
International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 1, November 2014

36

To Design a English Language Recognizer by using

Nondeterministic Pushdown Automata (ELR-NPDA)

Madiha Khurram Pasha

Department of Computer Science (UBIT)
University of Karachi

M. Sadiq Ali Khan, Ph.D.

Department of Computer Science (UBIT)
University of Karachi

ABSTRACT

Natural language recognization is a popular topic of research

as it covers many areas such as computer science, artificial

intelligence, theory of computation, and machine leaning etc.

Many of the techniques are used for natural language

recognization by the researchers, parsing is one of them.

The aim to propose this paper is to implement

nondeterministic pushdown automata (NPDA) for the English

Language (ELR-NPDA) that can modernize Context Free

Grammar (CFG) for English language and then refurbish into

Nondeterministic Pushdown Automata (NPDA). This

converting procedure can uncomplicatedly parse legitimate

English language sentences. Parsing can be organized by

Nondeterministic Pushdown Automata (NPDA) that used

push down stack and input tape for recognizing English

language sentences. To formulate this NPDA convertor we

have to exchange Context Free Grammar into Chomsky

Normal Form (CNF). The move toward this is more

appropriate because it uses nondeterministic approach of PDA

that can improve language recognizing capabilities as

compare to other parsing approach.

General Terms

Natural Language Recognizer, Computer Science, Artificial

Intelligence, Theory of Computation, Machine Learning,

Pushdown Automata (PDA), Nondeterministic pushdown

automata (NPDA), Context Free Grammar (CFG), Chomsky

Normal Form (CNF).

Keywords

English Language Recognizer - Nondeterministic Pushdown

Automata (ELR-NPDA)

1. INTRODUCTION
The main purpose of parsing is to find the syntax error in any

natural language or in computer language. Every language has

some set of rules whether it is a Computer language or a

natural language. The arrangement of words in a sentence and

punctuation are called syntax. Our focus here is to parse the

English Language.

Parsing has two major types: Top-down parsing and Bottom-

up parsing. But, our approach is different from these types.

We designed a Nondeterministic Push down automata

(NPDA) for parsing. We prefer Nondeterministic PDA as

compare to Deterministic PDA because DPDA can recognize

only the sub-sets of CFG while on the other hand NPDA can

store unbounded amount of information and recognize the

whole CFG due to it nondeterministic nature. In this approach

first is to take left factored CFG for English language [1], and

then convert this CFG into Chomsky normal form (CNF) and

then CNF convert into the NPDA.

CFG is a collection of four things: a starting non terminal, a

finite set of non terminal, a finite set of terminal and a finite

set of production. For parsing we need a left factored Context

free Grammar [8] [1]. To achieve goal this CFG must be

converted into CNF. Before this conversion there are two

more phases. First one is to remove all null productions (Non-

terminal→ €) and get a new GFG. Now, second is to remove

all unit productions (Non terminal → one non-terminal). The

resulting CFG is now capable to make Chomsky normal form

(CNF). In CNF the whole CFG only has these two types of

productions:

1. Non terminal → exactly two non terminals

2. Non terminals → one terminals

The resultant CFG is required Chomsky Normal Form (CNF)

that can be converted into Nondeterministic Push Down

Automata (NPDA) .The Nondeterministic Push down

automata consist of following elements: the set of input letter,

an input tape, a stack, and set of states (START, ACCEPT,

REJECT, PUSH, POP, READ).

2. LITRATURE REVIEW
Parsing is a technique that checks the syntactical structure of

any given input, if the given input is matched with the

syntactical structure of parser then, it can be passed from it

otherwise it will reject. Parsing having two types: [22], [23]

Top-down and Bottom-up parsing. Top-down parsing

technique first finds the highest level of the parse tree that

parses from top to bottom, whereas, the bottom-up parsing

does the opposite. Top-down parsing has few types, Recursive

descent parser and LL parser.

[10] used chart top-down parsing [11] mechanism to parse the

Arabic language sentences. This proposed parser can parse

Arabic sentences from real documents and also capable for

identifying conjunctions, exceptive particles, preposition etc

in the Arabic language. [12] proposed a new top down parsing

algorithm. This algorithm accommodates ambiguity and left

recursion in polynomial time. Another modular and efficient

top-down parsing technique [13] for same ambiguous left-

recursive grammars has been proposed. The Parsing

Expression Grammars (PEGs) [14] have been projected. The

PEGs integrate with lexical and parsing phase.

