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ABSTRACT 
The aim of the paper is to find graceful labeling for the graphs 

nC4, nC4 o 2Pn, nP2    P2n, its mirror image,  nC4    2P2n  (n-

1)P2, and nC4    2P2n  (n-1)P2  (n-1)P3.  
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1. INTRODUCTION AND 

PRELIMINARIES 

A (p, q)-graph is a graceful graph if there exists an injective 

map f: V(G)→{0,1,2, …,k} so that induced map f+: E(G) → 

{1, 2, 3, …, q} defined by f+(xy)  f(x) – f(y), where the 

vertex x is incident with other vertex y that f and f+ make all 

are distinct   

A (p, q) connected graph is edge-odd graceful graph if there 

exists an injective map f: E(G) → {1, 3, …, 2q-1} so that 

induced map f+: V(G) → {0, 1, 2,…,(2k-1)} defined by f+(x) 

  f(xy) (mod 2k), where the vertex x is incident with other 

vertex y and k = max {p, q} makes all the  edges distinct and 

odd.   

A. Solairaju and K.Chitra  [2008a, 2008b, 2009] obtained 

edge-odd graceful labeling of some graphs related to paths. A. 

Solairaju, Vimala, and Sasikala [2008a, 2008b] proved that 

edge-odd gracefulness of strong product of P2 and Cn, and 

Cartesian product of P2 and Wn are edge -odd graceful. 

1.1 Graphs Related to Circuits of Length 4  
Definition 1.1: The graph nC4 is a disconnect graph 

involving n copies of C4 with some arbitrary labeling of 

vertices as follows: 

 

Figure-1 

 

 

 

 

2. GRAPH OBTAINED FROM 

CIRCUITS MERGING WITH PATHS, 

THE FOLLOWING RESULT IS THEN 

OBTAINED 
Definition 2.1:  The graph nC4 o 2Pn   is a connected graph 

obtained from the above disconnected graph together with 

adjacent edges vi vi+1 [ i =1 to (n-1)] and adjacent edges ui u i+1 

[i =1 to (n-1)] Some labeling of vertices and edges of the 

graph nc4 o 2Pn is given below: 

 

Figure 2 

Theorem 2.1: The connected graph nC4 o 2Pn is 

graceful. 

Proof: The labeling of graph nc4 o 2Pn is followed in the 

figure (2) 

Define a map f: V(G) {0,1,2,…,q} by ƒ(v1) = 0;ƒ(u1) = 

2;ƒ(v2) = (q-4);ƒ(u2) = (q–3) 

ƒ(vi) = 3(i - 1), i is odd;  ƒ(vi+2) =  ƒ(v2)-3i, i is even where i = 

3 to n 

          ƒ(ui) =  ƒ(u1) +3(i-1), i is odd; ƒ(ui+2) = ƒ(u2) - 3i, i is 

even; where i = 3 to n. 

 ƒ(t1)  =  q; ƒ(s1)  =  (q-1); ƒ(t2) = 3; ƒ(s2) = 5; 

 ƒ(ti)   =  f(t1) – 3(i-1);ƒ(si)   =  f(s1) – 3(i-1), i is odd; 

where i varies 3 to n 

ƒ(t i+2)   =  ƒ(t2) + 3i ; ƒ(si+2)   =  ƒ(s2) + 3i, i is even; where I 

varies 3 to n. 

Define f+  : E(G)   { 1, 2, …, q} by ƒ(uv)  =   ƒ(u) – ƒ(v)  

for all u , v  V(G). The maps ƒ and ƒ+   satisfy the 

conditions of graceful labeling for nC4  
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3. THE GRACEFULNESS OF THE 

GRAPH NP2    P2N 
Definition 3.1:  The graph nP2    P2n is defined as a 

connect graph involving n copies of P2 and a copy of P2n as 

follows: 

 

Theorem 3.1:  The graph nP2    P2n is defined as a 

connect graph involving n copies of P2 and a copy of P2n with 

some arbitrary labeling of vertices as follows in figure 3(nC4 o 

2Pn). Thus the graph nC4 o 2Pn is graceful   

 

Example 1:  The graphs 6C4 o 2P6 and 7C4 o 2P7 are 

graceful. 

