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ABSTRACT

A (p, q) connected graph is edge-odd graceful graph if there
exists an injective map f : E(G) — {1, 3, 5,...,20-1} so that
induced map f.:V(G) — [0, 1, 2, 3, ..., (2k-1)] defined by
f.(x) = X.f (xy) (mod 2k), where the vertex x is incident with
other vertex y and k = max {p, q} makes all the edges distinct
and odd. In this article, the edge-odd gracefulness of ( P, x
P.) V P, [n copies of doors]
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1. INTRODUCTION

Solairaju and Chitra [2008, 2009] obtained edge-odd graceful
labeling of some graphs related to paths and circuits of each
length 4. Solairaju, Vimala, and Sasikala [2008a, 2008b]
gracefulness of a spanning tree of the graph of Cartesian
product of S;,and S,,, Solairaju et.al. [2009] that the cartesian
product of path P, and circuit C, for all integer n, Sp, , Cp, ®
S, for n is even and the crown graph C; ® P,and C; © 2P, are
is edge-odd graceful. Here the edge-odd graceful labeling of
Pn®S, m=5,6,7,8is obtained.

2. THE CONNECTED GRAPH (P2 x PN)
V PN,, AND (P2 x PN) V 2 PN,

In this section, the following definitions are first listed.

Definition: 2.1: Graceful Graph: A function f of a
graph G is called a graceful labeling with m edges, if f is
an injection from the vertex set of G to the set {0, 1, 2,...,
m} such that when each edge uv is assigned the label | f(u) -
f(v)| and the resulting edge labels are distinct. Then the graph
G is graceful.

Definition: 2.2: Edge-odd Graceful Graph: A (p, q)
connected graph is edge-odd graceful if there exists an
injection map f : E(G) {1,3,..., 2g-1} so that induced map
f:V(G) {0,1,2,...,(2k-1)} defined by f.(x) = Y f(x, y) (mod
2k), where the vertex x is incident with other vertex y and
k=max{p,q} makes all the edges distinct and odd. Hence the
graph G is edge-odd graceful.

Definition 2.3: (P, x P,) V P, is a connected graph

defined by the following figure 1.
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Theorem 2.1: The connected graph (P, x P,) V P, (P, -
a path with ‘n” vertices) is edge — odd graceful

Proof: The arbitrary labels of edges for the n-doors graph
(P,x P,) V P, are as follows:
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Figure 2: Edge-odd Graceful Graph (P,x P,)V P,

To find edge-odd graceful, define f:E(G)— {1,3,5,..,2q} by
f(e;)=(2i-1), i=1to (4n-
3) —(1). The induced map f.: V(G) — {1,2,3,..,2q} by f.
(V) =Y f (uv) (mod 2qg) where this sum run over
all edges through v Both of fand f, finds the distinct labels
for vertices and also the edge labeling is distinct. Here the
edge —odd graceful labeling of ladder (P, x P,) V P, is
obtained

Example 1: The connected graph (P,xPs,) V Py, is edge —
odd graceful.

Due to the rules (1) in theorem (2.4), edge odd graceful
labeling of (P,xP1,)VP;, is obtained as follows:

Figure 3: Edge-odd Graceful Graph (P,xP1;)VPy,
Definition 2.4: The graph (P,x P,) V 2 P, is a connected
graph defined by the following graph (figure 4):

NN NN

AL ACA S N

Figure 4
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Theorem 2.2: The connected graph (P, x P,) V 2P, ( P,
-a path with ‘n’ vertices) is  edge — odd graceful

Here the edge —odd graceful labeling of ladder (P, x P,) V 2P,
is obtained

Proof: The arbitrary labels of edges for the n-doors graph
(Po,x Py V2P,
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Fig. 5: Edge-odd Graceful Graph (P, x P,,)V 2P,
To find edge-odd graceful , define f:E(G)— {1,3,5,...,2q} by

f(ei)=(2i-1) , i=1,2,3,...,20-2.2n+1,..., (5n-4) —(1)
f(ezn1)=4n-1
f(e2n)=4n-3 -(2)

The induced map f,: V(G) — {1,2,3,...,2q} by f,(v) =X f
(uv) (mod2q) where this sum run over all edges through v
Both of fand f, finds the distinct labels for vertices and also
the edge labeling is distinct.

