
International Journal of Computer Applications (0975 – 8887) 

Volume 104 – No.8, October 2014 

25 

RSA Cryptography using Designed Processor and 

MicroBlaze Soft Processor in FPGAs 
 

Md. Nazrul Islam Mondal 
Dept. of CSE, Rajshahi 

University of Engineering and 
Technology, Rajshahi-6204, 

Bangladesh 

 

Md. Al Mamun 
Dept. of CSE, Rajshahi 

University of Engineering and 
Technology, Rajshahi-6204, 

Bangladesh 

Boshir Ahmed 
Dept. of CSE, Rajshahi 

University of Engineering and 
Technology, Rajshahi-6204, 

Bangladesh 

 

 

ABSTRACT 

Some applications such as RSA encryption/decryption need 

integer arithmetic operations with many bits. However, such 

operations cannot be performed directly by conventional 

CPUs, because their instruction supports integers with fixed 

bits, say, 64 bits. Since the CPUs need to repeat arithmetic 

operations to numbers with fixed bits, they have considerably 

overhead to execute applications involving integer arithmetic 

with many bits. On the other hand, This paper implements 

hardware algorithms for such applications in the FPGAs for 

further acceleration. However, the implementation of 

hardware algorithm is usually very complicated and 

debugging of hardware is too hard. The main contribution of 

this paper is to present an intermediate approach of software 

and hardware using FPGAs. More specifically, this paper 

presents a processor based on FDFM (Few DSP slices and 

Few Memory blocks) approach that supports arithmetic 

operations with flexibly many bits, and implement it in the 

FPGA. To show the potentiality of designed processor, 128-

bit RSA encryption/decryption is implemented and compare 

with soft processor “MicroBlaze” in FPGA. The resulting 

processor uses only one DSP48E1 slice and four Block RAMs 

(BRAMs), and RSA encryption software on it runs in 0.42ms. 

However, MicroBlaze uses three DSP48E1 slices and 170 

Block RAMs (BRAMs) and runs in 152.28ms. Hence, the 

proposed designed processor is significantly efficient in terms 

of resource used and time complexity in comparison to soft 

processor “MicroBlaze” in FPGAs. Also the proposed 

processor can be used efficiently for longer bit arithmetic 

operation such as 2048-bit without further modifications and 

hence it is more flexible. 

General Terms 

RSA Security Algorithm 

Keywords 
Multiple-Length-Arithmetic, MicroBlaze, Soft Processor, 

Montgomery Modular Multiplication in RSA, FPGA, DSP 

Slices, Block RAMs. 

1. INTRODUCTION 
An FPGA is a programmable logic device designed to be 

configured by the customer or designer by HDL (Hardware 

Description Language) after manufacturing. An FPGA chip 

maintains relative lower price and programmable features [1], 

[2], [3], hence, it is widely used recently. The readers may 

refer to see some circuit implementations in FPGAs [4], [5], 

[6], [7], [8], [9], [10], [11], [12] to accelerate computation. 

Applications require arithmetic operations on integer numbers 

which exceed the range of processing by a CPU directly is 

called Multiple Double Length Numbers or Multiple Precision 

Numbers and hence, computation of these numbers is called 

Multiple-Length-Arithmetic. More specifically, application 

requires integer arithmetic operations for multiple-length 

numbers with size longer than 64 bits cannot be performed 

directly by conventional 64-bit CPUs, because their 

instruction sup-ports integers with fixed 64 bits. To execute 

such application, CPUs need to repeat arithmetic operations 

for those numbers with fixed 64 bits which increase the 

execution overhead. Alternatively, hardware algorithms for 

such applications can be implemented in FPGAs to speed up 

computations. However, the implementation of hardware 

algorithm is usually very complicated and debugging of 

hardware is too hard. 

Since, low level of instructions, represented by 0’s and 1’s is 

an almost impossible to understand even by an expert, the 

debugging of an algorithm at this level is very hard. 

Moreover, to implement hardware algorithm, written by 

hardware language such as Verilog HDL, users should have 

sufficient knowledge of hardware such as registers which 

makes it complicated to the non-expert or to the beginners. 

The instructions in assembly language are written by 

alphanumeric symbols instead of 0’s and 1’s in low level that 

is an almost similar to the high level language, written by 

English which makes the instructions as well as algorithms 

easy to read, modify and debugging by the non-expert or by 

the beginners. 

The main contribution of this paper is precisely described as 

follows: 

 To prove the potentiality of the proposed processor, 

128-bit RSA is implemented and compare with soft 

processor “MicroBlaze” in FPGA which implies that 

proposed processor is significantly efficient in terms 

of resource used and time complexity. 

 Also, the proposed flexible-length arithmetic processor 

based on FDFM approach can be used for computing 

of integer numbers with flexibly many bits, even 

longer than 2048-bit by a single machine instruction.  

 To make the debugging and further development easy, 

an intermediate approach of software and hardware is 

presented.  

This designed processor provides flexibility so that it can be 

used for computing of integer numbers with flexibly many bit 

such as 64-bit, 128-bit, even longer than 2048-bit without 

further modification.  