 
 

 

Figure 3 

Define    ƒ: V (nP2    P2n)   {0,1,2,…, q}  by  

       ƒ(Vi)  = q – (i-1) ; if i is odd; ƒ (Vi)  = (i-1) ; if  i  is  even;  

i  varies from  1 to 2n 

       ƒ (ui)  = (i-1) ; if  i  is  odd; ƒ(ui)  = (q-1)-(i-2) ; if  i  is  

even;  i  varies from  1 to n  

Define f+: E(nP2    P2n)   {1, 2, …, q} by ƒ(uv)  = ƒ(u) – 

ƒ(v)  for all u , v V(G) 

The maps ƒ and ƒ+   satisfy the conditions of graceful labeling 

for the graph nC4 o 2Pn. Thus the graph (nP2   P2n) is 

graceful.   

Example 2:  The graphs 6P2    P12 and 6P2    P12 are 

graceful.  

 

 

4. THE GRACEFULNESS OF THE 

MIRROR IMAGE OF THE GRAPH 

NP2    P2N 
Definition: 4.1: The mirror image of the graph nP2    P2n 

is defined as a connect graph involving twice times of n 

copies of P2 and a copy of P2n as follows: 

 

Theorem 4.1:  The mirror image of the graph nP2    P2n 

is graceful graph.  

Proof: The mirror image of the graph nP2    P2n is defined 

as a connect graph involving twice times of n copies of P2 and 

a copy of P2n with some arbitrary labeling of vertices as 

follows in figure 4: 

 

Figure 4 
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Define ƒ: V(nP2    P2n)   {0, 1, 2 ,…, q} by 

ƒ(Vi)  = q–3[ (i-1)/2) ], i is odd; ƒ(Vi)  = 2 + 3 [(i-1) / 2]; i is 

even;  

where i varies from  1 to 2n;  

ƒ (ui)  = 3[ (i-1)/2) ], i  is  odd; ƒ (ui)  = (q-1) - 3[ (i-1)/2) ],  i  

is  even  

where i varies from  1 to n;  

ƒ (ti)  = 1+3[(i-1)/2], i  is  odd; ƒ(ti)  = (q-2) - 3[ (i-1)/2) ], i  is  

even;  

where i varies from  1 to n;   

Define f+: E(nP2    P2n)   {1, 2, …, q} by ƒ(uv)  = ƒ(u) – 

ƒ(v)  for all u , v V(G) 

The maps ƒ and ƒ+   satisfy the conditions of graceful labeling 

for the graph nP2    P2n. Thus the graph (nP2    P2n) is 

graceful   

Example 3: The mirror images of the graphs 5P2    P10 

and 6P2    P12 are graceful. 

 

 

 

 

5. GRACEFULNESS OF NC4    P2N  

(N-1)P2 
Definition 5.1: The graph nC4    P2n  (n-1)P2 is defined 

as a connected graph mentioned below in figure 5. 

 

Figure 5 

Theorem 5.1: The graph nC4    P2n  (n-1)P2 is 

graceful. 

Proof:  The arbitrary labeling of the given graph nC4    P2n 

 (n-1)P2 is mentio9ned the above figure 5 

Define f: V(G){0,1,2,……..q} by 

f(vi)= 
7(𝑖−1)

2
 , i is odd; f(vi)=(q+3)- 

7𝑖

2
; i is even;  

f(ui)= f(vi)+1, i is odd; f(ui)= f(vi)-1, i is even; 

f(si)=q- 
7(𝑖−1)

2
 , i is odd; f(si)=

7𝑖

2
 – 4, i is even; 

f(ti)= )= f(si)-2, i is odd; f(ti) ) = f(si) + 2, i is even;  where i 

varies from 1 to n 

Example 4: The connected graphs 6C4  P12  5P2 and 

7C4  P14  6P2 are graceful. 
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6. GRACEFULNESS OF GRAPH NC4    

2P2N  (N-1)P2  (N-1)P3 
Definition 6.1: The graph nC4  2P2n  (n-1)P2  (n-1)P3 is 

defined as in following figure 6:  

 

Figure 6 

Theorem 6.1: The connected graph nC4  2P2n  (n-1)P2 

 (n-1)P3 is graceful. 

Proof: The arbitrary labelings of vertices of the graph nC4    

2P2n  (n-1)P2  (n-1)P3 are mentioned above in the figure 6: 

Define f:V(G){0,1,2,…, q} by 

f(vi) = 5(i-1) ;  f(ui) = f(vi )+1 ; f(si) = (q+3 )-7i ;  

f(ti) = f(si )-1 ; f(xi) = (q+7 )-7i ; f(yi) = f(xi )-2; f(zi) = 5i-2 ; i 

varies from 1 to n 

Example 5: The connected graphs 6C4 2P12  5P2  5P3 

and 7C4 2P14  6P2  6P3 are graceful. 
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