Graceful Labelings of Graphs Related to Circuits of Length 4

A. Solairaju

Associate Professor of Mathematics, Jamal Mohamed College (Autonomous)

Tiruchirappalli, Tamilnadu, India,

S. Malathi

Assistant Professor in Mathematics, M.I.E.T. Arts College, Trichy, Tamilnadu, India

Abstract

The aim of the paper is to find graceful labeling for the graphs $\mathrm{nC}_{4}, \mathrm{nC}_{4}$ o $2 \mathrm{P}_{\mathrm{n}}, \mathrm{nP}_{2} \diamond \mathrm{P}_{2 \mathrm{n}}$, its mirror image, $\mathrm{nC}_{4} \diamond 2 \mathrm{P}_{2 \mathrm{n}} \cup(\mathrm{n}-$ 1) P_{2}, and $\mathrm{nC}_{4} \diamond 2 \mathrm{P}_{2 \mathrm{n}} \cup(\mathrm{n}-1) \mathrm{P}_{2} \cup(\mathrm{n}-1) \mathrm{P}_{3}$.

Keywords

Graceful graphs, edge-odd graceful labeling, and edge-odd graceful graph

1. INTRODUCTION AND PRELIMINARIES

A (p, q)-graph is a graceful graph if there exists an injective map f: $\mathrm{V}(\mathrm{G}) \rightarrow\{0,1,2, \ldots, \mathrm{k}\}$ so that induced map $\mathrm{f}_{+}: \mathrm{E}(\mathrm{G}) \rightarrow$ $\{1,2,3, \ldots, q\}$ defined by $f_{+}(x y) \equiv|f(x)-f(y)|$, where the vertex x is incident with other vertex y that f and f_{+}make all are distinct

A (p, q) connected graph is edge-odd graceful graph if there exists an injective map $f: E(G) \rightarrow\{1,3, \ldots, 2 q-1\}$ so that induced map $f_{+}: V(G) \rightarrow\{0,1,2, \ldots,(2 k-1)\}$ defined by $f_{+}(x)$ $\equiv \Sigma \mathrm{f}(\mathrm{xy})(\bmod 2 \mathrm{k})$, where the vertex x is incident with other vertex y and $k=\max \{p, q\}$ makes all the edges distinct and odd.
A. Solairaju and K.Chitra [2008a, 2008b, 2009] obtained edge-odd graceful labeling of some graphs related to paths. A. Solairaju, Vimala, and Sasikala [2008a, 2008b] proved that edge-odd gracefulness of strong product of P_{2} and C_{n}, and Cartesian product of P_{2} and W_{n} are edge -odd graceful.

1.1 Graphs Related to Circuits of Length 4

Definition 1.1: The graph nC_{4} is a disconnect graph involving n copies of C_{4} with some arbitrary labeling of vertices as follows:

Figure-1

2. GRAPH OBTAINED FROM CIRCUITS MERGING WITH PATHS, THE FOLLOWING RESULT IS THEN OBTAINED

Definition 2.1: The graph $\mathrm{nC}_{4} \mathrm{o} 2 \mathrm{P}_{\mathrm{n}}$ is a connected graph obtained from the above disconnected graph together with adjacent edges $v_{i} v_{i+1}\left[i=1\right.$ to (n-1)] and adjacent edges $u_{i} u_{i+1}$ [$\mathrm{i}=1$ to $(\mathrm{n}-1)]$ Some labeling of vertices and edges of the graph $n_{c 4} o 2 P_{n}$ is given below:

Figure 2
Theorem 2.1: The connected graph nC_{4} o $2 \mathrm{P}_{\mathrm{n}}$ is graceful.
Proof: The labeling of graph $\mathrm{n}_{\mathrm{c} 4} \mathrm{o} 2 \mathrm{P}_{\mathrm{n}}$ is followed in the figure (2)

Define a map f: $\mathrm{V}(\mathrm{G}) \square\{0,1,2, \ldots, \mathrm{q}\}$ by $f\left(\mathrm{v}_{1}\right)=0 ; f\left(\mathrm{u}_{1}\right)=$ $2 ; f\left(\mathrm{v}_{2}\right)=(\mathrm{q}-4) ; f\left(\mathrm{u}_{2}\right)=(\mathrm{q}-3)$
$f\left(\mathrm{v}_{\mathrm{i}}\right)=3(\mathrm{i}-1), \mathrm{i}$ is odd; $f\left(\mathrm{v}_{\mathrm{i}+2}\right)=f\left(\mathrm{v}_{2}\right)-3 \mathrm{i}, \mathrm{i}$ is even where $\mathrm{i}=$ 3 to n
$f\left(\mathrm{u}_{\mathrm{i}}\right)=f\left(\mathrm{u}_{1}\right)+3(\mathrm{i}-1), \mathrm{i}$ is odd; $f\left(\mathrm{u}_{\mathrm{i}+2}\right)=f\left(\mathrm{u}_{2}\right)-3 \mathrm{i}, \mathrm{i}$ is even; where $\mathrm{i}=3$ to n .

