal to

above person_ids. Senior column indicates the position of the

children and so may be eldest, first middle, second middle and

youngest son/daughter and so on. Secondly, relationship_id is

retrieved from relationship table by using the person_ids of U

Zay Yar and Mg Zar Ni Linn. And then, relationship table and

relationshipType table are joined based on the relationship_id

of relationship table rs and relationshipType table rt to

retrieve the relationship_Type of U Zay Yar and Mg Zar Ni

Linn. Finally, senior Eldest and relationship type Son are

obtained between U Zay Yar and Mg Zar Ni Linn. Example

Query 2 and Example Query 3 are also like that the step by

step of above query 1.

Example Query 1 : For finding relationship between Father

"U Zay Yar" and his Eldest Son "Mg Zar Ni Linn"

SELECT (SELECT senior FROM relationship WHERE

primary_person_id = (SELECT person_id FROM person

WHERE NAME LIKE 'U Zay Yar')

AND

secondary_person_id = (SELECT person_id FROM person

WHERE NAME LIKE 'Mg Zar Ni Linn'))AS senior,

rt.relationship_Type

FROM

relationshipType rt JOIN relationship rs ON rs.relationship_id

= rt.relationship_id

WHERE rt.relationship_id = (SELECT relationship_id FROM

relationship WHERE primary_person_id = (SELECT

person_id FROM person WHERE NAME LIKE 'U Zay Yar')

AND

secondary_person_id = (SELECT person_id FROM person

WHERE NAME LIKE 'Mg Zar Ni Linn')) GROUP BY

rt.relationship_Type;

Example Query 2 : For finding relationship between Husband

" Mg Zar Ni Linn " and his Wife "Ma Khin Me Me"

SELECT (SELECT senior FROM relationship WHERE

primary_person_id = (SELECT person_id FROM person

WHERE NAME LIKE 'Mg Zar Ni Linn')

AND

secondary_person_id = (SELECT person_id FROM person

WHERE NAME LIKE 'Ma Khin Me Me'))AS senior,

rt.relationship_Type

FROM

relationshipType rt JOIN relationship rs ON rs.relationship_id

= rt.relationship_id

WHERE rt.relationship_id = (SELECT relationship_id FROM

relationship WHERE primary_person_id = (SELECT

person_id FROM person WHERE NAME LIKE 'Mg Zar Ni

Linn')

AND

secondary_person_id = (SELECT person_id FROM person

WHERE NAME LIKE 'Ma Khin Me Me')) GROUP BY

rt.relationship_Type;

Example Query 3 : For finding relationship between Father-

in-Law "U Zay Yar" and his Eldest Daughter-in-Law "Ma

Khin Me Me"

SELECT (SELECT senior FROM relationship WHERE

primary_person_id = (SELECT person_id FROM person

WHERE NAME LIKE 'U Zay Yar')

AND

secondary_person_id = (SELECT person_id FROM person

WHERE NAME LIKE 'Ma Khin Me Me'))AS senior,rt.

relationship_Type

FROM

relationshipType rt JOIN relationship rs ON rs.relationship_id

= rt.relationship_id

WHERE rt.relationship_id = (SELECT relationship_id FROM

relationship WHERE primary_person_id = (SELECT

person_id FROM person WHERE NAME LIKE 'U Zay Yar')

AND

secondary_person_id = (SELECT person_id FROM person

WHERE NAME LIKE 'Ma Khin Me Me')) GROUP BY

rt.relationship_Type;.

3.3 Relational Database Lacks In

Relationship
Relational databases are schema based, define the structure in

advance and deal poorly with connected data. Relational

database systems are generally efficient unless the data

contains many relationships requiring joins of large tables [1].

Recursive query such as “which customers bought this

product who also bought that product?” become more and

more expensive as the degree of recursion increases.