A survey paper [15] for all types of parsing have been

proposed. In which all types of parsing technique have been

discussed. Another survey paper [16] describes the different

methodologies for context free grammar and provides an

introduction to main concept and latest approaches in Natural

Language Learning research. Also, [17] a semi supervised

relation extraction mechanism by using CFG has been

proposed. While, [18], [19], [20] using the bottom-up parsing.

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 1, November 2014

37

The context free grammar that defines the syntax of English

language sentences was proposed in [1]. Basically it is

“English grammar predictive parser” that portrays a left

factored context-free grammar for English language and used

top down predictive parsing for syntax checking. Same

approach of top down parsing is used is [2] that projected the

Bangla grammar parser that also based on predictive parsing

approach for parsing the Bangla language.

A “natural language analyzer” has been proposed in [3] that

takes a general class of context-free grammars as drivers and

also used the conception of non-deterministic pushdown

transducer to compute the computational efficiency. Also in

[4] an algorithm has been planned that offer conversion from

“acceptor model” to “generator model”. In this pushdown

automata used as an acceptor model and context-free grammar

used as a generator model.

Another technique that based on this conversion was

developed in [5] is a context-free grammar that used as a

meta-language. This language is then joint with Genetic

programming to develop Deterministic Push-Down Automata

(D-PDAs). Also Formalization of context-free grammars and

pushdown automata using HOL4 was projected in [6].

Through formalization is to create a CFG from a PDA and

vice versa. See also the [9]. Another paper [23] verifies the

theorem that every Context Free Grammar (CFG) is accepted

by a Pushdown Automata (PDA).

JFLAP [7] is a potent tool for execution of theory of

computation. It supports approximately all topics of machine

computation such as finite state machine, nondeterministic

finite automata, nondeterministic pushdown automata, multi-

tape Turing machines, several types of grammars, and parsing

etc. By using this software CFG to NPDA translation is pretty

trouble-free.

3. METHODOLOGY
The block diagram shows the steps to convert English

language Context Free Grammar (CFG) into Nondeterministic

Pushdown Automata (NPDA). (See Figure 1)

The first step for this conversion is to make left factored CFG

for the English language [1]. Second is to remove all null,

third to kill all unit productions from the CFG and in the forth

step convert this CFG into CNF, in the second last step this

CNF is capable for the NPDA. Finally, this ELR-NPDA can

be tested through parsing of different English sentences.

Fig 1: The ELR-NPDA Model

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 1, November 2014

38

3.1 Left Factored CFG for English

Language
The left factored context free grammar extract from [1]. (See

Table 1)

Table 1. Left factored grammar [1]

S  NP.VP

NP a NP1.VP4 |pronoun.NP4|the.NP6|an.NP7 |

 propernoun.NP3 | I| noun

NP1  noun|adjective.NP2

NP2 noun

NP3 conjuction.NP5|€

NP4 conjuction.NP5|noun|€

NP5 noun |pronoun | propernoun

NP6propernoun.NP4|adjective NP2

NP7 adjective1.NP2

VP verb1.vp‟|verb2.vp‟ |aux31.VP3 |aux32.VP6 |

 aux21.VP4| aux22.VP9|aux11.VP5

VPaux12.VP7|adverb.VP6

VP‟ NP1.VP2|adverb.VP2|PP.NP|€|pronoun

VP1 adjective.NP2

VP2PP.NP|€

VP3 verb4.VP‟|adverb.VP6|pronoun.VP1

VP4verb1.VP‟|be.VP6|aux.11.VP7|have.VP8

VP5verb3.VP‟|BEEN.VP6

VP6verb4.VP‟

VP7 verb3.VP‟

VP8 been.VP6

VP9 be.VP6

PP preposition

3.2 Remove All Null Productions
After removing the €-productions the CFG become: (see

Table 2). Only four non-terminals are having the null

productions i.e. NP3, NP4, VP‟ and VP2.

Table 2. Remove all null productions

S  NP .VP

NP a NP 1.VP4 |pronoun |the.NP6|an.NP7 |propernoun

 |I| noun| pronoun.NP4|proper noun.NP3

NP1  noun|adjective.NP2

NP2 noun

NP3 conjuction.NP5

NP4 conjuction.NP5|noun

NP5 noun |pronoun | propernoun

NP6proper noun.NP4|propernoun.| adjective.NP2

NP7 adjective1.NP2

VP verb1.vp‟| verb1.|verb2.vp‟ |verb2. |aux31.VP3 |

 aux32.VP6|aux21.VP4|aux22.VP9|aux11.VP5

VPaux12.VP7 |adverb2.VP6

VP‟NP1.VP2|NP1.|adverb.VP2|adverb.|PP.NP|pronoun

VP1 adjective.NP2

VP2PP.NP

VP3 verb4.VP‟|verb4.|adverb.VP6|pronoun.VP1

VP4verb1.VP‟|verb1.|be.VP6|aux.11.VP7|have.VP8

VP5verb3.VP‟|verb3.|been.VP6

VP6verb4.VP‟|verb4

VP7 verb3.VP‟|verb3.