$$
\begin{aligned}
& f\left(\mathrm{t}_{1}\right)=\mathrm{q} ; f\left(\mathrm{~s}_{1}\right)=(\mathrm{q}-1) ; f\left(\mathrm{t}_{2}\right)=3 ; f\left(\mathrm{~s}_{2}\right)=5 ; \\
& f(\mathrm{ti})=\mathrm{f}\left(\mathrm{t}_{1}\right)-3(\mathrm{i}-1) ; f\left(\mathrm{~s}_{\mathrm{i}}\right)=\mathrm{f}\left(\mathrm{~s}_{1}\right)-3(\mathrm{i}-1), \mathrm{i} \text { is odd; }
\end{aligned}
$$

where i varies 3 to n
$f\left(\mathrm{t}_{\mathrm{i}+2}\right)=f\left(\mathrm{t}_{2}\right)+3 \mathrm{i} ; f\left(\mathrm{~s}_{\mathrm{i}+2}\right)=f\left(\mathrm{~s}_{2}\right)+3 \mathrm{i}, \mathrm{i}$ is even; where I varies 3 to n .
Define $\mathrm{f}+: \mathrm{E}(\mathrm{G}) \rightarrow\{1,2, \ldots, \mathrm{q}\}$ by $f(\mathrm{uv})=|f(\mathrm{u})-f(\mathrm{v})|$ for all $\mathrm{u}, \mathrm{v} \in \mathrm{V}(\mathrm{G})$. The maps f and $f+$ satisfy the conditions of graceful labeling for nC_{4}

3. THE GRACEFULNESS OF THE GRAPH NP2 \diamond P2N

Definition 3.1: The graph $\mathrm{nP}_{2} \diamond \mathrm{P}_{2 \mathrm{n}}$ is defined as a connect graph involving n copies of P_{2} and a copy of $P_{2 n}$ as follows:

Theorem 3.1: The graph $\mathrm{nP}_{2} \diamond \mathrm{P}_{2 \mathrm{n}}$ is defined as a connect graph involving n copies of P_{2} and a copy of $P_{2 n}$ with some arbitrary labeling of vertices as follows in figure $3\left(\mathrm{nC}_{4} \mathrm{O}\right.$ $2 \mathrm{P}_{\mathrm{n}}$). Thus the graph nC_{4} o $2 \mathrm{P}_{\mathrm{n}}$ is graceful

Example 1: The graphs $6 \mathrm{C}_{4}$ o $2 \mathrm{P}_{6}$ and $7 \mathrm{C}_{4}$ o $2 \mathrm{P}_{7}$ are graceful.

Figure 3

$f\left(\mathrm{~V}_{\mathrm{i}}\right)=\mathrm{q}-(\mathrm{i}-1)$; if i is odd; $f\left(\mathrm{~V}_{\mathrm{i}}\right)=(\mathrm{i}-1)$; if i is even; i varies from 1 to 2 n

$$
f\left(\mathrm{u}_{\mathrm{i}}\right)=(\mathrm{i}-1) ; \text { if } \mathrm{i} \text { is odd; } f\left(\mathrm{u}_{\mathrm{i}}\right)=(\mathrm{q}-1)-(\mathrm{i}-2) ; \text { if } \mathrm{i} \text { is }
$$

even; i varies from 1 to n
Define $\left.\mathrm{f}_{+}:{\mathrm{E}\left(\mathrm{nP}_{2}\right.} \diamond \mathrm{P}_{2 \mathrm{n}}\right) \square\{1,2, \ldots, \mathrm{q}\}$ by $f(\mathrm{uv})=\square f(\mathrm{u})-$ $f(\mathbf{v}) \square$ for all $\mathrm{u}, \mathrm{v} \square \mathrm{V}(\mathrm{G})$

The maps f and f_{+}satisfy the conditions of graceful labeling for the graph nC_{4} o $2 \mathrm{P}_{\mathrm{n}}$. Thus the graph $\left(\mathrm{nP}_{2} \diamond \mathrm{P}_{2 \mathrm{n}}\right)$ is graceful.
Example 2: The graphs $6 \mathrm{P}_{2} \diamond \mathrm{P}_{12}$ and $6 \mathrm{P}_{2} \diamond \mathrm{P}_{12}$ are graceful.