Reciprocal queries such as “What products did a customer

buy?” and “Which customers bought this product?” are so

complex to manipulate. Example reciprocal query : “Who are

Bob’s friends?” and “Who is friends with Bob?”. It’s possible

to get an answer for the query : “Who are my friends-of-

friends-of-friends?” in a reasonable period of time. If this

query extend to four, five, or six degrees of friendship,

performance decline significantly due to the computational

and space complexity of recursively joining tables. In this

paper, person table is used to store persons record and to

describe relationship between persons such as grand father,

mother, daughter, son-in-law, father-in-law, uncle nephew and

so on, relationship table and relationship type table are

created. When the size of the data is more and more large, the

huge amount of personnel data and relationship are needed to

store in every table. Besides, queries that are used to retrieve

relationships between persons are so complex and not flexible

to write. And then, query processing time of these complex

queries will high and decline performance corresponding to

the data size. With requirements changing due to

transformation of the IT world, several types of NoSQL

databases have emerged and are gaining popularity.

Moreover, within computer science, there currently exist

several options for storing data outside of a traditional

relational model and there has been increased interest in

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 17, November 2014

34

graphs to represent social networks, web site link structures,

chemical structure graphs and others [7].

4. NoSQL DATABASES
NoSQL databases provide a mechanism for storage and

retrieval of data that is modeled other than the tabular

relations used in relational databases. This systems are also

referred to as "Not only SQL" to emphasize that they may

allow SQL-like query languages to be used. In the context of

the CAP Theorem, NoSQL stores often compromise

consistency in favor of availability and partition tolerance [5].

NoSQL provides the flexibility to store entire data in terms of

documents instead of conventional method of table-row-

column. It is extensively useful when huge amounts of

unstructured data or data that’s stored remotely on multiple

virtual servers are needed to access and analyze. An important

aspect of NoSQL databases is that they have no predefined

schema, records can have different fields as necessary, this

may be referred to as a dynamic schema [6]. Also an

important difference between relational databases and NoSQL

databases is that they do not fully guarantee ACID properties.

4.1 Types of NoSQL Databases
1. Key-values stores: key-values store is a system that stores

values indexed for retrieval by keys. They have a simple data

model such as a map or dictionary, allowing clients to put and

request values per key. These systems can hold structured or

unstructured data and can easily be distributed to a cluster or a

collection of nodes as in Amazon’s DynamoDB and Project

Voldemort.

2. Document-based stores: These databases store data and

organize them as document collections, instead of structured

tables with uniform sized fields for each record. With this

database, users can add any number of fields of any length to

a document as implemented in Couch DB and Mongo DB [3]

Document stores can be considered to be next step to the key-

value stores because they store more complex data than the

key-value stores. They store “documents” which allow values

to be nested documents or lists as well as scalar values, and

the attribute names are dynamically defined for each

document at runtime.

3. Column-oriented databases: Column-oriented database is a

system that stores data in whole column instead of a row,

which minimizes disk access compared to a heavily structured

table of columns and rows with uniform sized fields for each

record as in HBase and Cassandra. All data stored in a column

family is usually of the same type for compressing data in the

same column family together.

4.2 NoSQL Database Structure for The

Census Data
In key-values store, each personal information such as person

name, father name, mother name, NRC No, Date of Birth,

Place of Birth, Race, Nationality, Religion, Gender, Marital

Status, Job Title, etc... is stored as values in list or map data

structure. These values are indexed with their respective keys.

In column-family store, each personal information is stored as

column oriented structure. In document store, each personal

information is stored in each document.

Personnel Information

Key Values

1 Name:"U Zay Yar", Father_Name:"U Thein

Aung", Mother_Name:"Daw Khin Kyi" ,

Job_Title ...

2 Name:"Mg Zar Ni Linn", Father_Name:" U

Zay Yar ", Mother_Name:"Daw Khin Kyawe"

, Job_Title ...
......

Fig 1: Structure of Key-Values Store

Fig 2 : Structure of Column-Family Store

Fig 3 : Structure of Document Store

4.3 NoSQL Databases Also Lack In

Relationship
NoSQL databases like key-values store, column-family store

and document store consist of disconnected values, columns

and documents. According to these stores' structure,

information of each person is stored incoherently as shown in

above figures. And so, finding relationship between disjointed

personnel information is encountered troubles in NoSQL

databases. This makes it difficult and so complicated to use

query for retrieving relationships among connected personnel

{Name : "U Zay Yar", Father_Name : "U Thein Aung",

Mother_Name : "Daw Khin Kyi", Elder_Sister_Name :

