Graceful Labelings of Graphs Related to Circuits of Length 4

A. Solairaju Associate Professor of Mathematics, Jamal Mohamed College (Autonomous) Tiruchirappalli, Tamilnadu, India,

ABSTRACT

The aim of the paper is to find graceful labeling for the graphs nC_4 , $nC_4 \circ 2P_n$, $nP_2 \diamond P_{2n}$, its mirror image, $nC_4 \diamond 2P_{2n} \cup (n-1)P_2$, and $nC_4 \diamond 2P_{2n} \cup (n-1)P_2 \cup (n-1)P_3$.

Keywords

Graceful graphs, edge-odd graceful labeling, and edge-odd graceful graph

1. INTRODUCTION AND PRELIMINARIES

A (p, q)-graph is a graceful graph if there exists an injective map f: V(G) \rightarrow {0,1,2, ...,k} so that induced map f₊: E(G) \rightarrow

{1, 2, 3, ..., q} defined by $f_+(xy) \equiv |f(x) - f(y)|$, where the vertex x is incident with other vertex y that f and f_+ make all are distinct

A (p, q) connected graph is edge-odd graceful graph if there exists an injective map f: $E(G) \rightarrow \{1, 3, ..., 2q-1\}$ so that induced map $f_+: V(G) \rightarrow \{0, 1, 2, ..., (2k-1)\}$ defined by $f_+(x) \equiv \Sigma$ f(xy) (mod 2k), where the vertex x is incident with other vertex y and k = max {p, q} makes all the edges distinct and odd.

A. Solairaju and K.Chitra [2008a, 2008b, 2009] obtained edge-odd graceful labeling of some graphs related to paths. A. Solairaju, Vimala, and Sasikala [2008a, 2008b] proved that edge-odd gracefulness of strong product of P_2 and C_n , and Cartesian product of P_2 and W_n are edge -odd graceful.

1.1 Graphs Related to Circuits of Length 4

Definition 1.1: The graph nC_4 is a disconnect graph involving n copies of C_4 with some arbitrary labeling of vertices as follows:

Figure-1

S. Malathi Assistant Professor in Mathematics, M.I.E.T. Arts College, Trichy, Tamilnadu, India

2. GRAPH OBTAINED FROM CIRCUITS MERGING WITH PATHS, THE FOLLOWING RESULT IS THEN OBTAINED

Definition 2.1: The graph $nC_4 \circ 2P_n$ is a connected graph obtained from the above disconnected graph together with adjacent edges $v_i v_{i+1}$ [i = 1 to (n-1)] and adjacent edges $u_i u_{i+1}$ [i = 1 to (n-1)] Some labeling of vertices and edges of the graph $n_{c4} \circ 2P_n$ is given below:

Theorem 2.1: The connected graph $nC_4 \circ 2P_n$ is graceful.

Proof: The labeling of graph n_{c4} o $2P_n$ is followed in the figure (2)

Define a map f: V(G) \square {0,1,2,...,q} by $f(v_1) = 0; f(u_1) = 2; f(v_2) = (q-4); f(u_2) = (q-3)$

 $f(v_i) = 3(i - 1)$, i is odd; $f(v_{i+2}) = f(v_2)-3i$, i is even where i = 3 to n

 $f(u_i) = f(u_1) + 3(i-1)$, i is odd; $f(u_{i+2}) = f(u_2) - 3i$, i is even; where i = 3 to n.

$$f(t_1) = q; f(s_1) = (q-1); f(t_2) = 3; f(s_2) = 5;$$

 $f(ti) = f(t_1) - 3(i-1); f(s_i) = f(s_1) - 3(i-1), i \text{ is odd};$ where i varies 3 to n

 $f(t_{i+2}) = f(t_2) + 3i$; $f(s_{i+2}) = f(s_2) + 3i$, i is even; where I varies 3 to n.

Define $f_+ : E(G) \to \{1, 2, ..., q\}$ by f(uv) = |f(u) - f(v)|for all u, $v \in V(G)$. The maps f and f_+ satisfy the conditions of graceful labeling for nC_4

3. THE GRACEFULNESS OF THE GRAPH NP2 & P2N

Definition 3.1: The graph $nP_2 \diamond P_{2n}$ is defined as a connect graph involving n copies of P_2 and a copy of P_{2n} as follows:

Theorem 3.1: The graph $nP_2 \diamond P_{2n}$ is defined as a connect graph involving n copies of P_2 and a copy of P_{2n} with some arbitrary labeling of vertices as follows in figure $3(nC_4 \circ 2P_n)$. Thus the graph $nC_4 \circ 2P_n$ is graceful

Example 1: The graphs $6C_4 \circ 2P_6$ and $7C_4 \circ 2P_7$ are graceful.

Figure 3

Define $f: V(nP_2 \diamond P_{2n}) \longrightarrow \{0, 1, 2, ..., q\}$ by

 $f(V_i) = q - (i-1)$; if i is odd; $f(V_i) = (i-1)$; if i is even; i varies from 1 to 2n

 $f\left(u_{i}\right)=(i\text{-}1)$; if i is odd; $f(u_{i})=(q\text{-}1)\text{-}(i\text{-}2)$; if i is even; i varies from 1 to n

Define $f_+: E(nP_2 \diamond P_{2n}) \Box \{1, 2, ..., q\}$ by $f(uv) = \Box f(u) - f(v)\Box$ for all $u, v \Box V(G)$

The maps f and f_+ satisfy the conditions of graceful labeling for the graph nC_4 o $2P_n$. Thus the graph $(nP_2 \land P_{2n})$ is graceful.

