
International Journal of Computer Applications (0975 – 8887)  

Volume 105 – No. 1, November 2014 

33 

Edge-Odd Graceful Graphs Related to Ladder and 

Complete Graph with Four Vertices  

A. Solairaju                                               D. Senthil Kumar 
Associate Professor of Mathematics,          Lecturer in Mathematics, 

      Jamal Mohamed College,                       Sri Sai Ram College of Education, 
Trichy (T.N.),           Koodapakkam, Puducherry, India 

 

 

ABSTRACT 
A (p, q) connected graph is edge-odd graceful graph if there 

exists an injective map f : E(G) → {1, 3, 5,…,2q-1} so that 

induced map f+:V(G) → [0, 1, 2, 3, …, (2k-1)]  defined by 

f+(x) = ∑f (xy) (mod 2k), where the vertex x is incident with 

other vertex y and k = max {p, q} makes all the edges distinct 

and odd.  In this article, the edge-odd gracefulness of ( P2  

Pn) ∇ Pn [n copies of doors] 
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1. INTRODUCTION 
Solairaju and Chitra  [2008, 2009] obtained edge-odd graceful 

labeling of some graphs related to paths and circuits of each 

length 4.  Solairaju, Vimala, and Sasikala [2008a, 2008b] 

gracefulness of a spanning tree of the graph of Cartesian 

product of Sm and Sn, Solairaju et.al. [2009] that the cartesian 

product of path P2 and circuit Cn for all integer n, Sm, n , Cm  

Sn for n is even and the crown graph C3  Pn and C3  2Pn are 

is edge-odd graceful. Here the edge-odd graceful labeling of 

Pm  Sn, m = 5, 6, 7, 8 is obtained. 

2. THE CONNECTED GRAPH (P2  PN) 

𝛁 PN,, AND  (P2  PN) 𝛁 2 PN, 
In this section, the following definitions are first listed. 

Definition: 2.1: Graceful Graph: A function f of a 

graph G is called a graceful labeling  with  m  edges , if  f  is 

an  injection  from the vertex set of G to the set {0, 1, 2,…, 

m} such that when each edge uv is assigned the label | f(u) - 

f(v)| and the resulting edge labels are distinct.  Then the graph 

G is graceful. 

Definition: 2.2: Edge-odd Graceful Graph: A (p, q) 

connected graph is edge-odd graceful if there exists an 

injection map f : E(G)  {1,3,…, 2q-1} so that induced map  

f+:V(G) {0,1,2,…,(2k-1)} defined by f+(x) ≡ ∑ f(x, y) (mod 

2k), where the vertex x is incident with other vertex y and 

k=max{p,q} makes all the edges distinct and odd. Hence the 

graph G is edge-odd graceful. 

Definition 2.3: (P2  Pn) ∇  Pn is a connected graph 

defined by the following figure 1. 

  Figure 1 

Theorem 2.1: The connected graph (P2  Pn ) ∇ Pn ( Pn  -

a path with „n‟ vertices) is edge – odd graceful  

Proof: The arbitrary labels of edges for the n-doors graph 

(P2  Pn) ∇ Pn are as follows: 
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Figure 2: Edge-odd Graceful Graph (P2  Pn )𝛁 Pn 

To find edge-odd graceful,  define  f :E(G) {1,3,5,..,2q} by  

f (e i ) = (2i-1) ,                                                   i = 1 to (4n-

3)   →(1).  The induced map f+: V(G)   {1,2,3,..,2q}  by  f+ 

(v)  ∑f (uv)                      (mod 2q) where this sum run over 

all edges through  v  Both of  f and f+ finds the distinct labels 

for  vertices and also the edge labeling is distinct. Here the 

edge –odd graceful labeling of ladder (P2  Pn) ∇  Pn  is 

obtained 

Example 1: The connected graph (P2P12) ∇ P12 is edge –

odd graceful. 

Due to the rules (1) in theorem (2.4), edge odd graceful 

labeling of (P2P12 )∇P12 is  obtained as follows:  

 

Figure 3: Edge-odd Graceful Graph (P2xP12 )𝛁P12 

Definition 2.4: The graph (P2  Pn) ∇ 2 Pn is a connected 

graph defined by the following graph (figure 4): 

 Figure 4 
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Theorem 2.2: The connected graph (P2   Pn ) ∇ 2Pn ( Pn  

-a path with „n‟ vertices) is     edge – odd graceful 

Here the edge –odd graceful labeling of ladder (P2 x Pn) ∇ 2Pn 

is obtained 

Proof: The arbitrary labels of edges for the n-doors graph 

(P2  Pn) ∇2 Pn 
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 Fig. 5: Edge-odd Graceful Graph (P2  Pn )𝛁 2Pn 

To find edge-odd graceful , define  f :E(G) {1,3,5,…,2q} by 

f (e i ) = (2i-1)  ,  i= 1,2,3,…,2n-2,2n+1,…, (5n-4)   →(1) 

f (e 2n-1 )= 4n-1  

f (e 2n ) =4n-3  →(2) 

The induced map f+: V(G)   {1,2,3,…, 2q}  by  f+ (v)  ∑ f 

(uv)  (mod2q)  where this sum run over all edges through  v  

Both of  f and f+ finds the distinct labels for  vertices and also 

the edge labeling is distinct. 

Example 2: The connected graph (P2  P12 ) ∇2P12 is edge 

–odd graceful. 

