
International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 15, November 2014

29

Literature Review of Test Case Generation Techniques

for Object Oriented System

Namita Khurana R.S Chillar
Research Scholar, (Deptt. of Comp. Sc. Head (Deptt. of Comp. Sc.
 and Applications, M.D.U, Rohtak) and Applications, M.D.U, Rohtak)

ABSTRACT

It has already known that software testing is one of the most

important and critical phase of software development life cycle

assuring the verification and validation process of the software.

Testing of software requires a great deal of planning and

resources as it is a time-consuming activity. The software

testing immensely depends on three main phases: test case

generation, test execution, and test evaluation. Test case

generation is the core of any testing process and automating it

saves much time and effort as well as reduces the number of

errors and faults. In this paper a survey on various object

oriented testing techniques for generating effective test cases is

presented. For example test case generation using genetic

algorithm, using UML sequence diagram, using UML activity

diagrams, Scenario based test case generation etc.

Keywords
Object oriented software system, Software testing, UML

diagrams.

1. INTRODUCTION
Almost everything in day today life has an element of software

in it. An organization that develops any product must put an

effort to reduce or totally remove the faults before delivering

that product. The consequences and impact of each single

defect needs testing. It may be acceptable to say that 99.9% of

the defects are fixed in the software product for release and

0.1% is outstanding [1].

Fig 1: Software Development Life Cycle Steps

Software testing, the inevitable phase in the Software

Development Life Cycle (SDLC) plays a vital role in deciding

the delivery of the product as well as to ensure the quality of

the product. Testing can be performed on requirement, design

and code. However, if testing is followed in the initial phase in

SDLC most of the errors can be eliminated and can be

prevented without disseminating to the next phase.

Software testing can be stated as the process of validating and

verifying that a computer program/application/product meets

the requirements that guided its design and development;

works as expected, can be implemented with the same

characteristics, and satisfies the needs of stakeholders.

For a any given part of software we will be writing a set of test

cases that called test suites and it is used to group together

similar test cases. A properly generated test suite may not only

locate the errors in a software system, but also help in reducing

the high cost associated with software testing. A test case,

in software engineering, is a set of conditions or variables

under which a tester will determine whether

an application, software system or one of its features is

working as it was originally established for it to do. Test suites

is a collection of test cases that are planned to be used to test a

software program to illustrate that it has some specific set of

behaviors.

Fig 2: Software Testing Life Cycle Steps

2. LIFE-CYCLE OF OBJECT-ORIENTED

SOFTWARE TESTING
The Full Lifecycle of Object Oriented Testing (FLOOT) is

shown in the fig-1[26].

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 15, November 2014

30

Fig. 1. FLOOT Lifecycle

This paper is structured in five sections; Section 1 covers the

basic introduction whereas section 2 presents the test case

generation approaches. Section 3 gives the testing techniques for

object oriented software. Section 4 gives the problems faced

during object oriented testing. Section 5 discusses about

literature Review. Conclusion is drawn in the section 6.

References are given in Section 7.

3. TEST CASE GENERATION

APPROACHES
This is the main part of the testing process. The Approaches

involved in generating test cases can be categorized in these

three parts : Scenario Based Test Case Generation, Model based

test case Generation and Genetic Based test Case Generation

.Even though variety of approaches have been proposed yet for

a decade there has been constant research on generating test

cases based on specification and design models.

3.1 Scenario based Test Case Generation
In Scenario based test case generation test scenarios are used for

generating test cases .Baikunt Narayan Biswal has presented a

paper. A Novel Approach for Scenario based test case

Generation [28]. This paper deals with Test adequacy Criteria

for complex transactions or Events, Scenario based testing gives

best results. Test case generation UML Activity diagrams

presented by Kim are also based on concurrency in Activity

Diagram where multiple systems interact with each other.

