
International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 12, November 2014

5

Source Code Plagiarism Detection using Multi Layered

Approach for C Language Programs

Kshitiz Gupta
B.Tech Scholar

National Institute of Technology
Kurukshetra

Ekta Sardana
B.Tech Scholar

National Institute of Technology
Kurukshetra

ABSTRACT

Source code plagiarism is a growing concern in academia.

Programming assignments are used to evaluate students in

programming courses. Therefore, checking programming

assignments for plagiarism is essential. If a course consists of

a large number of students, it is impractical for a human

inspector to check each assignment, and while automated

tools are available, none is accurate, robust and fast enough to

detect plagiarism in the programming assignments. Thus,

there is a prominent need for automated and accurate

plagiarism detection tool.

Keywords

Plagiarism, source code, multilayered, data slicing, AST,

structure based approach, exe comparison, attribute counting.

1. INTRODUCTION
Source code plagiarism detection is extremely useful and

important for both the academia and industry. Students may

plagiarize by copying code from various sources. Most

prominent ones are friends, web and private tutors. In

programming courses students are evaluated based on their

performance in programming assignments. Therefore,

detection and prevention of plagiarism at universities becomes

more essential and thus there is a huge demand for accurate

source code plagiarism detection systems. The most

challenging aspect in code-plagiarism detection is the

techniques that the implicated students tend to use to disguise

the copied code in order to mislead the grader. Arwin, [3],

lists the most common disguises; which are

1. changing formatting,

2. changing identifiers,

3. changing the order of operands in expressions,

4. changing data types,

5. replacing expressions by equivalents,

6. adding redundant statements,

7. changing the order of time-independent statements,

8. changing the structure of iteration statements,

9. changing the structure of selection statements,

10. replacing procedure calls by the procedure body,

11. introducing no structured statements,

12. combining original and copied program fragments,

13. The translation of source code from one language to

another.

2. COMPARISON
Woo and Cho [4] have mentioned two methods for plagiarism

detection. 1) Attribute Counting Method. 2) Structured Based

Method In the attribute counting systems programs are

depicted by various quantities such as number of operands,

operators, variables, blanks, loop statements, control

statements and conditional statements. Then the similarity

between two programs is calculated by comparing their

respective values. This approach has a disadvantage that it can

be either very insensitive (two programs might share the same

measures while they completely differ in the logic) or very

sensitive as it ignores the program‟s structure [2]. It fails

easily with the common disguises that students might use such

as blanks insertion or deletion that does not affect the structure

of the program, (see [5] for details).On the other hand, the

structure metric systems, that were recently used, were shown

to have high performance in detecting source-code plagiarism,

[5]. These systems use one of four techniques: string

matching, [9], abstract syntax tree (AST), [6], program

dependence graph, [2], and tokenization, [8].Presently most of

the source code plagiarism detection algorithms are based on

the structured method [3], [4], [2]. In addition to that there are

few attempts which are based on the attribute counting

method [7], [10].

Faidhi and Robinson [11] have defined six levels of source

code plagiarism. Level 0 being the lowest level of plagiarism

and Level 6 being the most severe one. Level 0 represents the

exact copying of someone else‟s program whereas in Level 6

program‟s logical flow is modified in order to achieve the

same operation. Thus, the structural features of the modified

program varies more severely from the original one as we

move from level 0 to level 6. Moreover, Arwin and

Tahaghoghi [3] have mentioned that structural based

plagiarism detection techniques rely on the belief that the

similarity of programs‟ structures can be used to estimate

whether the programs are similar. Since structured properties

of plagiarized programs vary largely from the original

program, it becomes highly difficult to detect plagiarism at

level four or higher. On the other hand plagiarism detection

systems based on the attribute counting techniques do not take

structural properties of source programs into account.

Although, they are unaffected by structural based problems

yet it has been proved that attribute counting techniques are

not accurate enough [7], [10]. Therefore, we have proposed a

new system which is based on the combination of both

techniques i.e. structural and attribute counting in a layered

based approach. Ethem Alpapaydin [12] has pointed out that,

“There is no single learning algorithm that in any domain

always induces most accurate learner”. Further, he has

mentioned that by combining multiple algorithms in a suitable

way the prediction performance and accuracy can be

improved. Therefore, instead of using just one learning

algorithm, we have used multiple algorithms for finding

plagiarism detection.

