
International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 11, November 2014

38

TLLB: Two-Level Load Balanced Algorithm for Static

Meta-Task Scheduling in Grid Computing

S. Vaaheedha Kfatheen

Research Scholar,
Bharathiar University, Coimbatore,

Tamil Nadu, India.

M. Nazreen Banu, Ph.D.
Professor, Dept of MCA,
M.A.M. College of Engg,
Tiruchirappalli, TN, India.

S. Kavi Selvi
Research Scholar, Jamal

Mohamed College,
Tiruchirappalli, TN, India.

ABSTRACT
Doing computation on the collection of computer resources

from multiple locations to reach a common goal is knows as

grid computing. Task scheduling is very important problem

in complex grid environment. Prior, there are numerous

number of algorithms were proposed to do effective task

scheduling. Among them the min-min algorithm is simple

and well known scheduling algorithm. Even it works

efficiently, some drawbacks in this with respect of load

balancing and in resource utilization. To overcome these

drawbacks, a new Two Level Load Balanced (TLLB) grid

scheduler algorithm is proposed. In First Level min-min

algorithm is used to create ITQ and in Second Level a new

Transformation technique is used to reschedule. The

performance analyses show that the proposed algorithm

improves the performance in both make span and effective

utilization of resources.

Keywords
Grid computing, Min-min, Load balancing, resource

utilization, Task Scheduling, Flow-time

1. INTRODUCTION
As mentioned in abstract collection of computer resources

from multiple locations to reach a common goal is known as

Grid computing. Grid computing is distinguished from

conventional high performance computing systems such

as cluster computing in that grid computers have each node

set to perform a different task/application. Grid computers

also tend to be more heterogeneous and geographically

detached than cluster computers. Task scheduling in a grid

environment is a main issue. Grid resource management

involves dealing with three classes of stakeholders - end

users, owners of resources, and grid administrators. Each

class of stakeholders has their own perspective and

preferences, which result in different, often contradictory,

criteria for scheduling. To increase the level of satisfaction of

these stakeholders grid management system must be used the

scheduling heuristic.

Scheduling [1] is considered to be an important issue in the

current Grid scenario. The demand for effective scheduling

increases to achieve high performance computing. Typically,

it is difficult to find an optimal resource allocation which

minimizes the schedule length of jobs and effectively utilize

the resources. The three main phases [2] of grid scheduling

are resource discovery, gathering resource information and

job execution. The choice of the best pair of jobs and

resources in the second phase has been proved to be NP-

complete problem.

Large numbers of task scheduling algorithms are available to

minimize the make span [3], [4], [5], [6], [7], [8]. All these

algorithms try to find resources to be allocated to the tasks

which will minimize the overall completion time of the jobs.

Minimizing overall completion time of the tasks does not

mean that it minimizes the actual execution time of individual

task.

Two simple well-known algorithms used for grid scheduling

are Min-Min and Max-min [9], [3], [5], [6], [10], [8]. These

two algorithms work by considering the execution and

completion time of each task on the each available grid

resource.

This paper is proposed to rectify the limitation of Min-Min

algorithm and tries to bring a new algorithm which gives

reduced make span and high resource utilization.

The remainder of this paper is structured as follows: Section

2 presents the related works and several well known

scheduling algorithms which are used as benchmarks of many

other works. In Section 3 the concept of task scheduling in

grid environments is introduced, In Section 4, a new

scheduling algorithm is proposed. Section 5 compares the

scheduling algorithms and presents the results of the

comparison. Finally, Section 6 presents concluding remarks

and future work.

2. RELATED WORKS
As discussed before the Min-Min and the Max-Min

algorithms are simple and researched by maximum number of

research scholars. The previous works that were related to

this proposal is analyzed here.

The Min-Min algorithm first is used to find the minimum

execution time of all tasks. Then it is used to choose the task

with the least execution time among all the tasks. The

algorithm is being preceded by assigning the task to the

resource that produces the minimum completion time. The

same procedure is repeated by Min-Min until all tasks are

scheduled.