"Daw Hla Hla Win", Youngest_Sister_Name : "Daw Nwe

NweWin", Younger_Brother_Name : "UMyoWin",

NRC_No : "5/SaKaNa(N)072217", Race : "Burma",

Nationality : "Myanmar", Religion : "Buddish",

Date_Of_Birth : "29.7.1950", Gender : "Male",

Occupation : "TownshipEducationOfficer", Department :

"Administration", Organization : "EducationOffice,

Sagaing", JobLocation : "KannarRoad, Sagaing",

Permanent_Address : "Kanardaw Quarter, Sagaing",

Current_Address : "KanardawQuarter, Sagaing",

Native_Town : "Sagaing", Phone_no : "09-6818173",

Hobby : "Playing Football", Favourite_Music : "Soe

Paing", Favourite_Movie : "3 Idiots" }

{Name : "Mg Zar Ni Linn", Father_Name : "U ZayYar", …..}

{Name : "Ma Khin Me Me", Father_Name : "U Mg Mg" …}

Super Column Family :
Persons
person_id : 00001

Name : U Zay Yar

Super Column : Address

CurrentAddress :

KanardawQuarter,

Sagaing

Permanent Address :

Kanardaw Quarter,

Sagaing

SuperColumn:JobStatus

Job Title : T.E.O

Department : Admin

Job Location : Kannar

Road, Sagaing

Super Column Family :

Relationship

relationship_id : 00001

Super Column : Person_id

primary_person_id : 00001

secondary_person_id :

00002

senior : Eldest

.........

Super Column Family :

Relationship

relationship_id : 00001

relationship_type:

GrandFather

remark : -

..........

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 17, November 2014

35

data since these databases also lack relationships. Well-known

strategy for adding relationships to such stores is to embed an

aggregate’s identifier inside the field belonging to another

aggregate such as foreign keys. However, this requires joining

aggregates at the application level, which quickly becomes

prohibitively expensive and decreases performance.

Therefore, NoSQL database management systems are useful

when working with a huge quantity of data when the data's

nature does not require a relational model and retrieving

related data [8]. Due to the necessity of relationship nature,

graph database technology is emerged to handle this problem.

5. GRAPH DATABASE
Graph databases are databases which store data in the form of

a graph. The graph consists of nodes and edges, where nodes

act as the objects and edges act as the relationship between the

objects. Graph Database Management Systems provide an

effective and efficient solution to data storage where data are

more and more connected, graph models are widely used, and

systems need to scale to large data sets [11]. Graphs are

widely used to model social networks and the use of graphs to

solve real world problems is becoming necessary. There are

several application domains in which the data have a natural

representation as a graph. For instance, this happens in the

social networking applications, recommendation software,

bioinformatics, content management, security and access

control, geographic applications, network and cloud

management etc... [10]. In these contexts, relational systems

are usually unsuitable to store data since they hardly capture

their inherent graph structure. Moreover, graph traversals over

highly connected data require complex join operations, which

can make typical relational operations on this kind of data

inefficient and applications hard to scale. For these reasons, a

new brand category of data stores, called Graph Database

Management Systems (GDBMSs), is emerging [13]. In

GDBMSs, data are natively stored as graphs and queries are

expressed in terms of graph traversal operations. This allows

applications to scale to very large graph-based data sets. In

addition, since GDBMSs do not rely on a rigid schema, they

provide a more flexible solution in scenarios where the

organization of data evolves rapidly.

5.1 Graph Database for The Census Data
For creating person nodes and personnel relationship,

CREATE clauses can create many nodes and relationships at

once as follows:

Create (n1 : PersonnalInfo {Name : "U Zay Yar",

Father_Name : "U Thein Aung", Mother_Name : "Daw Khin

Kyi", Elder_Sister_Name : "Daw Hla Hla Win",

Youngest_Sister_Name : "Daw New New Win", Wife_Name

: "Daw Khin Kyawe", Eldest_Son_Name : "Mg Zar Ni Linn",

Middle_Son_Name : "Mg Zar Ni Toe",

Youngest_Daughter_Name : "Ma Kay Thi", NRC_No :

"5/SaKaNa(N)072217", Race : "Burma", Nationality :

"Myanmar", Religion : "Buddish", Date_Of_Birth :

"29.7.1950", Gender : "Male", Marital_Status : "Married",

Occupation : "Township Education Officer", Department :