VP8 been.VP6

VP9 be.VP6

PP preposition

3.3 Remove All Unit Productions
There is only a single unit production

 VP‟NP1

So, it can be replace by

 VP‟  noun

 VP‟ adjective.NP2

3.4 Convert into Chomsky Normal Form

(CNF)
As mention above there are two possibilities for CNF:

1. Non terminal → exactly two non terminals

2. Non terminals → one terminals

3.4.1 Possibility 1 for CNF
The result is shown in Table 3.

Table 3. Possibility 1 for CNF

SNP.VP

NPA‟NP1.VP4|pronoun|C‟.NP6|B‟.NP7|propernoun|I|

 noun| F‟.NP4|G‟.NP3

 NP1noun|H‟.NP2

NP2noun

NP3L‟NP5

NP4L‟.NP5|noun

NP5noun| propernoun| pronoun

NP6G‟.NP4| propernoun| H‟.NP2

NP7I‟.NP2

VPM‟.VP‟| verb1| N‟.VP‟| verb2 | U‟.VP3| V‟.VP6 |

 S‟.VP4| T‟.VP9| Q‟.VP5 |R‟.VP7| J‟.VP6

VP‟NP1.VP2| noun| H‟.NP2| J‟.VP2| adverb| PP.NP |

 pronoun

VP1H‟.NP2

VP2PP.NP

VP3P‟.VP | verb4 | J‟.VP6 | F‟.VP1

VP4M‟.VP‟ | verb1|Y‟.VP6| Q‟.VP7| W‟.VP8

VP5O‟.VP‟ | verb3 | X‟.VP6

VP6P‟.VP‟| verb4

VP7O‟.VP‟| verb3

VP8X‟.VP6

VP9Y‟.VP6

PPpreposition

A‟ a

B‟an

C‟ the

D‟noun

F‟pronoun

G‟proper noun

H‟  adjective

I  adjective1

J‟ adverb

K‟preposition

L‟Conjunction

M‟verb1

N‟verb2

O‟verb3

P‟verb4

Q‟aux11

R‟aux12

S‟aux21

T‟aux22

U‟aux31

V‟aux32

W‟have

X‟been

Y‟be

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 1, November 2014

39

3.4.2 Possibility 2 for CNF
The result of second possibility of CNF is shown in Table 4.

Table 4. Possibility 2 for CNF

1. SNP.VP

2. NPA‟R1

3. R1NP1.VP4

4. NPpronoun | C‟.NP6 | B‟.NP7 | propernoun | I| noun|

 F‟.NP4| G‟.NP3

5. NP1noun|H‟.NP2

6. NP2noun

7. NP3L‟NP5

8. NP4L‟.NP5|noun

9. NP5noun| propernoun| pronoun

10.NP6G‟.NP4| propernoun| H‟.NP2

11. NP7I‟.NP2

12. VPM‟.VP‟| verb1| N‟.VP‟| verb2 | U‟.VP3| V‟.VP6

 |S‟.VP4| T‟.VP9| Q‟.VP5 |R‟.VP7| J‟.VP6

13. VP‟NP1.VP2| noun| H‟.NP2| J‟.VP2| adverb|

 PP.NP | pronoun

14. VP1H‟.NP2

15. VP2PP.NP

16. VP3P‟.VP | verb4 | J‟.VP6 | F‟.VP1

17. VP4M‟.VP‟ | verb1|Y‟.VP6| Q‟.VP7| W‟.VP8

18. VP5O‟.VP‟ | verb3 | X‟.VP6

19. VP6P‟.VP‟| verb4

20. VP7O‟.VP‟| verb3

21. VP8X‟.VP6

22. VP9Y‟.VP6

23. PPpreposition

24. A‟ a

25. B‟an

26. C‟ the

27. D‟noun

28. F‟pronoun

29. G‟proper noun

30. H‟  adjective

31. I‟ adjective1

32. J‟ adverb

33. K‟preposition

34. L‟Conjunction

35. M‟verb1

36. N‟verb2

37. O‟verb3

38. P‟verb4

39. Q‟aux11

40. R‟aux12

41. S‟aux21

42. T‟aux22

43. U‟aux31

44. V‟aux32

45. W‟have

46. X‟been

47. Y‟be

3.5 Construct English Language Pushdown

Automata (ELR-NPDA)
The diagrammatical view of ELR-NPDA is exposed in figures

2, 3, 4 and 5. Essentially these figures (2, 3, 4, and 5) showing

the single nondeterministic pushdown automata for the

English language. It means that all figures (2, 3, 4, and 5) are

connected with each other. It has been separated into parts for

appropriate view and better understanding. The all diamond

shapes symbol in ELR-NPDA symbolize the READ states and

all rectangular shapes shows the PUSH states of stack.