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 12, November 2014

6

3. MULTI LAYERED APPROACH
The source code files are passed through 4 layers for effective

and efficient plagiarism detection, having progressively

rigorous ways of detecting plagiarism to avoid false positive

and to avoid non plagiarized files to be detected in the cycle

as early as possible.

Figure 1

3.1 Layer 0
This layer is introduced to avoid unnecessary structural and

attribute based comparison of obvious plagiarized source code

files. In this layer, files which are exact copy paste are found

through string matching algorithm and are marked as

plagiarized.

3.2 Layer 1
This layer consists of 3 sub layers for indentation comparison,

variable & operator count comparison and function signature

comparison. There are different thresholds of amount of

match for all the three. If the two programs under

consideration crosses threshold of match for any of these 3

then the programs are considered to be similar and passed to

layer 2 for confirmation. Note that all these layers have quite

lower threshold so that plagiarized programs are not missed

by these layers in most of the cases.

3.2.1 Layer 1: Indentation based Approach
One of the significant approaches of identifying some one‟s

coding style is to check the indentation, spacing and

alignment of the program. Most of the current tools available

like JPlag, MOSS etc. remove spacing and indentation while

parsing the file in the first step which can otherwise be very

helpful. Since it is un-common for different programmers to

put similar spacing for their loops and logical conditions,

checking for indentation gives us an insight if two programs

are copied or not. It is a structure based approach in which

first we determine the indentation of the files and then we

determine the amount of indentation match between these two

files using Longest Common Subsequence approach and if it

exceeds a given threshold we mark the files to have

plagiarism. Threshold based on around 25 experiments

conducted on 20 plagiarized programs is 80%.

Figure 2

Figure 3

0

0

0

0

4

0

4

4

4

4

4

0

0

4

4

8

1

2

1

2

1

2

8

8

4

0

0

0

0

0

4

0

4

4

4

4

4

0

0

4

4

8

1

2

1

2

1

2

8

8

4

0

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 12, November 2014

7

3.2.2 Layer 1: Variable and Operator Count

Approach
It is an attribute based approach. It is observed that many

students who perform plagiarism tend to rename variables in

program. Assuming that the number of a particular type of

variable remains same, a vector comparison of two programs

is performed and if the two vectors match above threshold

value, the programs are marked as suspects of plagiarism. The

elements that are taken into account while comparing the

vectors are:

 Variables

 n-D arrays

 n-D pointers

 Operators for ex. +, -, ++

The following data types are taken into consideration while

computing the number of above elements:

 Int

 Float

 Char

 Short

 Long

 Double

Two hash maps are generated containing details of variable

count for specific data types and operator usage counts within

the two programs. These hash map are compared with each

other to determine the number of same key value pairs and if

these are greater than a certain threshold, then the programs

are marked as plagiarized by this layer. Threshold based on

around 25 experiments conducted on 20 plagiarized programs

is 90%. Following examples show two programs, their

generated vectors and the result of their comparison:

Figure 4

3.2.3 Layer 1: Function Signature Approach
It is an attribute based approach. It is usually required by the

programmers to make their own functions to perform several

repetitive tasks in programming. The functions contains of

elements: Return Type and Parameters. These two elements

constitute the signature of a function, thus comparing two

function on the basis of their signatures i.e. return type,

number of parameters, type of parameters we can have a fair

idea if two functions are similar and hence this information

can be used further to identify if the two programs are similar

or plagiarized or not. Threshold based on around 25

experiments conducted on 20 plagiarized programs is 75%.

 Figure 5

3.3 Layer 2
In this layer all the programs in a set of plagiarized programs

formed by layer1 are compared against each other. If after

comparison they are again determined as plagiarized they are

passed to layer3 for further investigation else they are

separated into different sets.

3.3.1 Layer 2: Exe Comparison
The exe files generated after compilation of C programs

contains the memory map, address pointers and other details

of the c program in binary format, and this binary format is

almost same for the plagiarized files. Threshold based on

around 25 experiments conducted on 20 plagiarized programs

is 85%.

 Figure 6

Vector Figure2

==: 3

!=: 3

char: 0

+: 6

++: 1

=: 5

int : 1

char 1D: 1

Vector Figure3

==: 3

!=: 3

char: 0

+: 6

++: 1

=: 5

int : 1

char 1D: 1

Function Signature

Figure 2

F1:

Return Type: Int

Params : 0

F2:

Return Type: void

Params, char []

Function Signature

Figure 3

F2:

Return Type: Int

Params : 0

F2:

Return Type: void

Params, char []

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 12, November 2014

8

Below is the exe difference between two plagiarized programs

in figure 2 above and figure 6.