"Administration", Organization : "Education Office, Sagaing",

JobLocation : "Kannar Road, Sagaing",Permanent_Address :

"Kanardaw Quarter, Sagaing", Current_Address : "Kanardaw

Quarter, Sagaing", Native_Town : "Sagaing", Phone_no : "09-

6818173", Hobby : "Playing Football", Favourite_Song : "Ah

Thi Ta Yar Ah Nyar Ta Khu", Favourite_Movie : "The

Forbidden Kingdom", Alive_Death : "Alive" }),

(n2 : PersonnalInfo {Name : "Daw Khin Kyawe",

Father_Name : "U Kyin Sein", Mother_Name : "Daw San

Hmi", Elder_Brother_Name : "U Yu",

Younger_Brother_Name : "U Tint Wai", Husband_Name : "U

Zay Yar", Eldest_Son_Name : "Mg Zar Ni Linn",

Middle_Son_Name : "Mg Zar Ni Toe",

Youngest_Daughter_Name : "Ma Kay Thi", NRC_No :

"5/SaKaNa(N)072232", Race : "Burma", Nationality :

"Myanmar", Religion : "Buddish", Date_Of_Birth :

"20.7.1952", Gender : "Female", Marital_Status : "Married",

Occupation : "Teacher", Department : "Mathametics",

Organization : "B.E.H.E (1), Sagaing", JobLocation : "

Kannar Road, Sagaing ", Permanent_Address : "Kanardaw

Quarter, Sagaing", Current_Address : " Kanardaw Quarter,

Sagaing", Native_Town : "Sagaing", Phone_no : "09-

33089548", Hobby : "Cooking", Favourite_Song : "Tu Po Tu

Po", Favourite_Movie : "Round the World in 80 Days",

Alive_Death : "Alive" }),

(n3 : PersonnalInfo {Name : "Mg Zar Ni Linn", Father_Name

: "U Zay Yar", Mother_Name : "Daw Khin Kyawe",

Younger_Brother_Name : "Mg Zar Ni Toe",

Youngest_Sister_Name : "Ma Kay Thi", Wife_Name : "Ma

Khin Me Me", NRC_No : "5/SaKaNa(N)155472", Race :

"Burma", Nationality : "Myanmar", Religion : "Buddish",

Date_Of_Birth : "29.7.1980", Gender : "Male",

Marital_Status : "Married", Occupation : "Inspection

Technican", Department : "Inspection", Organization : "Total

EMP, Myanmar", JobLocation : " KabarAye Pagoda Road,

Yankin",Permanent_Address : "Kanardaw Quarter, Sagaing",

Current_Address :" No.2 Electric, Minbu", Native_Town :

"Sagaing", Phone_no : "09-450002857", Hobby : "Reading",

Favourite_Song : "Light", Favourite_Movie : "The Karate

Kid", Alive_Death : "Alive" }),

(n4 : PersonnalInfo {Name : "Mg Zar Ni Toe", Father_Name :

"U Zay Yar", Mother_Name : "Daw Khin Kyawe",

Elder_Brother_Name : "Mg Zar Ni Linn",

Younger_Sister_Name : "Ma Kay Thi", NRC_No :

"5/SaKaNa(N)155856", Race : "Burma", Nationality :

"Myanmar", Religion : "Buddish", Date_Of_Birth :

"13.9.1983", Gender : "Male", Marital_Status : "Single",

Occupation : "Senior Assistant Engineer", Department :

"Mechanical", Organization : "Construction Office, Sagaing",

JobLocation : " HtuParYoune Pagoda Road, Sagaing

",Permanent_Address : "Kanardaw Quarter, Sagaing",

Current_Address :" Kanardaw Quarter, Sagaing ",

Native_Town : "Sagaing", Phone_no : "09-440227457",

Hobby : "Playing Football", Favourite_Song : "Believe for

one step", Favourite_Movie : "The Myth", Alive_Death :

"Alive" }),

……

……

(n3)-[:Father{type: 'Father'}]->(n1),

(n3)-[:Mother{type: 'Mother'}]->(n2),

(n4)-[:Father{type: 'Father'}]->(n1),

(n4)-[:Mother{type: 'Mother'}]->(n2),

(n1)-[:Eldest_Son{type: 'Eldest_Son'}]->(n3),

(n2)-[:Eldest_Son{type: 'Eldest_Son'}]->(n3),

(n1)-[:Younger_Son{type: 'Younger _Son'}]->(n4),

(n2)-[: Younger _Son{type: 'Younger _Son'}]->(n4),

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 17, November 2014

36

(n4)-[:Elder_Brother{type: 'Elder_Brother'}]->(n3),

(n3)-[:Younger_Brother{type: 'Younger_Brother'}]->(n4),

…….