3.6 Algorithm for ELR-NPDA
The algorithm of ELR-NPDA that can recognize syntactically

correct sentences of the English language is to be proposed

here.

1. Put starting non-terminal symbol on the empty stack.

2. Set variable „x‟ to the top of stack.

3. while (1)

 {

 if(x == non_ternimal) // x = top of stack

{

Nondeterministically choose a production and

replace non-terminal with the production‟s rule.

}

 else if(x== terminal)

{

Compare this terminal with the next input symbol

from input tape.

if (terminal != input symbol)

goto Reject state

else

Advance input tape head to read next

symbol

}

 else //codition if top of stack points to start of stack

{

if (input symbol==end marker) //input ends

goto accept state

else

goto reject state.

}

 }

4. RESULTS
The above mention algorithm of EL-NPDA can easily parse

valid English sentences. For parse any sentence initially stack

is empty and tape having input sentences which we want to

parse. We begin by pushing the starting non-terminal onto the

empty stack. This starting symbol is now pop form the stack

and nondeterministically chooses a production which start

form starting symbol and push onto the stack. The process

continues until the end of input tape. The dry run of algorithm

is shown in table 5 and 6.

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 1, November 2014

40

Fig 2: ELR-NPDA diagrammatical view 1

 Fig 3: ELR-NPDA diagrammatical view 2

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 1, November 2014

41

Fig 4: ELR-NPDA diagrammatical view 3

Fig 5: ELR-NPDA diagrammatical view 4

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 1, November 2014

42

Table 5: example 1 “John was going to school”

 STATE STACK TAPE
START ∆ John was going to school

PUSH S S John was going to school

POP ∆ John was going to school

PUSH VP VP John was going to school

PUSH NP NP.VP John was going to school

POP VP John was going to school

READ 23 VP John was going to school

POP VP John was going to school

PUSH VP6 VP6 John was going to school

PUSH v‟ V‟.VP6 John was going to school

READ 21 VP6 John was going to school

POP VP6 John was going to school

PUSH VP‟ VP‟ John was going to school

PUSH P‟ P‟.VP‟ John was going to school

Pop P‟ .VP‟ John was going to school

READ 15 VP‟ John was going to school

POP VP‟ John was going to school

PUSH NP NP John was going to school

PUSH PP PP.NP John was going to school

POP PP.NP John was going to school

READ 46 NP John was going to school

POP NP John was going to school

READ 28 ∆ John was going to school

ACCEPT ∆ John was going to school

Table 6: example 2 “The young man is laughing”

STATE STACK TAPE

START ∆ The young man is laughing

PUSH S S The young man is laughing

POP ∆ The young man is laughing

PUSH VP VP The young man is laughing

PUSH NP NP.VP The young man is laughing

PUSH NP6 VP The young man is laughing

PUSH C‟ C‟.NP6.VP The young man is laughing

POP NP6.VP The young man is laughing

READ 3 NP6.VP The young man is laughing

POP VP The young man is laughing

PUSH NP2 NP2.VP The young man is laughing

PUSH H‟ H‟.NP2.VP The young man is laughing

POP NP2.VP The young man is laughing

READ 7 NP2.VP The young man is laughing

POP VP The young man is laughing

READ 30 VP The young man is laughing

READ 30 VP The young man is laughing

POP ∆ The young man is laughing

PUSH VP6 VP6 The young man is laughing

PUSH V‟ V‟.VP6 The young man is laughing

POP VP6 The young man is laughing

READ 21 VP6 The young man is laughing

POP ∆ The young man is laughing

PUSH VP‟ VP‟ The young man is laughing

PUSH P‟ P‟.VP‟ The young man is laughing

POP VP‟ The young man is laughing

READ 15 VP‟ The young man is laughing

5. CONCLUSION AND FUTURE WORK:
After comparative study of Nondeterministic Pushdown

Automata (NPDA) with the other parsing techniques (top-

down and bottom-up) the conclusion is that NPDA is more

appropriate than any other techniques. NPDA is able to count

letters. Also it uses pushdown stack and by using this stack,

the language recognizing capabilities are increased

considerably as compare to other parsing approaches. The

PDA can hold unlimited amount of information. The only

drawback is that it uses more memory because of stack data

structure. The comparative results of NPDA with the other are

shown in table 7.

