
International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 11, November 2014

28

Evaluation Amid different Software Design Patterns

Naseer Ahmad

Virtual University of Pakistan
M.A. Jinnah Campus, Defence

Road, Lahore, Pakistan

 Muhammad Waqas Boota
Virtual University of Pakistan

M.A. Jinnah Campus, Defence
Road, Lahore, Pakistan

ABSTRACT

The software developers have been wholeheartedly

implemented the various design patterns in current years.

There is sufficient confirmation that patterns can have a

valuable blow on software quality, on the other hand in some

situations patterns have been improperly implemented

because of having not too much experience. A software

developer can make the design process simpler, well design to

be reuse and most proficient with the help of various design

patterns. But, a software developer should have a lot of

experience and knowledge of using the design patterns. The

design quality is a significant tool that is considered to find

out the quality of a software product. In order to find out the

quality of design in the premature stages of software process

is an important task to extend and improve the quality of

software. In order to make the software professional, the

design patterns are useful tools for this purpose. This paper

represents that how evaluation among different software

design patterns with Chidamber-Kemerer (C&K) metrics is

carried out.

Keywords

Design-pattern, C&K, metrics, evaluation

1. INTRODUCTION
Every pattern illustrates a problem that arises again and again

in our surroundings, and then illustrates the main solution to

that problem, in a particular way which we can make use of

this solution number of times, lacking always doing the same

thing two times. The fundamental elements of a pattern in

which the first one is the pattern name in which we use to

illustrate a particular problem related to the design. The

second element is that the problem that illustrates when to

implement the pattern. The third one is that the solution that

illustrates the components that structure the design. The last

one is the outcomes that are the final results and transactions

of applying the pattern. We can say that the design patterns

are not related to the designs such as hash tables that may be

programmed in classes. These are not also like as the linked

lists too. These are not too much complicated, domain-

specific designs for whole application. These are explanations

of communicating the classes as well as objects that are

adapted to find out a solution of a specific design in a specific

context.

In this paper it will be explained that how the evaluation on

these patterns is carried out with C&K metrics and description

of one design pattern type of each of these three design

patterns is also explained. An evaluation of these patterns in

which a description of one design pattern type of each of these

three design patterns will be carried out [1]. Creational

patterns offer a way to make objects as hiding the logic of

creation of objects, instead of instantiating objects openly

using fresh operator. It offers the program additional

flexibility to decide that which particular object requires to be

creating for the given use case [2]. These patterns provide the

summary of instantiation process. These patterns are helpful

to create an autonomous system that how can we create its

objects, how its objects are composed as well as represented.

These patterns become imperative as the development of

system depend additional on the composition of the object as

compared to the class inheritance. For a moment these

patterns become opponents. For example, in some situations

when also Prototype or Abstract Factory can be used

beneficially. And in some situations these patterns become

complementary: developer may use one of the other design

patterns in order to implement which element gets created [1].

The composition of class and object is concerned in the

structural design patterns. In order to get new features ways

are defined for compositions of objects and also perception of

inheritance is applied for the composition of interfaces [2]. In

order to make large structures these patterns give perception

that how the classes and objects are composed with these

patterns. For example, number of inheritance merges the more

than two classes into single class. The resultant class merges

the properties of the parent class. Structural patterns are

significantly helpful for constructing developed libraries work

collectively but in parallel. Class structure of adapter pattern

is another example of structural pattern. Usually, an adapter

creates another interface from parent or original interface; in

this manner it offers a smooth abstraction of different

interfaces. A class adapter achieves this objective with the

help of inheritance in confidential from an adaptee class. The

adapter then articulates its own interface in terms of adaptee’s

class.

Communication among objects is related with behavioral

patterns. These patterns are also concerned with task of jobs

among objects and algorithms. These patterns express not

only the classes and objects pattern but it also express

communication among objects as describe earlier. Behavioral

patterns also describe the complex flow of control which is

not easy to trail at run time. They change our focus from

control flow to let us focus only on the way objects are

interrelated. Inheritance is used in these patterns to deal out

behavior among classes. Composition of objects is used by

behavioral objects patterns instead of inheritance [1, 2]. In

ordered to provide evaluation among three main types of

design patterns, we will describe one type of each design

pattern and describe their implementation as well as their

class diagrams. In ordered to provide evaluation that how

through C&K metrics are implemented for evaluation purpose

of various design patterns, are explained. The part 2 carries

the related work, in the part 3 creational design patterns with

its one type factory pattern is explained, in the part 4

structural design patterns with its one type adapter, in the part

5 behavioral design pattern with its type mediator pattern, part

6 explain how Chidamber-Kemerer (C&K) metrics are used to

evaluation and analysis of different design patterns. Part 7

carries the concluded work of our research work.