3.2 Model based Test Case Generation
In model based testing, the testing begins at design phase. So,

early detection of faults can be achieved by using this approach

further reducing time, cost and efforts of the developer to a large

extent. Automatic Test case generation using Unified Modeling

Language (UML) state diagram by P.samuel and A.K.Bothra

and Rajib Mall published on the basis of Model Based Test Case

generation.Test Case Generation by UML Sequence Diagram

and labeled Transition System. The procedure is based on the

model based testing techniques with test cases generated from

UML Sequence diagram converted into Labeled Transition

System(LTS).Test Case Generation Based on Use Case and

Sequence Diagram by Santosh Kumar Swain, Durga Prasad

Mohapatra and Rajib Mall . Test cases are derived from a model

based on system Graph integrating UDG and SDG.

3.3 Genetic based Test Case Generation
In Genetic based test case generation technique, the test cases

are generated using Genetic Algorithm. Improving GA based

Automated Test Data Generation Technique For Object

Oriented Software [7] by Nirmal Kumar Gupta, Mukesh Kumar

Rohil,. The proposed strategy shows that genetic algorithms are

useful in reducing the number of unfeasible test cases by

generating test cases for object oriented software.

A Hybrid Genetic Algorithm Based Test Case Generation Using

Sequence Diagrams[10] by Mahesh Shirole, Rajeev Kumar.

Test cases generated using genetic algorithm improves the

method coverage as well as exception coverage.

Object Oriented Test Case Generation Technique using Genetic

Algorithms[16] by V.Mary Sumanlatha, G.S.V.P.Raju,. Test

cases are generated using sequence Diagram and optimized

using Genetic Algorithm.

4. TESTING TECHNIQUES FOR OBJECT

ORIENTED SOFTWARE
At various levels of testing of object oriented software, The

Techniques which can be applied are

1. Unit Testing

2. Method Testing

3. Class Testing

4. System Testing

5. Integration Testing

5. PROBLEMS IN OBJECT ORIENTED

TESTING

5.1 Encapsulation

A wrapping up of data and functions into a single unit is known

as encapsulation. This mechanism restricts the access to some

of object’s components and also restricts observability of

intermediate test results. In this case Fault discovery is very

difficult.

5.2 Polymorphism

Polymorphism is one of the crucial features of OOP. It simply

means one name and multiple forms. In polymorphism,

Program entities have been permitted to refer to objects of more

than one class, when a hierarchical relationship among these

classes exists. Because of polymorphism, all possible bindings,

all potential execution paths and potential errors have to be

tested.

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 15, November 2014

31

5.3 Inheritance
Inheritance is the key concept of object orientation. Object

oriented language has allowed for defining an abstract data type

deriving it from an existing one. It is the mechanism of deriving

a new class from an old one. The old class is referred to as the

base class and the new one is called the derived class or the

subclass. Due to Inheritance there are some invisible

dependencies between super/sub-classes. Inheritance results in

increased code dependencies due to reduced code redundancy. If

there is error in the base class, it will be inherited in the derived

class also. A subclass is only tested after testing its super

classes.

6. LITERATURE SURVEY
Software developers can't test everything, but they can use

combinatorial test design to identify the minimum number of

tests needed to get the coverage they want. Combinatorial test

design enables users to get greater test coverage with fewer tests.

Whether they are looking for speed or test depth, they can use

combinatorial test design methods to build structured variation

into their test cases. In survey it has been found that these test

cases can be generated with different techniques like test case

generation using UML models like Activity Diagrams, Sequence

Diagrams etc.

The process of generating test cases from design will help to

discover problems early in the development process and thus it

save time and resources during development of the system.

However, it is very difficult to select test cases from UML

models. In UML, the behavior of a use case can be represented

by using interaction, activity and state machine diagrams.

Sequence diagrams capture the exchange of messages between

objects during execution of a use case. It focuses on the order in

which the messages are sent. Activity diagrams, on the other

hand, focus upon control flow as well as the activity-based

relationships among objects. These are very useful for

visualizing the way several objects collaborate to get a job done.