4. THE GRACEFULNESS OF THE MIRROR IMAGE OF THE GRAPH NP2 \diamond P2N

Definition: 4.1: The mirror image of the graph $\mathrm{nP}_{2} \diamond \mathrm{P}_{2 \mathrm{n}}$ is defined as a connect graph involving twice times of n copies of P_{2} and a copy of $\mathrm{P}_{2 \mathrm{n}}$ as follows:

Theorem 4.1: The mirror image of the graph $\mathrm{nP}_{2} \diamond \mathrm{P}_{2 \mathrm{n}}$ is graceful graph.
Proof: The mirror image of the graph $\mathrm{nP}_{2} \diamond \mathrm{P}_{2 \mathrm{n}}$ is defined as a connect graph involving twice times of n copies of P_{2} and a copy of $\mathrm{P}_{2 \mathrm{n}}$ with some arbitrary labeling of vertices as follows in figure 4:

Figure 4

Define $\left.f: \mathrm{V}_{\left(\mathrm{nP}_{2}\right.} \diamond \mathrm{P}_{2 \mathrm{n}}\right) \longrightarrow\{0,1,2, \ldots, \mathrm{q}\}$ by
$\left.f\left(\mathrm{~V}_{\mathrm{i}}\right)=\mathrm{q}-3[(\mathrm{i}-1) / 2)\right], \mathrm{i}$ is odd; $f\left(\mathrm{~V}_{\mathrm{i}}\right)=2+3[(\mathrm{i}-1) / 2] ; \mathrm{i}$ is even;
where i varies from 1 to 2 n ;
$\left.f\left(\mathrm{u}_{\mathrm{i}}\right)=3[(\mathrm{i}-1) / 2)\right]$, i is odd; $\left.f\left(\mathrm{u}_{\mathrm{i}}\right)=(\mathrm{q}-1)-3[(\mathrm{i}-1) / 2)\right], \mathrm{i}$ is even
where i varies from 1 to n;
$f\left(\mathrm{t}_{\mathrm{i}}\right)=1+3[(\mathrm{i}-1) / 2], \mathrm{i}$ is odd; $\left.f\left(\mathrm{t}_{\mathrm{i}}\right)=(\mathrm{q}-2)-3[(\mathrm{i}-1) / 2)\right], \mathrm{i}$ is even;
where i varies from 1 to n ;
 $f(\mathbf{v}) \square$ for all $\mathrm{u}, \mathrm{v} \square \mathrm{V}(\mathrm{G})$

The maps f and f_{+}satisfy the conditions of graceful labeling for the graph $\mathrm{nP}_{2} \diamond \mathrm{P}_{2 \mathrm{n}}$. Thus the graph $\left(\mathrm{nP}_{2} \diamond \mathrm{P}_{2 \mathrm{n}}\right)$ is graceful

Example 3: The mirror images of the graphs $5 \mathrm{P}_{2} \diamond \mathrm{P}_{10}$ and $6 \mathrm{P}_{2} \diamond \mathrm{P}_{12}$ are graceful.

5. GRACEFULNESS OF NC4 \diamond P2N \cup (N-1)P2

Definition 5.1: The graph $\mathrm{nC}_{4} \diamond \mathrm{P}_{2 \mathrm{n}} \cup(\mathrm{n}-1) \mathrm{P}_{2}$ is defined as a connected graph mentioned below in figure 5 .

Figure 5
Theorem 5.1: The graph $\mathrm{nC}_{4} \diamond \mathrm{P}_{2 \mathrm{n}} \cup(\mathrm{n}-1) \mathrm{P}_{2}$ is graceful.
Proof: The arbitrary labeling of the given graph $\mathrm{nC}_{4} \diamond \mathrm{P}_{2 \mathrm{n}}$ $\cup(\mathrm{n}-1) \mathrm{P}_{2}$ is mentio9ned the above figure 5