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 11, November 2014

29

2. RELATED WORK
Since 1994 various software design patterns detonated and at

this current modern period hundred of patterns came into

existence. There are number of warehouses that preserve and

document the patterns in which the first one was created in

1995 by Ward Cunningham and it is called “Portland Pattern

Repository”. The major objective of this paper is to provide

the fundamental knowledge about the evaluation of different

design patterns belongs to creational, structural and

behavioural patterns. In this paper the knowledge provided

about design patterns is that how someone can evaluate these

patterns. The main aim of design patterns is that how we can

encourage the established design and frequently apply the

successful solution pattern in various contexts. An important

point is that we should keep in mind that we can not apply the

design patterns blindly. We should keep in mind that the

patterns are templates and these must be acclimatized to the

specific solution in which these patterns belong. The matter of

continues modification and designated fulfilled needs

application modification in the code. Every implementation

modification might need modification in the implementation

of the existing design pattern. If complication in modification

is much high then it should require another design pattern or

developing of current design pattern to extra complicated

implementation.

It can be much motivating to perform standard test on the

code which is employed by make use of design patterns and in

order to perform rapid optimized code is executed and this is

executed without design patterns. These executions should

implement the equivalent clarification; therefore it is easy to

evaluate what are distinction in the execution time, and

utilization of additional resources. We can expand this test

with the utilization of various patterns and modifying the

execution complexity. Composed results can be used to

evaluate the cost which is associated to the design patterns.

On the other hand, this type of evaluation cannot be consistent

if there is no involvement of cost evaluation or analysis

relative to the maintenance of code, correction of errors, and

performance of modification arrangement and refactoring,

enhanced design of current code [3]. The sketch of every

design pattern has a segment where these are interconnected

to other design patterns, of equivalent, of a privileged or

worse granularity level are offered. These connections affect

the construction process, since we should always see at

relative patterns when we develop something; and we should

always implement the higher level design patterns at initial

stages. Taxonomy for design patterns, but this is not for their

shared interconnection is given. Developers can use design

patterns at various levels, and what is obtained at initial level

can be assumed a fundamental pattern at secondary level. It is

possibly representative of most architecture, several patterns

will common and various will be precise to the area of

application [4].

3. FACTORY METHOD DESIGN

PATTERN
Factory pattern falls in the class of creational design patterns

and this pattern is most popular and widely used in the design

patterns in java. This is most useful pattern and has best

methods for the creation of an object. In this pattern without

revealing the logic of creating object to the user we can create

an object and pass on to recently created object by using a

general interface [2]. In other words we can say that factory

itself is an object and it creates another object. We can also

say that object factory is parent object and the objects that are

created from it are child objects. This is mainly used in the

frameworks and also in toolkits. These are used in the

development based on test-driven that permits the classes to

be tested before implementation. Factories also have benefits

such as developers can reuse the objects with least duplication

of code. While testing the objects, management of critical

information can be passed prior to the information is

specified. The duration of an object can central to make sure

constant behaviour. These also have the capability of

encapsulation because factories encapsulate the objects

creation. Factories have limitations too because refactoring

the current class to make use of other class causes a break in

existing user. It cannot be expanded because it depends on

using the private constructor in order to encapsulate the

information. On the other hand it is expanded; the subclass

should give its individual re-implementation [7].

3.1 Implementation
Now a Barbeque interface and the implementation of

Barbeque interface with concrete classes will carried out. A

factory class BarbequeFactory is defined next.

FactoryPatternDemo, this demo will use BarbequeFactory in

order to get a Barbeque object. This demo passes an

information (ChickenTikka / MuttenTikka / BeefTikka) to

BarbequeFactory to obtain the type of object that it requires.