Ranjita Kumari Swain, Vikas Panthi and Praful Kumar Behera,

“Generation of test cases using Activity Diagram” have

generated the test cases using activity diagrams [2]. In that

approach, first an activity flow graph is derived from activity

diagram. Then, all the required information is extracted from the

activity flow graph (AFG). The activity flow graph (AFG) for

the activity diagram is created by traversing the activity diagram

from beginning to end, showing choices, conditions, concurrent

executions, loop statements. From the graph different control

flow sequence are identified by traversing the AFG by depth
first traversal technique. Next, an algorithm is proposed to

generate all activity paths. Finally, test cases are generated using

activity path coverage criteria. Then Case study is being

presented on Soft drink Vending Machine (SVM).

Abinash Tripathy and Anirban Mitra “Test Case

Generation Using Activity Diagram and Sequence

Diagram” , presented an approach to generate test cases by

using together UML Activity diagram and Sequence Diagram

[3]. In this approach first the activity diagram is being converted

into activity graph (AG) and the sequence diagram is being

converted into sequence graph (SG) and then the two graphs SG

& AG are integrated to form system Graph (SYG). Then the

System Graph (SYG) is being traversed to form the test cases by

using an Graph optimization technique known as Depth First

Search Method (DFS).This approach is also applied on an

example of ATM card validation. It has been shown that the test

cases obtained in this method are not only exhaustive but also

optimal but how it is not clear. Also whenever two UML

methods are combined it will cover all the possibilities. Activity

diagram also solves the problem of concurrent execution

problem which leads to state explosion problem.

Supaporn Kansomkeat, Phachayanee Thiket and Jeff Offutt

“Generating Test Cases from UML Activity Diagrams using

the Condition-Classification Tree Method” have focused on

a UML diagram called an activity diagram[4]. They have used

Condition Classification Tree method to generate test cases

from activity diagram. In their paper, they provided a method to

automatically gather control flow information from decision

points and guard conditions in activity diagrams. This

information is used to construct condition-classification trees.

These trees are then used to generate a test case table and test

cases. Experimental data show that tests generated by the

CCTM Method have strong ability to detect faults at reasonable

cost and also early in development. The case study is being

done on SALES example.

Xiajiong Shen and Qian Wang PeipeiWang and Bo

Zhoupropose, “A Novel Technique Proposed for Testing of

Object Oriented Software Systems”, have proposed a novel

technique [5] for testing of object oriented software systems that

use the profile and UML state diagrams that all methods in a

system are divided into different grades according to integrated

values (frequency and significance) and then the methods that

obtain the highest integrated value generate test cases from

UML state diagrams. To prove the efficiency of the approach,

the technique is compared with testing all methods only using

UML state diagrams. Finally results prove that the approach is

efficient for object-oriented software systems, and find faults

that are difficult to find in other ways and reduce the cost of

testing dramatically.

Fanping Zeng, Zhide Chen, Qing Cao, Liangliang Mao,

"Research on Method of Object-Oriented Test Cases

Generation Based on UML and LTS”[6] have presented a

new technique for object oriented test case generation based on

UML state diagrams and Label Transition System(LTS). Test

cases are generated from UML state diagrams model that

represent state transition. UML state diagram can be a model of

modeling software system. It shows all kinds of possible states

of a specific object and all the possible changes between states

which cause by all kinds of events. Labeled Transitions System

(LTS) model is an internal model to precisely represent the state

transition. The procedure is based on model-based testing

techniques with test cases generated from UML state diagrams

translated into LTS.

Nirmal Kumar Gupta, Mukesh Kumar Rohil, “Improving

GA based Automated Test Data Generation Technique

For Object Oriented Software” [7]. This paper put forward a

strategy for evaluating the fitness of both feasible and

unfeasible test cases leading to the improvement of evolutionary

search by achieving higher coverage and evolving more number

of unfeasible test cases into feasible ones. The proposed

strategy shows that genetic algorithms are useful in reducing the

number of unfeasible test cases by generating test cases for

object oriented software. Furthermore, we build our Genetic

Algorithm for structural testing for generating more suitable test

cases. In path testing weight reevaluation strategy is employed

to develop unfeasible test cases into feasible test cases at the

later generations.