The limitation of Min-Min algorithm is that it chooses

smaller tasks first which makes use of resource with high

computational power. As a result, the schedule produced by

Min-Min is not optimal when number of smaller tasks

exceeds the large ones. To overcome this difficulty [11],

Max-min algorithm schedules larger tasks first. But in some

cases, the make span may increase due to the execution of

larger tasks first. The waiting time of smaller tasks is also

increased in Max-min.

http://en.wikipedia.org/wiki/Cluster_(computing)

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 11, November 2014

39

Braun et al have studied the relative performance of eleven

heuristic algorithms for task scheduling in grid computing

[9]. They have also provided a simulation basis for

researchers to test the algorithms. Their results show that

Genetic Algorithm (GA) performs well in most of the

scenarios and the relatively simple Min-Min algorithm

performs next to GA and the rate of improvement is also very

small. The simple algorithms proposed by Braun are

Opportunistic Load Balancing (OLB), Minimum Execution

Time (MET), Minimum Completion Time (MCT), Min-Min,

Max-min.

Opportunistic Load Balancing (OLB) assigns the jobs in a

random order in the next available resource without

considering the execution time of the jobs on those resources.

Thus it provides a load balanced schedule but it produces a

very poor make span.

Minimum Execution Time (MET) assigns jobs to the

resources based on their minimum expected execution time

without considering the availability of the resource and its

current load. This algorithm improves the make span to some

extent but it causes a severe load imbalance.

Minimum Completion Time (MCT) assigns jobs to the

resources based on their minimum completion time. The

completion time is calculated by adding the expected

execution time of a job on that resource with the resource’s

ready time. The resource with the minimum completion time

for that particular job is selected. But this algorithm considers

the job only one at a time.

Switching Algorithm (SA) is heuristic of scheduling

combines the best features of MCT and MET methods of

scheduling. Method was tried to use better load balancing of

MCT and execution on fastest resource of MET. Here the

idea was to first use the MCT till a threshold of balance is

reached followed by MET. The load unbalance by assigning

tasks on faster resources was created by MET. Here MCT

and MET are used in cyclic manner [10], [12]. Problem is

solvable using OLB in O(nm) time.

Work Queue (WQ) Work Queue is a very simple heuristic of

task allocation. Tasks are randomly selected from the list of

unassigned tasks and assigned to the resource with minimum

workload. Task assignment repeated in similar manner till list

of unassigned tasks gets exhausted [13].

Min-Min algorithm starts with a set of all unmapped tasks.

The resource that has the minimum completion time for all

jobs is selected. Then the job with the overall minimum

completion time is selected and mapped to that resource. The

ready time of the resource is updated. This process is

repeated until all the unmapped tasks are assigned. Compared

to MCT this algorithm considers all jobs at a time. So it

produces a better make span.

Max-Min is similar to Min-Min algorithm. The resource that

has the minimum completion time for all jobs is selected.

Then the job with the overall maximum completion time is

selected and mapped to that resource. The ready time of the

resource is updated. This process is repeated until all the

unmapped tasks are assigned. The idea of this algorithm is to

reduce the wait time of the large jobs.

LJFR-SJFR Largest Job (task) on Fastest Resource – Shortest

Job (task) on Fastest Resource (LJFR-SJFR) method allocates

largest task to fastest resource to reduce the make span and

allocates smallest task to fastest resource to reduce the flow

time of the schedule [14] and [15]. Heuristic LJFR-SJFR can

solve problem in O(n2m) time.

Doreen. D et al., [16] have proposed an efficient Set Pair

Analysis (SPA) based task scheduling algorithm named

Double Min-Min Algorithm in which scheduling was

performed in order to enhance system performance in hyper

cubic P2P Grid (HPGRID). The simulation result were shown

that the SPA based Double Min-Min scheduling minimizes

the make span with load balancing and the high system

availability is guaranteed in system performance.

Among all the algorithms stated the Min-Min algorithm is

simple and fast, at the same time it produces a better make

span. But it considers the shortest jobs first so it fails to

utilize the resources efficiently which leads to a load

imbalance.

This work is proposed to overcome the drawback of the Min-

Min algorithm. Two-Level Min-Min algorithm is proposed

which improves the load balancing as well as and produces a

make span better than the Min-Min algorithm.

3. PROBLEM DEFINITION
The effective scheduling algorithm must to minimize the

make span and should utilize all the available resources.

Using the ETC matrix model, the scheduling problem can be

defined as follows:

Let task set T = t1, t2, t3, …. , tn be the group of tasks

submitted to scheduler. As we discussed before tasks are

independent not having any relationship with in them.

Let Resource set R = m1, m2, m3... mk be the set of

resources.

The ETC [Ti, Rj] contains the matrix of finishing time of ith

task (ti) on the jth resource (rj).

Min(ETC[Ti,Rj) is the minimum of Earliest completion time

of task ti on resource list rj where j varies from 0 to k

CT[ti] is the list completion times of ti where i varies from 0

to n.