…….

Fig 4 : Structure of Sample Personnel Information Graph

5.2 Graph Queries for Data Searching
In graph database, storing personnel information and

relationship is easily done because of the schema free nature

and flexible data model such as no need to declare data types

for vertices or edges as opposed to the more constrained table-

oriented model of a relational database. Example Query 1 is

the cypher query statement for retrieving the relationship

between “U Zay Yar” and “Mg Zar Ni Linn”. These two

persons' relationship is “father and eldest son”. The

relationship between two persons can be easily retrieved in

graph database by defining the person names that we want to

search in where clause and the relationship finding pattern

between two persons in match clause. However, complex

SQL query statements are written for finding relationship

among two persons in relational database. One of the

weaknesses of the relational model is its limited ability to

explicitly capture requirement semantics [14]. Big data

problems involving complex interconnected information have

become increasingly common in the sciences. Storing,

retrieving, and manipulating such complex data becomes

onerous when using traditional RDBMS approaches. Schema

based data models also limits on how information will be

stored. There is an involved manual process to redesign the

schema in order to adapt to new data. So, while the RDBMS

is optimized for aggregated data, graph databases such as

Neo4j are optimized for highly connected data. In general,

graph databases are useful when we are more interested in

relationships between data than in the data itself: for example,

in representing and traversing social networks, generating

recommendations and conducting forensic investigations.

Example Query 1 : For finding relationship between Father

"U Zay Yar" and his Eldest Son "Mg Zar Ni Linn"

START n=node(*) MATCH n-[r]->m WHERE n.name="U

Zay Yar" AND m.name="Mg Zar Ni Linn" RETURN n,m,r;

Example Query 2 : For finding relationship between Husband

" Mg Zar Ni Linn " and his Wife "Ma Khin Me Me"

START n=node(*) MATCH n-[r]->m WHERE n.name="Mg

Zar Ni Linn" AND m.name="Ma Khin Me Me" RETURN

n,m,r;

Example Query 3 : For finding relationship between Father-

in-Law "U Zay Yar" and his Eldest Daughter-in-Law " Ma

Khin Me Me"

START n=node(*) MATCH n-[r]->m WHERE n.name="U

Zay Yar" AND m.name="Ma Khin Me Me" RETURN n,m,r.

5.3 Graph Database Embraces

Relationship
Graph databases are occurrence based, store data and

relationships as they are encountered. Traversing connected

data is extremely rapid because it use index-free adjacency.

This means that every element contains a direct pointer to its

adjacent element and no global index lookups are necessary.

In this paper, persons’ information is stored as graph structure

with persons as nodes and relationships between them as

edges by using Neo4j graph database. They can store complex

and dynamic relationships of highly connected data.

According to the database schema nature, multiple tables are

created for searching personnel relationship in relational

database but only one personnel information graph is

necessary to create in graph database. Furthermore, the

queries used to search personnel relationship are so simple

and easy to write rather than relational SQL queries. For data

of any significant size or value, graph databases are the most

excellent way to represent and query connected data within

the best performance. Moreover, pattern-matching queries are

very difficult to write in SQL, laborious to write in aggregate

stores, and in both cases they tend to perform very poorly.

Graph databases are optimized for these types of queries, and

providing in millisecond responses [12]. Therefore, graph

database is the best solution if there is a need for a dynamic

data model that represents highly connected data.

6. EXPERIMENTAL RESULTS
This section discusses the experimental results for the query

processing time comparison for finding relationship between

two persons. In RDBMS, the more bigger the size of the data,

the more decline the performance. In GDBMS, although the

data size is so large, it can maintain the high performance.