Esmaeil Mirzaeian, Samad Ghaderi Mojaveri, Homayun

Motameni, Ahmad farahi, “An optimized approach to

generate object oriented software test case by Colored Petri

Nets”[8]. This paper put forward a technique for generating

object oriented test cases using Colored Petri Nets extended

version of Petri Nets usually used to system modeling and

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 15, November 2014

32

simulation. They have introduced a new algorithm for to convert

UML State chart into CPNs. This method considers net

explosion problem and also generated net covers all instances of

objects from different classes in the same hierarchy. At last a

case study is also shown by a Banking account Example to show

the benefits of the approach.

Rajiv mall, “Automatic Test Case Generation From UML

models” [9]. This paper proposed an algorithm, to generate test

case from a combination of use case diagram and sequence

diagram. First, they convert the use case diagram into use case

graph and then sequence diagram into sequence graph. After that

the two graphs are integrated and a system graph is generated.

That system graph is traversed but not clearly mentioned.

Mahesh Shirole, Rajeev Kumar, “A Hybrid Genetic Algorithm

Based Test Case Generation Using Sequence Diagrams”[10].

This paper presented a hybrid approach of generating test cases

using sequence diagram with genetic algorithm. Sequence

diagram shows the method call dependencies that exist among

the methods that potentially appear in a method call sequence,

which is good for integration testing. Test cases generated using

genetic algorithm improves the method coverage as well as

exception coverage.

Mahesh Shirole, Rajeev Kumar, “UML behavioral model

based test case generation: a survey” [11] The objective of this

paper is to improve the understanding of UML based testing

techniques. It has focused on test case generation from the

behavioral specification diagrams, namely sequence, state chart

and activity diagrams. Also classified the various research

approaches that are based on formal specifications, graph

theoretic, heuristic testing, and direct UML specification

processing and discussed the issues of test coverage associated

with these approaches.

Yamina Mohamed ben Ali, Fatma Benmaiza, “Generating Test

Cases for Object-Oriented Software Using Genetic

Algorithm and Mutation Testing Method.”[12] This paper

presented an automatic creation of software test cases based on

the use of a genetic algorithm and a mutation testing technique.

Philip Samuel, Rajib Mall, Pratush kant, “Automatic test case

generation from UML communication diagrams”[13]. This

paper presented a method to generate cluster level test cases

based on UML communication diagrams. In this approach, A

tree representation of communication diagrams is being

constructed. Then a post-order traversal of the constructed tree

for selecting conditional predicates from the communication

diagram is being carried out. The generated test cases achieve

message paths coverage as well as boundary coverage. The

technique is being tested on several example problems.

Ranjita Kumari, Vikas Panthi, Prafulla Kumar Behera,

“Generation of test cases using Activity Diagram”[14] In this

paper, test cases are generated using activity path coverage

criteria. Here, a case study on Soft drink Vending Machine

(SVM) has been presented to illustrate our approach.

Sujata khatri, R.S.Chillar, “Generating Test Cases for Object

Oriented Programs Using Specification based Testing

Techniques”[15] The aim of this paper is to examine the testing

of object oriented software and to derive test cases using

equivalence partitioning and boundary value analysis technique

for triangle problem.

V.Mary Sumalatha, G.S.V.P.Raju, “Object Oriented Test Case

Generation Technique using Genetic Algorithms”[16] This

paper has been proposed to generate test cases for object

oriented software using UML diagrams like Sequence diagram.

Test cases are optimized using the Evolutionary Algorithm,

Genetic Algorithm.

Hyungchoul Kim, Sungwon Kang, Jongmoon Baik, Inyoung

Ko, “Test Cases Generation from UML Activity

Diagrams”[17] This paper proposed a method to generate test

cases from UML activity diagrams that minimizes the number

of test cases generated while deriving all practically useful test

cases.

Boghdady, P. , Badr, N. L., Hashem, M. A., Tolba, M. F., “An

enhanced technique for generating hybrid coverage test

cases using activity diagrams” [18]. This paper put forward an

enhanced approach for automatically generating test cases from

activity diagrams. Category partition method is applied to

generate the final set of reduced test cases. The proposed model

validates the generated test paths during the generation process

to ensure that they meet a hybrid coverage criterion. The

proposed model is automated and applied to around forty

different case studies in different domains. Experimental

evaluation is demonstrated to prove that the proposed model

saves time and cost, thus increases the performance of the

testing process.