Make span MS is calculated as MAX(CT[ti]) V i =>0 to n

4. PROPOSED ALGORITHM
To avoid the drawbacks of the Min-Min algorithm many

improved algorithms have been proposed in the literature. All

the problems discussed in those methods are taken and

analyzed to give a more effective schedule. The algorithm

proposed in this paper outperforms all those algorithms both

in terms of make span, resource utilization, flow time and

load balancing. Thus a better load balancing is achieved and

the total response time of the grid system is improved. The

proposed algorithm applies the Min-Min strategy in the first

level and then reschedules by transferring the tasks from

maximum loaded resource to minimum loaded resource.

Proposed Two-Level Load Balanced grid scheduler algorithm

(TLLB) has two levels. In the first level, Initial Tasks Queue

(ITQ) is created using Min-Min strategy. The created ITQ is

processed further to remove the load imbalance in second

level. The load imbalance is removed by transfer tasks from

maximally loaded resource to minimally loaded resource.

The penalty made for transfer of tasks from maximally

loaded resource to minimally loaded resource should be

minimum. And further the task completion time should not be

much larger than the average resource completion time.

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 11, November 2014

40

The algorithm is given below for the above explanations.

Algorithm 1: Algorithm for TLLB

1. let T as list of task ti V i = 0 to n

2. let R as list of Resource mj V j=0 to k

3. ETC[Ti, Rj]

4. ITQ= MINMIN (ETC[Ti, Rj])

5. FTQ=TRANSFORM_ITQ(ITQ)

6. For all ti in FTQ

ALLOT (ti, mj)

7. STOP

Where

ETC[Ti,Rj] is Earliest Task Completion matrix

ITQ means Initial Task Queue

FTQ means Final Transformed Queue

5. EXPERIMENTAL RESULTS
In this section, after the benchmark description, various

scheduling algorithms were compared with the proposed

algorithm TLLB. These algorithms are implemented using

java environment and run on 12 different types of ETC

matrices. For each algorithm and each type of ETC matrix,

the results were averaged over 100 different ETC matrices of

the same type (i.e., 100 mappings).

5.1. Benchmark Description
In this paper, it is used the benchmark proposed by previous

research scholars [17]. The simulation model is based on

expected time to compute (ETC) matrix for 512 tasks and 16

resources. The instances of the benchmark are classified into

12 different types of ETC matrices according to the three

following metrics: task heterogeneity, resource heterogeneity,

and consistency. In ETC matrix, the amount of variance

among the execution times of tasks for a given resource is

defined as task heterogeneity. Resource heterogeneity

represents the variation that is possible among the execution

times for a given task across all the resources. Also an ETC

matrix is said to be consistent whenever a resource Rj

executes any task Ti faster than resource Rk ; in this case,

resource Rj executes all tasks faster than resource Rk . In

contrast, inconsistent matrices characterize the situation

where resource Rj may be faster than resource Rk for some

tasks and slower for others. Partially-consistent matrices are

inconsistent matrices that include a consistent sub-matrix of a

predefined size. Instances consist of 512 tasks and 16

resources and are labeled as u-x-yy-zz. The meaning of

labels is given below,

u: Uniform distribution used in generating the matrices

x: Shows the type of inconsistency; c means consistent, i

means inconsistent, and p means partially-consistent

yy: indicates the heterogeneity of the tasks; “hi” means high

and “lo” means low

zz : represents the heterogeneity of the resources; “hi” means

high and “lo” means low.

For example, “u-c-lohi” means low heterogeneity in tasks,

high heterogeneity in resources, and consistent environment.

5.2. Make Span and Flow Time
The obtained make span and flow time using mentioned

heuristics are compared in Tables 1 and 2 respectively. The

results are obtained as an average of 100 simulations. Figure

2 and Figure 3 shows the geometric mean of make span and

flow time for the 12 considered cases. Among most popular

and extensively studied optimization criterion is the

minimization of the make span. Small values of make span

mean that the scheduler is providing good and efficient

planning of tasks to resources. Another important

optimization criterion is that of flow time, which refers to the

response time to the user submissions of task executions. In

general, the make span value is more important. As shown in

Figure 2 and Figure 3, the new algorithm is better than all in

make span value and second best in flow time value. Min-

min gave the second best result (after new algorithm) in make

span and best in flow time value. However the drawback of

Min-min is that, it is unable to balance the load. The

proposed algorithm retains the advantage of Min-min and

reduces the idle time of the resources, which in turn leads to

better make span.