The design principle with the help of sample code and class

diagram of the class Barbeque is given below:

Barbeque orderBarbeque(String type) {

Barbeque barbeque;

if (type.equals(“chickentikka”)) {

Barbeque = new ChickenTikkaBarbeque ();

 } else if (type.equals(“muttentikka”)) {

Barbeque = new MuttenTikkaBarbeque ();

} else if (type.equals(“beeftikka”)) {

Barbeque = new BeefTikkaBarbeque ();

}

barbeque.prepare();

barbeque.grill();

barbeque.box();

return barbeque;

}

Fig 1: Class diagram of a class Barbeque [6]

BarbequeStore

orderBarbequ

e()

-name

-chili

-ketchup

-toppings: 1..*

Barbeque

+prepare()

+grill()

+box()

+get_name()

+toString()

ChickenTikka BeefTikka MuttenTikka

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 11, November 2014

30

Here is a problem in the design given above, now by

performing some modifications in the code and the class

diagram to get an accurate design:

Barbeque orderBarbeque (String type) {

Barbeque barbeque;

if (type.equals(“chickentikka”)) {

barbeque = new ChickenTikkaBarbeque ();

} else if (type.equals(“muttentikka”)) {

barbeque = new MuttenTikkaBarbeque ();

} else if (type.equals(“beeftikka”)) {

barbeque = new BeefTikkaBarbeque();\\encapsulation

} else if (type.equals(“shahitikka”)) {

barbeque = new ShahiTikkaBarbeque();

}

barbeque.prepare();

barbeque.grill();

barbeque.box();

return barbeque;

}

A new object shahitikkaBarbeque is created as above in the

code. Suppose that some people do not like Beef Tikka

therefore now remove the object beeftikkaBarbeque and

replaces it with the object shahitikkaBarbeque. In order to

perform such type of modification in programming is difficult

task. For encapsulation of the code that modifies will make

the design much flexible by creating a SimpleFactory. Nowl

remove the code that creates a barbeque and this forms a

factory as follows:

public class SimpleBarbequeFactory {

public Barbeque createBarbeque(String type) {

Barbeque barbeque;

Barbeque orderBarbeque (String type) {

Barbeque barbeque;

if (type.equals(“chickentikka”)) {

barbeque = new ChickenTikkaBarbeque ();

} else if (type.equals(“muttentikka”)) {

barbeque = new MuttenTikkaBarbeque ();

} else if (type.equals(“shahitikka”)) {

barbeque = new ShahiTikkaBarbeque();

}

return barbeque;

}

}

Now it is clear in this piece of code orderBarbeque is in order

or in organized form.

public class BarbequeStore {

SimpleBarbequeFactory factory;

public BarbequeStore(SimpleBarbequeFactory factory) {

this.factory = factory;

}

public Barbeque orderBarbeque(String type) {

Barbeque barbeque;

barbeque = factory.createBarbeque(type);

barbeque.prepare();

barbeque.grill();

barbeque.box();

return barbeque;

}

}

Fig 2: Revised class diagram of class Barbeque [6]

4. ADAPTER METHOD DESIGN

PATTERN
The Adapter design pattern exchanges the interface of one

class into another class. Programmers use adapter patterns

whenever they desire to work unrelated classes jointly in a

single program. The idea of this pattern is quite simple: a

programmer writes a class that has preferred interface and

after writing this class the programmer makes this able to

communicate with another class that has different interface

[8].

4.1 Intent
It is used to convert the interface of a particular class into

another class for the expectation of the client. It makes the

classes able to communicate each other that are different from

their interfaces.

BarbequeStore

+orderBarbeque()

-name

-chili

-ketchup

-toppings: 1..*

Barbeque

+prepare()

+grill()

+box()

+get_name()

+toString()

ChickenTikka ShahiTikka MuttenTikka

SimpleFactory

+createBarbeque()

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 11, November 2014

31

4.2 Also Known As
Adapter patter also knows as wrapper.

4.3 Elements
4.3.1 Target
It describes or defines the interface used by Client, interface is

domain specific.

4.3.2 Client
It works together with objects that confirm the target

interface.

4.3.3 Adapter
This element adjusts or adapt adaptee’s interface to the target

interface.

4.3.1 Adaptee
It defines the current interface that wants adapting.

4.4 Adapter Pattern Structure
Adapter pattern has class adapter as well as object adapter

class adapter makes use of various inheritance in order to

adapt one interface into another interface (Fig 3).

Fig 3: Structure of class Adapter design pattern [1].

On the other hand an object pattern depends on the

Composition of different objects (Fig 4).

Fig 4: Structure of object adapter design pattern [1].

In ordered to understand Adapter patterns a simple example is

illustrated here that is real life example. Assume a mobile

phone requires 12 Volts of power supply for its battery

charging but the main power supply produces current of 220

Volts. These 220 Volts are too much high for charging of

mobile phone and not suitable for requirement because it can

damage the battery or mobile phone. Since, to charge battery

it needs 12 Volts instead of 220 Volts.