Due to the rules (1) and (2) in (2.7), edge odd graceful 

labeling of (P2  P12 ) ∇ 2P12 is  obtained as follows: 
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 Fig.7: Edge-odd Graceful Graph (P2  P12 ) 𝛁 2P12 

3. THE CONNECTED GRAPHS (N-1)*𝐤𝟒,  

(N-1)*𝐤𝟒 𝛁 PN, AND (N-1)*𝐤𝟒 𝛁 2PN 

Definition 3.1: The connected graph (n-1)*𝐤𝟒 is defined 

as follows in figure 8. 

Figure 8 

Theorem 3.1: The connected graph (n-1)*k4 ( Pn  -a path 

with „n‟ vertices) is edge – odd graceful. 

Proof: The arbitrary labels of edges for the n-doors graph 

(n-1)*K4 
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Figure 9: Edge-odd Graceful Graph n-1𝐤𝟒 

To find edge-odd graceful, define, f: E(G)  {1, 3, 5,., 2q} by  

f (ei ) = (2i-1)  ,  i= 2,…,(n-2), n,…,(5n-4)  →(1) 

f (e1) = (2n-3)    

f (en−1) = 1            →(2) 

The induced map f+: V(G)   {1,2,3,..,2q}  by  f+ (v)  ∑f 

(uv)  (mod2q)  where this sum run over all edges through  v.  

Both of  f and f+ finds the distinct labels for  vertices and also 

the edge labeling is distinct. Here the edge –odd graceful 

labeling of ladder (n-1) k4is obtained 

Example 3: The connected graph 9 k4  is edge –odd 

graceful.   

Due to the rules (1) and (2) in (3.2), edge odd graceful 

labeling of 9k4is obtained as follows:  

35 17 73 3 59 5 61 7 63 11 67 13 69 15 55 1 759 65

35 19
21

232527293133

37 39 41 43 45 47 49 51 53

55575961636567697173

91 75 17 77 19 79 21 81 23 83 25 85 27 87 29 89 31 91 15
Figure 10: Edge-odd Graceful Graph 9𝐤𝟒 

Definition 3.2: ( (n-1) k4)∇   Pn is a connected graph 

defined by the following figure 11. 

Figure 11 

The following result is now stated: 

Theorem 3.2: The connected graph (( n-1) k4) ∇  Pn ( Pn  

-a path with „n‟ vertices) is edge – odd graceful 

Proof: The arbitrary labels of edges for the n-doors graph 

(n-1)  k4)∇  Pn is as follows: 
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   Fig.12: Edge-odd Graceful Graph (n-1x𝐤𝟒)𝛁  Pn 

To find edge-odd graceful, define by  f :E(G)  {1,3,5,…, 

2q} by f (ei ) = (2i-1)  , i= 1 to (6n-5)   →(1) 

The induced map f+: V(G)   {1,2,3,…, 2q}  by  f+ (v)  ∑f 

(uv)  (mod2q)  where this sum run over all edges through  v.   

Both of f and f+ finds the distinct labels for vertices and also 

the edge labeling is distinct.. Here the edge –odd graceful 

labeling of ladder (n-1) k4) ∇  Pn is obtained. 

Example 4: The connected graph (11 k4) ∇  P12 is edge –

odd graceful. 

Due to the rules (1) in (3.4), edge odd graceful labeling of (11 

 k4)∇  P12 is obtained as follows : 

1 3 5 7 9 11 1 3 15 17 19 21

2325272931333537394143

45 47 49 51 53 55 57 59 61 63 65

676971737577798183
87

85

89 91 93 95 97 99 101 103 107 109 111

113115117119121123125127129131133

105

41 83 81 79 77 75 71 69 67 6573 21

44

45 47 49 51 53 55 57 61 63

88

59

 Fig. 13: Edge-odd Graceful Graph (11x 𝐤𝟒)𝛁  P12 

Definition 3.3: ((n-1) k4) ∇ 2Pn is a connected graph 

defined by the following figure 14. 

Figure 14 

Theorem 3.3: The connected graph (n-1) k4) ∇  2Pn   (Pn 

-a path with „n‟ vertices) is edge – odd graceful 

Proof: The arbitrary labels of edges for the n-doors graph 

(n-1) k4) ∇ 2Pn. 

 

Fig. 15: Edge-odd Graceful Graph (n-1x𝐤𝟒)𝛁2Pn 

To find edge-odd graceful, define, f :E(G) {1,3,5,…, 2q} by   

f (ei ) = (2i-1)  , i= 1,2,3,…, n,n+1,…,2n,(2n+1),…,(6n-5),(6n-

3),…,(7n-7)   →(1) 

 f(e 6n-4)=14n-13 

 f(e7n-6 )=12n-9 →(2) 

The induced map f+:V(G) {1,2,3,…,2q}  by  f+ (v)  ∑f (uv)  

(mod 2q)  where this sum run over all edges through  v   Both 

of  f and f+ finds the distinct labels for  vertices and also the 

edge labeling is distinct. Here the edge –odd graceful labeling 

of ladder (n-1) k4) ∇ 2P is obtained.  

Example 5: The connected graph (8 k4) ∇ 2P9 is edge –

odd graceful. 

Due to the rules (1) and (2) in (3.8), edge odd graceful 

labeling of ( 8 k4) ∇ 2P9 is   obtained as follows : 

1 3 5 7 9 11 13 15
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65 67 69 71 73 75 77 79

818385878991939597

99101 103 105 107 109 111113

53

16

1 3 5 7 9 11 13

48

110

111 99 101 103 105 107 95

82

Figure 16: Edge-odd Graceful Graph (8  𝐤𝟒)𝛁2P9 
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