Yvan Labiche “Integration Testing Object-Oriented

Software Systems: An Experiment-Driven Research

Approach”[19] has discussed about the questions : What

integration testing process, indicating in which order classes are

(Integration) tested, should be selected? Which test design

techniques should be applied to unit and integration test classes

when following an integration test order?

G.Suganya and S.Neduncheliyan has given the idea about

trouble markers of object-oriented software and object-oriented

testing techniques and specialized techniques for OO

Environment in “A Study of Object Oriented Testing

Techniques: Survey and Challenges”[20]. They also

discussed about how Unit Testing, Integration Testing and

System Testing are being carried out in the Object Oriented

environment.

Nagendra Pratap Singh, Mrinal Kanti Debbarma has explained

about the Life Cycle of Object-Oriented Testing in “The

Review: Lifecycle of Object-Oriented Software Testing”
[21]. This cycle provide us a big point of view to test object-

oriented software. Although it is not much differ from

conventional testing but helpful for the thorough study of

various approaches.

7. CONCLUSION AND FUTURE WORK
This paper provides a review of various test case generation

techniques. The techniques generated using different UML

Diagrams and using different algorithms and then they are

automated . Also explains how these different techniques and

Algorithms jointly play a vital role in reducing the errors during

the Design Phase. Coverage Criteria is also different in different

techniques. With the increase in demand for best quality of the

product it is required to produce a better frame work for test

case generation technique to work upon and ensure to remove

maximum number of bugs. Future work may include integrating

two or more techniques or improving the existing techniques.

8. REFERENCES
[1] http://my.safaribooksonline.com/book/software-

engineering -and-development/software-testing.

[2] Ranjita Kumari Swain, Vikas Panthi, Prafulla Kumar

Behera “Generation of test cases using Activity Diagram”

International Journal of Computer Science and Informatics,

ISSN (PRINT): 2231 –5292, Volume‐3, Issue‐2, 2013

http://link.springer.com/search?facet-author=%22Rajeev+Kumar%22
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Boghdady,%20P..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Badr,%20N.%20L..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Hashem,%20M.%20A..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Tolba,%20M.%20F..QT.&newsearch=true

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 15, November 2014

33

[3] Abinash Tripathy and Anirban Mitra, “Test Case

Generation Using Activity Diagram and Sequence

Diagram” Proceedings of ICAdC, AISC 174, pp. 121-129.

springerlink.com © Springer India 2013

[4] Supaporn Kansomkeat, Phachayanee Thiket and Jeff Offutt,

“Generating Test Cases from UML Activity Diagrams

using the Condition-Classification Tree Method” 2nd

International Conference on Software Technology and

Engineering(ICSTE) @ 2010 IEEE.

[5] Xiajiong Shen and Qian Wang PeipeiWang and Bo Zhou,

“A Novel Technique Proposed for Testing of Object

Oriented Software Systems” @2009 IEEE.

[6] Fanping Zeng, Zhide Chen, Qing Cao, Liangliang

"Research on Method of Object-Oriented Test Cases

Generation Based on UML and LTS” .The 1st International

Conference on Information Science and Engineering

(ICISE2009) ©2009 IEEE computer Society

[7] Nirmal Kumar Gupta, Mukesh Kumar Rohil

“ImprovingGA based Automated Test Data Generation

Technique For Object Oriented Software” 2013 3rd IEEE

International Advance Computing Conference (IACC) .

[8] Esmaeil Mirzaeian, Samad Ghaderi Mojaveri,

Homayun Motameni, Ahmad farahi, “An optimized

approach to generate object oriented software test case

by Colored Petri Nets”, 2010 2nd International

Conference on Software Technology and Engineering

(ICSTE) @ IEEE

[9] Monalisa Sharma,Rajib Mall, “ Automatic Test Case

Generation From UML models” The 10th International

Conference on Information Technology@2007IEEE.