In order to solve this issue mobile phone charger act as an

adapter and this adapter make a relationship among the

interface of mobile phone and main power supply that are

unrelated to each other. According to this mechanism an

Adapter works [9]. This Adapter pattern falls in the category

of structural design patterns. Another real life example of

Adapter is suppose some Pakistani researchers go to Chinese

university in order to complete their research work. The

official language of China is Mandarin and Pakistani

researchers do not understand Mandarin language. In order to

solve this problem Chinese university provide a translator for

Pakistani researchers. The translator first teaches the

researchers Mandarin language to the researchers in order to

understand lectures that are delivered by professor.

4.5 Implementation
In this example researchers are Target, the translator is

Adapter and the Pakistani researchers are adaptee [11]. The

class diagram and code synopsis of above example or

scenario is given below:

Fig 5: Class diagram of Class Researcher [11].

4.5 The Professor Class
public class Professor {

List<Researcher> listResearcher;

public Professor() {

listResearcher = new ArrayList<Researcher>();

}

public void teachResearchers() {

for (Researcher researcher : listResearcher) {

researcher.learnLectureInMandarin ();

}

}

}

(Implementation)

Client
Target

Request(

)

Adapter

Request(

)

Adaptee

Specific

Request()

SpecificRequest()

Adaptee

Client
Target

Request()

Adapter

Request()

Adaptee

SpecificRequest()

Adaptee->SpecificRequest()

+learnLectureInUrdu() : void

Professor Researcher

+learnLectureInMandarin() : void

PakistaniResearcher

+learnLectureInMandarin() : void

Translator

+learnLectureInMandarin() : void

PakistaniResearcher

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 11, November 2014

32

4.6 The Researcher Class
public abstract class Researcher {

public abstract void

learnMandarin ();

}

4.7 The Translator Class
public class Translator extends Researcher {

PakistaniResearcher pakistaniResearcher;

public Translator(PakistaniResearcher pakistaniResearcher)

{

super();

this.pakistaniResearcher = pakistaniResearcher;

}

@Override

public void learnLectureInMandarin () {

System.out.println("Translate to urdu");

pakistaniResearcher.learnLectureInUrdu();

}

}

4.8 The Chinese Researcher Class
public class ChineseResearcher extends Researcher {

@Override

public void learnMandarin() {

System.out.println("Learning mandarin");

}

}

4.9 The Pakistani Researcher Class

public class PakistaniResearcher {

public void learnLectureInUrdu() {

System.out.println("Learn in urdu");

}

5. MEDIATOR METHOD DESIGN

PATTERN
In order to minimize communication complexity among

various objects as well as in classes Mediator design patterns

are used. Mediator pattern offers a mediator class that

basically manages entire communications among multiple

classes and maintains simple maintainability of the code with

the help of loose coupling and this pattern falls in the category

of behavioural patterns [2]. This pattern indicates that an

object that encapsulates and how a group of objects can work

together with other objects of the group. As mentioned earlier

it also supports loose coupling by remaining objects from

submitting to each other unambiguously, and it allows the

developers differ their communications in parallel. Following

diagram shows the communication among two objects [1].

Fig 6: Point-to-Point Communication among Two Objects

[10]

Multiple objects can also communicate each other and

following figure shows the communication among multiple

objects.

Fig 7: Point-to-Point Communication among multiple

Objects [10]

5.1 Implementation
Here is an example of Class FaceBook that describes how

facebook friend communicate each other. This example is

explained with help of code synopsis and class diagram as

follow:

Fig 8: Class diagram of Class FaceBook [2]

5.2 Create Mediator Class
import java.util.Date;

public class FaceBook {

public static void showText(Friend friend, String text){

System.out.println(new Date().toString()

+ " [" + friend.getName() +"] : " + text);

}

}

In the above code synopsis mediator Class is created and the

utility Date indicates the communication period among

objects.

5.3 Create Friend Class
public class Friend {

private String name;

public String getName() {

return name;

Object1 Object2

Object1 Object2

Object3 Object4

MediatorPatternDemo

+main() : void

Friend

-name : String

+Friend() : void

+getName() : void

+setName() : void

+sendText() : void

FaceBook

+showText() : void

uses

uses

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 11, November 2014

33

}

public void setName(String name) {

this.name = name;

}

public Friend(String name){

this.name = name;

}

public void sendText(String text){

FaceBook.showText(this,text);

}

}

Class friend is created from above code synopsis and finally

by using the Friend object we can show communication

between two facebook friends as follow in the code [2].