Example 2: The connected graph (P, x Py, ) V2Py, is edge
—odd graceful.

Due to the rules (1) and (2) in (2.7), edge odd graceful
labeling of (P, x P1,) V 2P, is obtained as follows:
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Fig.7: Edge-odd Graceful Graph (P,x P1,) V 2P,
3. THE CONNECTED GRAPHS (N-1)*Kk4,
(N-1)*k, V PN, AND (N-1)*k, V 2PN

Definition 3.1: The connected graph (n-1)*k, is defined
as follows in figure 8.

Figure 8
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Theorem 3.1: The connected graph (n-1)*k, (P, -a path
with ‘n’ vertices) is edge — odd graceful.

Proof: The arbitrary labels of edges for the n-doors graph
(n-1)*K,
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Figure 9: Edge-odd Graceful Graph n-1k,

To find edge-odd graceful, define, f: E(G) — {1, 3, 5,., 2q} by

f (&) = (2i-1) i=2,...,(n-2), n,...,(5n-4) —(1)
f(e1) = (2n-3)
fen-1)=1 -(2)

The induced map f,: V(G) — {1,2,3,..,2q} by f.(v) =3f
(uv) (mod2q) where this sum run over all edges through v.
Both of fand f, finds the distinct labels for vertices and also
the edge labeling is distinct. Here the edge —odd graceful
labeling of ladder (n-1) kyis obtained

Example 3: The connected graph 9k, is edge —odd
graceful.

Due to the rules (1) and (2) in (3.2), edge odd graceful
labeling of 9k, is obtained as follows:
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Figure 10: Edge-odd Graceful Graph 9k,

Definition 3.2: ( (n-1) k,)V P, is a connected graph
defined by the following figure 11.
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Figure 11

The following result is now stated:

Theorem 3.2: The connected graph ((n-1) ks) V P, (P,
-a path with ‘n” vertices) is edge — odd graceful

Proof: The arbitrary labels of edges for the n-doors graph
(n-1) k4)V P,is as follows:
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Fig.12: Edge-odd Graceful Graph (n-1xk4)V P,

To find edge-odd graceful, define by f :E(G) —» {1,3.5,...,
2q} by f (e;) = (2i-1) ,i=1to (6n-5) —(1)

The induced map f,: V(G) — {1,2,3,...,2q} by f.(v)=Xf
(uv) (mod2q) where this sum run over all edges through v.

Both of f and f, finds the distinct labels for vertices and also
the edge labeling is distinct.. Here the edge —odd graceful
labeling of ladder (n-1) k4) V P, is obtained.

Example 4: The connected graph (11k4) V Py, is edge —
odd graceful.

Due to the rules (1) in (3.4), edge odd graceful labeling of (11
x k4)V Py, is obtained as follows :
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Fig. 13: Edge-odd Graceful Graph (11x k4)V Py,

Definition 3.3: ((n-1) k,) V 2P, is a connected graph
defined by the following figure 14.
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Theorem 3.3: The connected graph (n-1) k) V 2P, (Pn
-a path with ‘n” vertices) is edge — odd graceful

Proof: The arbitrary labels of edges for the n-doors graph
(n-1) ky) V 2P,
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Fig. 15: Edge-odd Graceful Graph (n-1xk4)V2P,
To find edge-odd graceful, define, f:E(G)— {1,3,5,..., 2q} by
f(e)=(2i-1) ,i=1,2,3,..., n,n+1,...,2n,(2n+1),...,(6n-5),(6n-
3),....(Tn-7) =(1)
f(e 6n.4):14n'13
f(e7n-6)=12n-9 -(2)
The induced map f.:V(G)— {1,2,3,...,2q} by f.(v)=>f(uv)
(mod 2qg) where this sum run over all edges through v Both
of fand f, finds the distinct labels for vertices and also the
edge labeling is distinct. Here the edge —odd graceful labeling
of ladder (n-1) k4) V 2P is obtained.
Example 5: The connected graph (8 k,) V 2P is edge —
odd graceful.
Due to the rules (1) and (2) in (3.8), edge odd graceful
labeling of (8 k) V 2Pg is obtained as follows :
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Figure 16: Edge-odd Graceful Graph (8 x k,)V2Pq
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