Table 1. Query Processing Time of Relationship in

Personnel Information Database

Relationship RDBMS

Execution

Time (sec)

GDBMS

Execution

Time (sec)

No. of

Records

person-person 0.016 0.01 ~2500

person-person 30.267 0.168 ~110000

person-person 1543.505 1.359 ~600000

7. CONCLUSION AND FUTURE WORK
This paper gives an overview about the relational database,

NoSQL database and graph database by comparing with data

model and query model. Myanmar census data, including

facts of creating National Registration Card (NRC), personnel

profile and other additional information are used to find

related information between persons. Relational database

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 17, November 2014

37

system use two-dimensional table for data creation, with

properties like transactions, complex SQL queries, and multi-

table related query. Moreover, multi-table queries are not

effective for huge data queries when data size is getting bigger

and bigger. Scalability in relational databases requires

powerful servers that are both expensive and difficult to

handle. So, they lack in relationships for finding related data

because of joining multiple tables and writing complicated

queries. And then, NoSQL databases are effective when we

need to process large amount of data with high scalability and

to use data among many servers compared to the conventional

relational database systems. NoSQL is extensively useful to

analyze huge amounts of unstructured data or data that’s

stored remotely on multiple virtual servers. However, these

databases also lack relationships for retrieving connected data

because of their disconnected storage structure. In contrast to

these NoSQL and relational databases, the relations between

the objects are of primary importance and so powerful in

graph database. Graph databases support a graph model which

allows for a direct persistent storing of the particular objects

together with the relations between them. In addition, they

should provide an access to query methods that not only deal

with the stored objects, but also with the graph structure itself.

They are the best technology for dealing with complex, semi-

structured, densely connected data and substantially quicker

than relational and NoSQL data stores. This paper only

analyzes with the query model for finding relationships

between persons. For the future work, this paper can be

extended to search personnel relationships by utilizing

different algorithms for three databases.

8. REFERENCES
[1] R.D.Virgilio, et al. 2013. Converting Relational to Graph

Database. In Proceedings of the First International

Workshop on Graph Data Management Experience and

Systems (GRADES 2013), June 23, 2013 - New York,

NY, USA.

[2] R. Cattell, 2010. Relational Databases, Object Databases,

Key-Value Stores, Document Stores, and Extensible

Record Stores: A Comparison.

[3] A Nayak, et al, 2013. Type of NOSQL Databases and its

Comparison with Relational Databases. In International

Journal of Applied Information Systems (IJAIS) – ISSN:

2249-0868 Foundation of Computer Science FCS, New

York, USA Volume 5– No.4, March 2013 –

www.ijais.org.

[4] C. Hadjigeorgiou, et al, 2013. RDBMS vs NoSQL:

Performance and Scaling Comparison.

[5] S. K. Gajendran. A Survey on NoSQL Databases.

[6] C. J. M. Tauro, et al. A Comparative Analysis of

Different NoSQL Databases on Data Model, Query

Model and Replication Model. In Proceedings of the

International Conference on “Emerging Research in

Computing, Information, Communication and

Applications” ERCICA 2013, ISBN: 9789351071020.

[7] C. Vicknair, et al. 2010. A Comparison of a Graph

Database and a Relational Database. ACMSE ’10, April

15-17, 2010, Oxford, MS, USA

[8] A. B. M. Moniruzzaman, 2013. NoSQL Database: New

Era of Databases for Big data Analytics - Classification,

Characteristics and Comparison. International Journal of

Database Theory and Application, Vol. 6, No. 4. 2013.

[9] I. Robinson, et al. 2013. Graph Databases. June 2013:

First Edition.

[10] M. Buerli, 2012. The Current State of Graph Databases.

Department of Computer Science, Cal Poly San Luis

Obispo, mbuerli@calpoly.edu.

[11] R. Angles, et al. 2008. Survey of Graph Database

Models. ACM Computing Surveys, Vol. 40, No. 1, Article

1, Publication date: February 2008.

[12] F. Holzschuher, 2013. Performance of Graph Query

Languages. EDBT/ICDT ’13 March 18 - 22 2013,

Genoa, Italy.

[13] S. Jouili, et al. An empirical comparison of graph

databases.

[14] Hull, R. AND King, R. 1987. Semantic database

modeling: Survey, applications, and research issues.

ACM Comput. Surv. 19, 3, 201-260.

IJCATM : www.ijcaonline.org