MediatorPatternDemo.java

public class MediatorPatternDemo {

public static void main(String[] args) {

Friend ali = new Friend("Ali");

Friend ahmad = new Friend("Ahmad");

ali.sendText("Hi! Ahmad!");

ahmad.sendText("Hello! Ali!");

}

}

Place Tables/Figures/Images in text as close to the reference

as possible (see Figure 1). It may extend across both columns

to a maximum width of 17.78 cm (7”).

Captions should be Times New Roman 9-point bold. They

should be numbered (e.g., “Table 1” or “Figure 2”), please

note that the word for Table and Figure are spelled out.

Figure’s captions should be centered beneath the image or

picture, and Table captions should be centered above the table

body

6. CHIDAMBER-KEMERER (C&K)

METRICS
In this section it is explained that how evaluation of design

patterns is performed by C&K metrics, because it is most

famous software metrics for object-oriented languages that is

proposed by Chidamber and Kemerer [6]. C&K metrics suite

originally contains six metrics that are as follows one by one:

6.1 Weighted Method per Class (WMC)
WMC can be described as the total of all method’s complexity

of a class.

WMC = number of methods defined in class

If WMC has large value for a particular class, then it is much

complicated and extremely expensive to maintain such class.

In C&K metrics approach the method’s complexity is not

described in particular to permit for most common application

of C&K metrics. We can define the complexity of a method as

ratio of method’s weight to 128 bytes that is standard weight

of a particular method. The “Method’s weight” can be defined

as byte size of entire objects contained in a method. Classes

that contain large number of methods, limit the possibility of

reuse. While evaluating the design patters with C&K metrics

we can came know that Mediator design pattern makes

coupling among collaborator free. However, it may centralize

control in the CnocreteMediator class. The granularity can be

low while applying the design patterns.

6.2 Depth of Inheritance Tree (DIT)
DIT can be defined as highest inheritance path from the class

to the root class.

DIT = Highest inheritance path from the class to the root

class

If a class is much deeper in the given hierarchy, large number

of variables and methods to be inherit, that makes a class

much complex. The trees that have much depth, indicate

larger will be the design complexity of a class. In order to

manage such type of complexity, inheritance tool is used. A

higher DIT means that design of a class has large number of

faults. The recommended value of DIT should be5 or less than

5. The recommended value of DIT for Visual Studio .NET

documentation is <= 5, since excessively deeper class

hierarchies are much difficult to develop. But some sources

recommend the DIT value up to 8. While using the design

patterns or without design patterns, it may be no significant

variation among these two situations. However, we can

promote composition of objects by using the design patterns

before inheritance of the class.

6.3 Number of Children (NOC)
NOC can be defined as number of instant children or

subclasses.

NOC = Number of immediate subclasses of a class

The larger the value of NOC for a particular class, larger will

be the influence on that class; therefore addition testing will

be required for the methods in that class. NOC is used to

measure class hierarchy’s breadth, while DIT is used to

measure depth of the tree. Depth is better as compared to

breadth, as it promotes reusability via inheritance. As we

discussed number of design patterns in previous sections, and

some of these design patterns occupy abstract classes that

necessarily have number of children or subclasses such as

class Strategy in the Strategy design pattern, class command

in the Command design pattern, and class Visitor in the

Visitor design pattern. These classes increase value of NOC.

6.4 Coupling Between Objects (CBO)
CBO can be defined as number of classes or objects to be

coupled through use of attribute or method.

CBO = Number of classes to which a class is coupled

Larger the number of coupling between objects or classes,

higher will be the sensitivity to modification in other

components of a design; therefore maintenance will be more

complex too. Low CBO is desirable, since more coupling

among object classes is harmful to modular design and avoids

reusability. So, to improve modularity and reusability it is

desirable to reduce coupling among classes. We can apply

C&K metric for calculating CBO, and we also know that in

the Creational design patterns such as Abstract Factory,

Factory Method, and Builder design patterns have the

responsibility to create objects, requires knowing class name

of a particular object. Therefore, class ConcreteFactory in the

design pattern Abstract Factory, class ConcreteCreator in the

design pattern Factory Method, class ConcreteBuilder in the

design pattern Builder, and the class Mediator of Mediator

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 11, November 2014

34

design pattern from Behavioral patterns have high CBO value,

which is not desirable. As design patterns represent which

classes have the responsibility of creation of objects, it is not

complex to manage such classes, opposite to C&K’s

calculations.