Example 2: The graphs $6P_2 \diamond P_{12}$ and $6P_2 \diamond P_{12}$ are graceful.

4. THE GRACEFULNESS OF THE MIRROR IMAGE OF THE GRAPH NP2 ◊ P2N

Definition: 4.1: The mirror image of the graph $nP_2 \diamond P_{2n}$ is defined as a connect graph involving twice times of n copies of P_2 and a copy of P_{2n} as follows:

Theorem 4.1: The mirror image of the graph $nP_2 \diamond P_{2n}$ is graceful graph.

Proof: The mirror image of the graph $nP_2 \diamond P_{2n}$ is defined as a connect graph involving twice times of n copies of P_2 and a copy of P_{2n} with some arbitrary labeling of vertices as follows in figure 4:

Define $f: V(nP_2 \diamond P_{2n}) \longrightarrow \{0, 1, 2, ..., q\}$ by

 $f(V_i) = q-3[(i-1)/2)]$, i is odd; $f(V_i) = 2 + 3[(i-1)/2]$; i is even;

where i varies from 1 to 2n;

 $f(u_i) = 3[(i-1)/2)]$, i is odd; $f(u_i) = (q-1) - 3[(i-1)/2)]$, i is even

where i varies from 1 to n;

 $f(t_i) = 1+3[(i-1)/2], i \text{ is odd}; f(t_i) = (q-2) - 3[(i-1)/2)], i \text{ is even};$

where i varies from 1 to n;

Define $f_+: E(nP_2 \diamond P_{2n}) \Box \{1, 2, ..., q\}$ by $f(uv) = \Box f(u)-f(v)\Box$ for all $u, v \Box V(G)$

The maps f and f_+ satisfy the conditions of graceful labeling for the graph $nP_2 \diamond P_{2n}$. Thus the graph $(nP_2 \diamond P_{2n})$ is graceful

Example 3: The mirror images of the graphs $5P_2 \diamond P_{10}$ and $6P_2 \diamond P_{12}$ are graceful.

5. GRACEFULNESS OF NC4 ◊ P2N ∪ (N-1)P2

Definition 5.1: The graph $nC_4 \diamond P_{2n} \cup (n-1)P_2$ is defined as a connected graph mentioned below in figure 5.

Theorem 5.1: The graph $nC_4 \land P_{2n} \cup (n-1)P_2$ is graceful.

Proof: The arbitrary labeling of the given graph $nC_4 \diamond P_{2n} \cup (n-1)P_2$ is mentio9ned the above figure 5

 $f(t_i){=}$)= $f(s_i){-}2,\ i$ is odd; $f(t_i)$) = $f(s_i)$ + 2, i is even; where i varies from 1 to n

Example 4: The connected graphs $6C_4 \diamond P_{12} \cup 5P_2$ and $7C_4 \diamond P_{14} \cup 6P_2$ are graceful.

6. GRACEFULNESS OF GRAPH NC4 ♦ 2P2N ∪ (N-1)P2 ∪ (N-1)P3

Definition 6.1: The graph $nC_4 \diamond 2P_{2n} \cup (n-1)P_2 \cup (n-1)P_3$ is defined as in following figure 6:

Theorem 6.1: The connected graph $nC_4 \diamond 2P_{2n} \cup (n-1)P_2 \cup (n-1)P_3$ is graceful.

Proof: The arbitrary labelings of vertices of the graph $nC_4 \diamond 2P_{2n} \cup (n-1)P_2 \cup (n-1)P_3$ are mentioned above in the figure 6:

Define f:V(G) \rightarrow {0,1,2,..., q} by

 $f(v_i) = 5(i-1)$; $f(u_i) = f(v_i)+1$; $f(s_i) = (q+3)-7i$;

 $f(t_i)=f(s_i\)\text{-}1$; $f(x_i)=(q\text{+}7\)\text{-}7i$; $f(y_i)=f(x_i\)\text{-}2;$ $f(z_i)=5i\text{-}2$; i varies from 1 to n

Example 5: The connected graphs $6C_4 \diamond 2P_{12} \cup 5P_2 \cup 5P_3$ and $7C_4 \diamond 2P_{14} \cup 6P_2 \cup 6P_3$ are graceful.

7. REFERENCES

- A.Solairaju, and K.Chithra, New classes of graceful graphs by merging a finite number of C4, Acta Ciencia Indica, Vol.XXXIV M, N0.2, (2008a), 959-965
- [2] A.Solairaju, and K. Chithra, Edge-odd graceful labeling of the complete bipartite graph, The Global Journal of Applied Mathematics & Mathematical Sciences, Volume 1, No.2, (2008b), 137-141.
- [3] A.Solairaju and K.Chitra, Edge-odd graceful labeling of some graphs "Electronics Notes in Discrete Mathematics, Volume 33, (April 2009), 15-20
- [4] A.Solairaju, A.Sasikala, C.Vimala, Gracefulness of a spanning tree of the graph of product of P_m and C_n , The Global Journal of Pure and Applied Mathematics of Mathematical Sciences, Vol. 1, No-2 (July-Dec 2008a), 133-136
- [5] A.Solairaju, C.Vimala, A.Sasikala Gracefulness of a spanning tree of the graph of Cartesian product of S_m and S_n , The Global Journal of Pure and Applied Mathematics of Mathematical Sciences, Vol.1, No.2 (July-Dec 2008b), 117-120