Define f: $V(G) \rightarrow\{0,1,2, \ldots \ldots . . \mathrm{q}\}$ by
$f\left(v_{i}\right)=\frac{7(i-1)}{2}, i$ is odd; $f\left(v_{i}\right)=(q+3)-\frac{7 i}{2} ; i$ is even;
$f\left(u_{i}\right)=f\left(v_{i}\right)+1, i$ is odd; $f\left(u_{i}\right)=f\left(v_{i}\right)-1, i$ is even;
$\mathrm{f}\left(\mathrm{s}_{\mathrm{i}}\right)=\mathrm{q}-\frac{7(i-1)}{2}, \mathrm{i}$ is odd; $\mathrm{f}\left(\mathrm{s}_{\mathrm{i}}\right)=\frac{7 i}{2}-4, \mathrm{i}$ is even;
$\left.f\left(t_{i}\right)=\right)=f\left(s_{i}\right)-2$, i is odd; $\left.f\left(t_{i}\right)\right)=f\left(s_{i}\right)+2$, i is even; where i varies from 1 to n

Example 4: The connected graphs $6 \mathrm{C}_{4} \diamond \mathrm{P}_{12} \cup 5 \mathrm{P}_{2}$ and $7 \mathrm{C}_{4} \diamond \mathrm{P}_{14} \cup 6 \mathrm{P}_{2}$ are graceful.

6. GRACEFULNESS OF GRAPH NC4 \diamond 2P2N $\cup(\mathbf{N}-1) \mathbf{P 2} \cup(\mathbf{N}-1) \mathbf{P 3}$

Definition 6.1: The graph $\mathrm{nC}_{4} \diamond 2 \mathrm{P}_{2 \mathrm{n}} \cup(\mathrm{n}-1) \mathrm{P}_{2} \cup(\mathrm{n}-1) \mathrm{P}_{3}$ is defined as in following figure 6 :

Figure 6
Theorem 6.1: The connected graph $\mathrm{nC}_{4} \diamond 2 \mathrm{P}_{2 \mathrm{n}} \cup(\mathrm{n}-1) \mathrm{P}_{2}$ $\cup(\mathrm{n}-1) \mathrm{P}_{3}$ is graceful.
Proof: The arbitrary labelings of vertices of the graph $\mathrm{nC}_{4} \diamond$ $2 \mathrm{P}_{2 \mathrm{n}} \cup(\mathrm{n}-1) \mathrm{P}_{2} \cup(\mathrm{n}-1) \mathrm{P}_{3}$ are mentioned above in the figure 6 :

Define $f: V(G) \rightarrow\{0,1,2, \ldots, q\}$ by
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=5(\mathrm{i}-1) ; \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)+1 ; \mathrm{f}\left(\mathrm{s}_{\mathrm{i}}\right)=(\mathrm{q}+3)-7 \mathrm{i} ;$
$\mathrm{f}\left(\mathrm{t}_{\mathrm{i}}\right)=\mathrm{f}\left(\mathrm{s}_{\mathrm{i}}\right)-1 ; \mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)=(\mathrm{q}+7)-7 \mathrm{i} ; \mathrm{f}\left(\mathrm{y}_{\mathrm{i}}\right)=\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)-2 ; \mathrm{f}\left(\mathrm{z}_{\mathrm{i}}\right)=5 \mathrm{i}-2 ; \mathrm{i}$ varies from 1 to n

Example 5: The connected graphs $6 \mathrm{C}_{4} \diamond 2 \mathrm{P}_{12} \cup 5 \mathrm{P}_{2} \cup 5 \mathrm{P}_{3}$ and $7 \mathrm{C}_{4} \diamond 2 \mathrm{P}_{14} \cup 6 \mathrm{P}_{2} \cup 6 \mathrm{P}_{3}$ are graceful.

7. REFERENCES

[1] A.Solairaju, and K.Chithra, New classes of graceful graphs by merging a finite number of C 4 , Acta Ciencia Indica, Vol.XXXIV M, N0.2, (2008a), 959-965
[2] A.Solairaju, and K. Chithra, Edge-odd graceful labeling of the complete bipartite graph, The Global Journal of Applied Mathematics \& Mathematical Sciences,Volume 1, No.2, (2008b), 137-141.
[3] A.Solairaju and K.Chitra, Edge-odd graceful labeling of some graphs " Electronics Notes in Discrete Mathematics, Volume 33, (April 2009), 15-20
[4] A.Solairaju, A.Sasikala, C.Vimala, Gracefulness of a spanning tree of the graph of product of P_{m} and C_{n}, The Global Journal of Pure and Applied Mathematics of Mathematical Sciences, Vol. 1, No-2 (July-Dec 2008a), 133-136
[5] A.Solairaju, C.Vimala, A.Sasikala Gracefulness of a spanning tree of the graph of Cartesian product of S_{m} and S_{n}, The Global Journal of Pure and Applied Mathematics of Mathematical Sciences, Vol.1, No. 2 (July-Dec 2008b), 117-120