Figure 7

3.3.2 Layer 2: Keyword Sequence Comparison
Usually student‟s rename the variable and even introduce

extra variables to avoid memory based detection, however,

overall logic of the program is decided by keywords of the

language and sequence of these keywords and function calls.

This is a structure based approach in which we compare the

relative ordering of keywords and function calls in the two

programs by comparing the longest common subsequence of

keywords and considers them as being plagiarized if the

sequence matches above a certain threshold. Threshold based

on around 25 experiments conducted on 20 plagiarized

programs is 78%.

Figure 8

The keywords for programs in figure 6 and 8 and longest

common subsequence for them is given below.

Figure 9

3.4 Layer 3
This is the last layer for detection of plagiarized programs and

the most rigorous one. In this layer a similar procedure is

followed as in layer 2 but with the most effective approaches

of plagiarism detection. It comprises of advanced checks such

as Data Slicing for checking the flow of prominent variables

in the two programs and generating Abstract Syntax tree for

their comparison.

3.4.1 Layer 3: AST Generation and Comparison
This is an structure based approach in which we generate

Abstract Syntax Tree of given programs and compares pre-

order traversal and in order traversal of all sub trees

(representing the functions or inner details of for loop) with

the other, which can detect the re-ordering or re-positioning of

the code.

An abstract syntax tree is an n-ary tree representing abstract

syntactic structure of a program where each node represents a

statement in source code. The node is 'abstract' in the sense

that it hides details that appear in the real syntax. Each node in

the tree provides us with a detail of the type of statement that

occurs at that position in the program flow. For ex. An if

condition node in a program is represented by „C‟ and a loop

node is represented by „L‟, then two strings representing

preorder and inorder traversal of each sub tree in both

programs is generated and all these set of inorder and preorder

traversals are compared. Each of these sub tree traversals if

matches with any of the other sub tree traversals is marked as

Keywords for Figure 6

void

char

int

while

if

int

main

char

int

return

printf

scanf

censor

return

Keywords for Figure 8

void

char

int

for

if

int

main

char

return

printf

scanf

censor

return

Longest common subsequence of the 2 programs is

same as keyword sequence for figure 8. And the

amount of keyword matching for these 2 programs is

86%

Deltas

between

files

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 12, November 2014

9

visited so that it is compared again. If the number of sub trees

out of the total number of sub trees matches above a certain

threshold then these trees are considered as plagiarized.

Threshold based on around 25 experiments conducted on 20

plagiarized programs is 92%. Below are the ast‟s generated

for figure 3 and figure 8.

Figure 10

As can be seen apart from reorganization of sub trees the sub

trees are similar and hence despite structural reorganizations,

both codes can be easily determined as plagiarized.

3.4.2 Layer 3: Data Slicing
This is an attribute based approach, in which both programs

are parsed to determine all the variables and their usage in the

whole program. The use of these variables includes many type

of expression like. Assignment („A‟), Increment („I‟), Binary

Left Shift (L). Then „X‟ most frequently used variables are

selected from both programs and their usage string are

compared through LCS (Longest Common Subsequence)

technique. If the LCS length matches above a certain

threshold for all „X‟ variables, then those are considered as

plagiarized. In case of variable with same name getting used

in global scope and local scope, these two are considered

different variables and updated accordingly. The following

method was used for calculating X:

X = 3 for v > 10,

X = v/2 for v >2 and v <= 10

X = v for v <= 2

Where v belongs to Z+

Threshold based on around 25 experiments conducted on 20

plagiarized programs is 92%. Data Slicing based detection for

figure 6 and 8 above is shown below.

Figure 11

4. JUXTAPOSE PLAGIARIZED FILES
Figure 13 shows the group of plagiarized files. To see the

differences and compare two plagiarized files, click on

“compare files” button. For details refer figure14

Figure 12

To compare these plagiarized files manually, those files can

be viewed in diff mode too.