Table 7: Parsing Techniques Comparisons

Parsing

Techniques

Recognizing

Capabilities

Memory

Usage
Time

PDA It cannot

recognized

natural

language

which based

on CFG

Large memory

as compare to

top-down and

bottom up, and

less memory

as compare to

NPDA

Fast for

LR(1)

based

language

Top-down

parsing

Slow as

compare to

NPDA and

PDA

Less memory

as compare to

PDA and

NPDA

Take too

much

time to

find

possible

sentences

Bottom-up

parsing

Slow as

compare to

NPDA and

PDA

Less memory

as compare to

PDA and

NPDA

Take less

time as

compare

to bottom-

up.

parsing

NPDA Excellent

recognizing

capability as

compare to

others.

Large memory

as compare to

all others.

Fast for

natural

language

In the future, we will design and implement the NL-PDA for

many other Natural languages. The ELR-PDA has some

restrictions that it cannot parse idioms and poetry text, but in

future we will cope up with this limitation too.

6. REFERENCES
[1] Ratnagiri, Ichalkanji, Recognizing English grammar

using predictive parser, IJERA, Vol. 3, Issuen4, Jul-Aug

2013, pp.306-312

[2] K. M. Azharul Hasan, Al-Mahmud, Amit Mondal, Amit

Saha, Recognizing Bangla grammar using predictive

parser, IJCSIT, Vol 3, No 6, Dec 2011, pp-61-73.

[3] Manuel Vilares Ferro, An efficient context-free backbone

for natural language analyzers.

[4] Stefan Andrei, Hikyoo Koh, A fixed-point approach

towards efficient models conversion, No. 2, June 2008.

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 1, November 2014

43

[5] Afra Zomorodian, Context-Free Language Induction by

Evolution of Deterministic Push-Down Automata Using

Genetic Programming.

[6] Aditi Barthwal1, Michael Norrish, Mechanisation of

PDA and Grammar Equivalence for Context-Free

Languages.

[7] www.jflap.org

[8] Robert C. Moore, Removing Left Recursion Form

context Free Grammar.

[9] http://hol.sourceforge.net.

[10] Ahmed Al-Taani, Mohammed Msallan and Sana

Wedian, A top-Down chart Parser for Analyzing Arabic

Sentences.

[11] Dick G. and Ceriel H., Paring Techniques, a Practical

Guide, Technical Report, England, 1990.

[12] Richard A. Frost and Rahmatullah Hafiz, A New Top-

Down Parsing Algorithm to Accommodate Ambiguity

and left Recursion in Polynomial Time.

[13] Richard A. Frost, Rahmatullah Hafiz and Paul C-

Callaghan, Modular and Efficient Top-down Parsing for

Ambiguous Left-Recursive Grammars, Proceedings of

the 10th Conference on Parsing Technologies, pages

109–120,

[14] Laurence Tratt, Direct Left-Recursive Parsing

Expression Grammars.

[15] Pankaj Sharma, Naveen Malik, Naeem Akhter, Rahul,

Hardep Rohilla, Parsing Techniques: A Review.

[16] Arianna D Ulizia, Fernando Ferri, and Patrizia Grifoni, A

Survey of Grammatical inference Methods for Natural

Language Learning.

[17] Georgios Petaris, Vangelis Karkaletsis, Georgios

Paliouras and Contantine D. Spyropoulos, Learning

Context-Free Grammars to Extract Relations Form text”.

[18] Robert Moore and John Dowding, Efficient Bottom-up

Parsing.

[19] Nazir Ahmad Zafar, LR(K) Parser Constraction Using

Bottom Up Formal Analysis.

[20] David Carter, Efficient Disjunctive Unification for

Bottom-Up Parsing.

[21] J.C.M. Beaten, P.J.L. Cuipers and P.J.A Van Tilburg, A

Context-Free Process as a Pushdown Automata.

[22] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman.

compilers: principles, techniques, and tools: (Addison-

Wesley Publishing Company, 1988).

[23] Kenneth C. Louden. compiler construction principles and

practice. (San Jose State University: Galgotia Publication

pvt.ltd, 2002)

IJCATM : www.ijcaonline.org

http://www.jflap.org/
http://hol.sourceforge.net/