[10] Mahesh Shirole, Rajeev Kumar, “A Hybrid Genetic

Algorithm Based Test Case Generation Using

Sequence Diagrams” Contemporary Computing

Communications in Computer and Information

Science , Springer Verlag,Volume 94, 2010, pp 53-63

[11] Mahesh Shirole, Rajeev Kumar, “UML behavioral

model based test case generation: a survey” ACM(DL),

July 2013

[12] Yamina Mohamed ben Ali, Fatma Benmaiza,

“Generating Test Case for Object-Oriented Software

Using Genetic Algorithm and Mutation Testing

Method ” ACM(DL),2012

[13] Philip Samuel, Rajib Mall, Pratush kant, “Automatic

test case generation from UML communication

diagrams”, ACM(DL)feb,2007

[14] Ranjita Kumari,Vikas Panthi, Prafulla Kumar

Behera,“Generation of test cases using Activity

Diagram” International Journal of Computer Science

and Informatics, ISSN (PRINT): 2231 –5292, Volume-

3, Issue-2, 2013

[15] Sujata khatri, R.S.Chillar, “Generating Test Cases for

Object Oriented Programs Using Specification based

Testing Techniques” Sujata Khatri et al / Indian

Journal of Computer Science and Engineering (IJCSE),

Feb-Mar 2012

[16] V.Mary Sumalatha, G.S.V.P.Raju, “Object Oriented

Test Case Generation Technique using Genetic

Algorithms”International Journal of Computer

Applications (0975 – 8887) Volume 61– No.20,

January ,2013

[17] Hyungchoul Kim, Sungwon Kang, Jongmoon Baik,

Inyoung Ko, “Test Cases Generation from UML

Activity Diagrams” © 2007 IEEE computer society

[18] Boghdady, P. , Badr, N. L., Hashem, M. A., Tolba, M.

F., “An enhanced technique for generating hybrid

coverage test cases using activity diagrams”

Informatics and Systems (INFOS), 8th International

Conference, 2012 in IEEE.

[19] Yvan Labiche “Integration testing object-oriented

software systems: an Experiment-driven Research

Approach”, IEEE 24th Canadian Conference on

Electrical and Computer Engineering,2011.

[20] G.Suganya and S.Neduncheliyan “ A Study of Object

Oriented Testing Techniques: Survey and Challenges”,

IEEE International Conference on Innovative

Computing Technologies(ICICT)2010.

[21] Nagendra Pratap Singh and Mrinal Kanti Debbarma “

The Review: Lifecycle of Object-Oriented Software

Testing”, IEEE 3rd International Conference on

Electronic Computer Technology (ICECT),

2011 (Volume:3)

[22] John D.McGregor and David A.Sykes “A Practical

Guide to Testing Object-Oriented Software” Addison–

Wesley publications.

[23] Roger S.Pressman “Software Engineering –A

Practitioner’s Approach” McGraw Hill International

Edition.

[24] W. Linzhang, Y. Jiesong, Y. Xiaofeng, H. Ju, L.

Xuandong,and Z.Guoliang. “Generating test cases

from UML activity diagram based on gray-box

method. Proceedings of the 11th Asia-Pacific

SoftwareEngineering Conference (APSEC04), pages 284 –

291, 2004.

[25] R. Mall. Fundamentals of Software Engineering.

Prentice Hall, 3rd edition,

2009.[26]http://www.ambysoft.com/essays/floot.html

[27] Hongfang Gong Junyi Li, “Generating Test Cases of

Object-Oriented Software Based on EDPN and Its

Mutant” The 9th International Conference for Young

Computer Scientists © 2008 IEEE

[28] Baikuntha Narayan Biswal, Pragyan Nanda, Durga

Prasad Mohapatra “A Novel Approach for Scenario-

Based Test Case Generation” International Conference

On Information Technology © 2008 IEEE Computer

Society

IJCATM : www.ijcaonline.org

http://link.springer.com/search?facet-author=%22Rajeev+Kumar%22
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Badr,%20N.%20L..QT.&newsearch=true