ETC

MinMin

ITQ

Transformation

FTQ Allotment

Task List

Resource List

Fig 1: Architecture Diagram

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 11, November 2014

41

Table 1. Comparison of Makespan values

Instant Min-Min Max-Min MET MCT LJFR-SJFR TLLB

u_c_hihi 8359675 11384672 37471299 10421624 11111938 7617740

u_c_hiho 140805.4 193054.6 1084093 174887.4 188252.4 147113.6

u_c_lohi 264837.4 381566.7 1352098 367303.6 387733.1 249359.1

u_c_lolo 4341.428 5845.362 37582.3 5260.055 5645.371 4370.133

u_i_hihi 3412919 7917378 4407507 4312583 6612596 3401023

u_i_hilo 78755.68 140923.8 94610.48 92855.91 119346.9 74654.02

u_i_lohi 109517.7 240528.8 174694.6 132816.1 202484.6 113021.8

u_i_lolo 1685.645 4077.709 2299.285 2037.35 3297.988 1562.64

u_p_hihi 5059343 9107811 24161058 6592924 8238410 5437803

u_p_hilo 93375.2 161822.7 594363.8 115587.6 143962.9 99232.1

u_p_lohi 119284.5 261085.7 653689.5 165151.3 225097.7 143003

u_p_lolo 2706.828 5132.242 19042.41 3336.118 4427.161 2728.391

Fig 2: Graphical Representation of makespan values

Table 2. Comparison of Flowtime values

Instant Min-Min Max-Min MET MCT LJFR-SJFR TLLB

u_c_hihi 2.11E+07 3.12E+08 1.14E+08 2.80E+07 3.10E+07 1.94E+07

u_c_hiho 37299000 48799000 279999000 43999000 47999000 36599000

u_c_lohi 57199000 89999000 279999000 89499000 96699000 57499000

u_c_lolo 1339000 1759000 9929000 1559000 1669000 1319000

u_i_hihi 8.07E+06 2.14E+07 8.15E+06 1.07E+07 1.76E+07 8.05E+05

u_i_hilo 16499000 33999000 16599000 20499000 27999000 16999000

u_i_lohi 20999000 55299000 21199000 29299000 44599000 25099000

u_i_lolo 662000 1329000 660000 806000 1099000 684000

u_p_hihi 1.12E+07 2.20E+07 3.64E+07 1.56E+06 2.12E+07 1.36E+05

u_p_hilo 23299000 41499000 85699000 28699000 36499000 25199000

u_p_lohi 26699000 62999000 83699000 42199000 56799000 34299000

u_p_lolo 594000 1099000 1949000 839000 907000 657000

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 11, November 2014

42

Fig 3 : Graphical Representation of flowtime value

5.3. Resource Utilization
Maximizing the resource utilization of the grid system is

another important objective. This criterion is gaining

importance due to the economic aspects of grid systems. The

algorithm should improve the utilization of resources by

reducing the idle time of the resources. One possible definition

of this parameter is to consider the average utilization of

resources. For instance, in the ETC model, it can be defined as

follows:

Utilization =
 i ∈ resources C i

makespan X nb_resources

Table 3 shows the improvement of TLLB algorithm over

traditional algorithms. From this figure we can observe that

TLLB uses the maximum amount of resources while reducing

the make span obtained from Min-Min algorithm. Thus TLLB

uses the idle resources to reduce the make span.

Table 3. Resource Utilization in Percentage

Algorithm Utilization

Min-Min 90.02%

Max-Min 95.04%

MET 89.15%

MCT 90.21%

LJFR-SJFR 94.32%

TLLB 98.52%

6. CONCLUSION AND FUTURE WORKS
To overcome the limitations of Min-Min algorithm, a new task

scheduling algorithm TLLB is proposed. It uses the advantages

of Min-Min algorithms and covers their disadvantages. The

TLLB algorithm and various existing algorithms are tested

using the benchmark simulation model for distributed

heterogeneous computing systems. The experimental results

shows that proposed algorithm TLLB outperforms in

makespan, flow time and resource utilization on various

heterogeneous environment. In the future, we can extend our

scheduling approach by using communication cost between

tasks, deadline of tasks, dynamic priority and security

mechanisms.

7. REFERENCES
[1] Siriluck Lorpunmanee, Mohd Noor Sap, Abdul Hanan

Abdullah, and Chai Chompoo-inwai, “An Ant Colony

Optimization for Dynamic Job Scheduling in Grid

Environment”, World Academy of Science, Engineering

and Technology 29, pp. 314- 321, 2007.