S - Start Node, F - Function Node, D - Declaration Node

L - Loop Node, C - Condition Node, A - Assignment Node

I - Function Invocation Node, R - Return Node

Figure 6 prominent

variable usage

Censor str :

CCCCCCAAA

i :

DUJUJUUJUJUUJUJ

UJU

str: DUUU

Figure 8 prominent

variable usage

Censor str :

CCCCCCAAA

i :

DAUJUJUUJUJUUJUJ

UJUI

str: DUUU

C – Condition, A – Assignment, D - Declaration

U - Usage, J – Addition, I - Increment

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 12, November 2014

10

Fig 13: Diff between two plagiarized files

5. CONCLUSION AND FUTURE WORK
Plagiarism in source code submissions is a serious problem

that has motivated researchers to find effective automated

detectors. This paper proposed a layered based approach

which inculcates the advantages of both structure based

techniques and attribute counting techniques. The layered

architecture helps in detecting non plagiarized files quickly in

earlier stages. Thus providing a more efficient and accurate

solution. This approach has been currently applied and

verified in detecting plagiarism in C program files.

This approach can also be used for checking plagiarism

amongst programs of different languages such as C++, Java in

the future by adding their respective grammars. Currently our

application‟s grammar takes into consideration various

constructs and tokens from C language which can be extended

to include grammatical constructs from other languages as

mentioned above to detect plagiarism in those languages.

6. ACKNOWLEDGMENTS
Our thanks to the Dr. J.K. Chhabra, Associate Professor, Head

Of Department, National Institute of Technology, Kurukshetra

for guiding us throughout the project, motivating us and

teaching us about the relevant methodologies and best

practices.

7. REFERENCES
[1] J. Zobel, “Uni Cheats Racket: A case study in plagiarism

investigation,” Proceedings of the Sixth Conference on

Australasian Computing Education, vol. 30, 2004, pp.

357–365. Ding, W. and Marchionini, G. 1997 A Study

on Video Browsing Strategies. Technical Report.

University of Maryland at College Park.

[2] C. Liu, C. Chen, J. Han, and P. S. Yu, “GPLAG:

detection of software plagiarism by program dependence

graph analysis,” Proceedings of the 12th ACM SIGKDD

International Conference on Knowledge Discovery and

Data Mining, 2006, pp. 881. Tavel, P. 2007 Modeling

and Simulation Design. AK Peters Ltd.

[3] Christian Arwin and S.M.M. Tahaghoghi. Plagiarism

detection across programming languages. Proceedings of

the 29th Australasian Computer Science Conference,

48:277–286, 2006.

[4] J.H. Ji, G. Woo, and H.G. Cho, “A source code

linearization technique for detecting plagiarized

programs,” ACM SIGCSE Bulletin, vol. 39, 2007, p. 77.

Brown, L. D., Hua, H., and Gao, C. 2003. A widget

framework for augmented interaction in SCAPE.

[5] Kristina L. Verco and Michael J. Wise. Software for

detecting suspected plagiarism: Comparing structure and

attribute-counting systems. Proceedings of the First

Australian Conference on Computer Science Education,

pages 81–88, 1996.

[6] Young-Chul Kim, Yong-Yoon Cho, and Jong-Bae Moon.

A plagiarism detection system using a syntax- tree.

International Conference on Computational Intelligence

1:23–26, 2004

[7] S. Engels, V. Lakshmanan, and M. Craig, “Plagiarism

detection using feature-based neural networks,”

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 12, November 2014

11

Proceedings of the 38th SIGCSE technical symposium

on Computer science education, 2007, p. 38.

[8] Michael Philippsen Lutz Prechelt, Guido Malpohl.

Finding plagiarism among a set of programs with JPlag.

Journal of Universal Computer Science, 8(11):1016–

1038, 2002.

[9] Lefteris Moussiades and Athena Vakali. PDetect: A

clustering approach for detecting plagiarism in source

code datasets. The Computer Journal, 48(6):651–661,

2005.

[10] R.C. Lange and S. Mancoridis, “Using code metric

histograms and genetic algorithms to perform author

identification for software forensics,” Proceedings of the

9th annual conference on Genetic and evolutionary

computation, 2007, p. 2089.

[11] J.A.W. Faidhi and S.K. Robinson, “An empirical

approach for detecting program similarity and plagiarism

within a university programming environment,”

Computers & Education, vol. 11, 1987, pp. 11–19.

[12] E. Alpaydin, Introduction to Machine Learning, Second

Edition, The MIT Press, 2010.

IJCATM : www.ijcaonline.org