6.5 Response for a Class (RFC)
RFC can be defined as number of methods in a group of entire

methods, which can be invoked in reaction to a message sent

to an object of a particular class.

RFC = M + R (Initial Step Measure)

RFC’ = M + R’ (Complete Measure)

Where “M” represents number of methods in a class, “R”

represents number of remote methods that are openly by

class’s methods, and “R’” represents the number of remote

methods that are recursively called via complete call tree. If

the RFC value for a particular class will be high, then the

complexity of that class will also high, therefore much

complex to maintenance. The class ConcreteMediator in

Mediator design patterns has high RFC value, and class

ConcreteVisitor in Visitor design pattern often invokes the

methods that are described in the object “ConcreteElement”,

therefore class ConcreteVisitor also have the high RFC value.

6.6 Lack of Cohesion in Methods (LCOM)
LCOM defined as by deducting the number of methods with

shared instance variables from number of methods without

shared instance variables. Initially this C&K metric is set to

zero whenever the calculation is negative. High cohesion

increases maintainability, while low cohesion maximizes the

complexity and hence, difficult for maintenance. LCOM

values are desired to be high.

7. CONCLUSION
In this paper we illustrate differentiation and evaluation

among some types of each creational, structural and

behavioral pattern. Creational patterns are useful for the

creation of objects and these permits the objects to be came

into existence in a system devoid of to recognize a particular

class type in the code, so programmers do not need to write

large and complex code in order to instantiate an object. As

discussed in structural patterns form bigger structures from

individual parts, usually of different classes and these patterns

show a discrepancy a big deal in which the dependency on

what kind of structure is being created for a particular task.

The interaction among different objects is related to

behavioral patterns. Behavioral patterns have the objective

that in what manner communication is take place among

different objects. These patterns decrease the communication

complexity flow charts to simple interconnections among

objects of different classes [5]. Design patterns recommend

the relationships between different classes. In the described

C&K metrics suite, the NOC, WMC, LCOM, and DIT are the

metrics necessarily for a single class, not appropriate for the

measurements of relationships between classes. For this

purpose the metrics RFC and CBO are used to capture the

degree of communication among such classes [11, 12]. The

table given below summarizes the above discussed metrics

and additional metrics such as number of classes and lines of

code.

Table 1: Summary of C&K Metrics [11, 12]

Metric Desirable Value

Weighted Methods Per Class (WMC) Low

Depth of the Inheritance Tree (DIT) Low

Number Of Children (NOC) Low

Coupling Between Objects (CBO) Low

Response For a Class (RFC) Low

Lack of Cohesion in Methods

(LCOM)

Low

Number of Classes High

Lines of Code Low

8. REFERENCES
[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. 1993

Design Patterns – Elements of Reusable Object-Oriented

Software.

[2] Design Patterns in Java Tutorial,

www.tutorialspoint.com/design_pattern/design_pattern_t

utorial.pdf‎

[3] Aleksandar Bulajic. 2011. Design Patterns Past and

Future.

[4] Walter Zimmer. Relationships between Design Patterns.

[5] Design Patterns.,

http://www.gofpatterns.com/design
patterns/module2/three-types-design-patterns.php.

[6] The Simple Factory Pattern and Factory Method Pattern.

2011.

http://web.cs.dal.ca/~jin/3132/lectures/dp-07.pdf

[7] Factory Design Pattern. 2011

web.engr.oregonstate.edu/~cscaffid/courses/CS361.../mo

re patterns.pdf

[8] James W. Cooper. 2000. Java Design Patterns: A

Tutorial. ISBN: 0-201-48539-7

[9] Adapter design pattern in java. 2012.

http://javapostsforlearning.blogspot.com/2012/09/adapter
-design-pattern-in-java.html

[10] Partha Kuchana. 2004. Software Architecture Design

Pattern in Java.

[11] Basili, V. R, Braid, L. and Melo, W.L. 1995. A

Validation of Object-Oriented Design Metrics as Quality

Indicators.

[12] Chidamber & Kemerer object-oriented metrics suite.

Project Analyzer v10.2.

http://www.aivosto.com/project/help/pm-oo-ck.html

IJCATM : www.ijcaonline.org