[2] Kokilavani.T and George Amalarethinam.D.I, Applying

Non-Traditional Optimization Techniques to Task

Scheduling in Grid Computing, International Journal of

Research and Reviews in Computer Science, Vol. 1, No.

4, Dec 2010, pp. 34 – 38

[3] He. X, X-He Sun, and Laszewski. G.V, "QoS Guided

Minmin Heuristic for Grid Task Scheduling," Journal of

Computer Science and Technology, Vol. 18, pp. 442-451,

2003.

[4] Sameer Singh Chauhan,R. Joshi. C, QoS Guided

Heuristic Algorithms for Grid Task Scheduling,

International Journal of Computer Applications (0975 –

8887), pp 24-31, Volume 2, No.9, June 2010.

[5] Dong. F, Luo. J, Gao. L and Ge. L, "A Grid Task

Scheduling Algorithm Based on QoS Priority Grouping,"

In the Proceedings of the Fifth International Conference

on Grid and Cooperative Computing (GCC’06), IEEE,

2006.

[6] Etminani .K, and Naghibzadeh. M, "A Min-min Max-min

Selective Algorithm for Grid Task Scheduling," The

Third IEEE/IFIP International Conference on Internet,

Uzbekistan, 2007.

[7] Ranganathan, K. and Foster, I., “Decoupling Computation

and Data Scheduling in Distributed Data Intensive

Applications”, Proceedings of the 11th IEEE Symposium

on High Performance Distributed Computing (HPDC

11),Edinburgh, Scotland, July 2002.

[8] Ullah Munir. E, Li. J, and Shi. Sh, 2007. QoS Sufferage

Heuristic for Independent Task Scheduling in Grid.

Information Technology Journal, 6 (8): 1166-1170.

[9] Braun, T.D., Siegel, H.J., Beck, N., Boloni, L.L.,

Maheswaran, M., Reuther, A.I., Robertson, J.P., et al. “A

comparison of eleven static heuristics for mapping a class

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 11, November 2014

43

of independent tasks onto heterogeneous distributed

computing systems”, Journal of Parallel and Distributed

Computing, Vol. 61, No. 6, pp.810–837, 2001

[10] Maheswaran. M, Ali. Sh, Jay Siegel. H, Hensgen. D, and

Freund.R.F, "Dynamic Mapping of a Class of

Independent Tasks onto Heterogeneous Computing

Systems, Journal of Parallel and Distributed Computing,

Vol. 59, pp. 107-131,1999.

[11] Saeed Parsa, Reza Entezari-Maleki RASA: A New Grid

Task Scheduling Algorithm , International Journal of

Digital Content Technology and its Applications Volume

3, Number 4, December 2009.

[12] F. Xhafa, J. Carretero, L. Barolli and A. Durresi,

“Immediate Mode Scheduling in Grid Systems”,

International Journal of Web and Grid Services, Vol.3

No.2, 219-236, 2007b.

[13] T. Hagerup, “Allocating Independent Tasks to Parallel

Processors: An Experimental Study”, Journal of Parallel

and Distributed Computing, 47, 1997, pp. 185-197.

[14] A. Abraham, R. Buyya, B. Nath, “Nature's heuristics for

scheduling jobs on computational grids”, The 8th IEEE

International Conference on Advanced Computing and

Communications, 2000.

[15] F. Xhafa, L. Barolli and A. Durresi, “Batch Mode

Schedulers for Grid Systems. International Journal of

Web and Grid Services”, Vol. 3, No. 1, 19-37, 2007.

[16] Doreen Hephzibah Miriam. D and Easwarakumar. K.S, A

Double Min Min Algorithm for Task Metascheduler on

Hypercubic P2P Grid Systems, IJCSI International

Journal of Computer Science Issues, Vol. 7, Issue 4, No 5,

July 2010.

[17] R. Braun, H. Siegel, N. Beck, L. Boloni, M. Maheswaran,

A. Reuther, J. Robertson, M. Theys, B. Yao, D. Hensgen,

and R. Freund, “A Comparison of Eleven Static

Heuristics for Mapping a Class of Independent Tasks onto

Heterogeneous Distributed Computing Systems,” Journal

of Parallel and Distributed Computing, vol. 61, no. 6,

2001, pp. 810-837.

[18] F. Xhafa and A. Abraham, “Meta-heuristics for Grid

Scheduling Problems,” In Meta-heuristics for Scheduling

in Distributed Computing Environments, Springer, vol.

146, 2008, pp. 1-37.

[19]

IJCATM : www.ijcaonline.org