 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 104 – No.8, October 2014 

26 

Since, the designed processor based on FDFM approach, the 

key idea of the FDFM approach is to use few DSP slices and 

few block RAMs to perform routine computations which can 

be treated alternatively as a resource efficient approach. Let us 

explain briefly the FDFM approach using a simple example. 

Figure 1 (1) illustrates a hardware algorithm to compute the 

output of FIR (Finite Impulse Response) yi = a0 xi +a1 xi 1 +a2 

xi 2 +a3 xi 3. A conventional approach implementing the FIR is 

to use four DSP slices as illustrated in Figure 1 (2)[13]. In this 

conventional approach, the number of DPS blocks must be the 

same as that of multipliers in the hardware algorithm. 

However, FDFM approach uses one or few DSP slices and 

one or few block RAMs to implement the FIR. The Figure 1 

(3) shows the FDFM approach using one DSP slice and one 

block RAM to implement the same mentioned above. Note 

that, the coefficients a0,a1 ,. . . are stored in the block RAM. 

 

Figure 1:  FDFM approach over conventional one for FIR 

The readers may refer to the papers [14], [15], [16], [17] in 

which they can find details about FDFM approach and 

conventional approach.  

 

Figure 2: Internal Configuration of Virtex-6FPGA 

 

The most common FPGA architecture consists of an array of 

logic blocks, I/O pads, Block RAMs and routing channels. 

Furthermore, embedded DSP blocks which is integrated into 

an FPGA that makes a higher performance and a broader 

application. Figure 2 illustrates the Virtex-6 FPGA developed 

by Xilinx. The CLB (Configurable Logic Blocks) in Virtex-6 

consists of 2 sub-logic blocks called slice. Using LUTs (Look 

Up Tables) and Flip-Flops in the slices, various combinatorial 

circuits and sequential circuits can be implemented.  

The summarization of the several significant points of the 

results is described as follows: 

1. A flexible-length-arithmetic processor is proposed 

for the applications which require arithmetic 

operations for numbers longer than 64 bits. Even, 

numbers longer than 2048 bits or higher can be 

computed by the designed processor without any 

modification. 

2. The proposed processor is flexible in a sense that it 

can support arithmetic operations for numbers with 

flexibly many bits or numbers with variable size 

longer than 64 bits.  

3. Finally, the potentiality of this processor is 

checked by implementing 128-bit RSA and 

compare with soft processor “MicroBlaze” which 

shows that the proposed processor is significantly 

efficient. 

 

The rest of this paper is organized as follows: Section II 

briefly describes the Multiple-length-arithmetic operation. In 

Section III describes the proposed architecture. The RSA 

cryptography as an application is described briefly in Section 

IV; however the readers may refer to the previous paper [23] 

for details. Section V describes experimental results and 

discussions. Finally Section VI concludes this work. 

2. MULTIPLE-LENGTH-ARITHMETIC 

OPERATION 
The main purpose of this section is to describe Multiple-

Length-Arithmetic operations. Suppose that A and B are two 

multiple-length numbers of 1024 bits each. These numbers are 

partitioned into several blocks of 17 bits. First, let us see that 

how a multiple-length number of 1024 bits is stored in data 

memory. Figure 3(a) shows a data memory (BRAM). Every 

17-bit block data together with 1-bit flag represents a bit-

block of 18 bits and MSB (Most Significant Bit) of each bit-

block is known as flag which set to 1 indicates the end of each 

stored multiple-length data into the data memory as shown in 

Figure 3(b). In this figure, multiple-length data A of 1024 bits 

is divided into 61 numbers of 17 bits block such as a0, a1, . . .,, 

a60, a61. Every 17 bits block of multiple-length data, A 

together with 1-bit flag is stored in different memory location 

of the data memory (BRAM). 



International Journal of Computer Applications (0975 – 8887) 

Volume 104 – No.8, October 2014 

27 

 

Figure 3: Data of 1024-bit Length is Stored in Memory 

(BRAM) 

For the benefit of readers, Figure 4 describes the instruction 

memory as well as instruction format of multiple-length or 

multi-double long data. Figure 4 (a) represents an instruction 

memory in which 53 bits instruction together with 1-bit flag 

can be stored at any address of the instruction memory 

addresses. In this case, 1-bit flag is set to 1 indicates the last 

instruction for execution. Note that, addresses of the 

instruction memory are handled by the Program Counter (PC). 

Let us give an example of a multiplication of two multiple-

length or two multi-double long data. However, other 

arithmetic operations can also be performed such as addition, 

subtraction, division, comparison of multi-double long data. 

Suppose u and v represents two multi-double long data. Let us 

multiply u by v and the result is stored in w, that is w = u . v. 

An assembly instruction for this computing of multi-double 

long data is as follows: 

  MUL A, B, C 

In the above instruction, A, B and C are known as operands of 

16-bit each which can be used to indicate 216 different 

addresses 0, 1, . . ., 216  of the data memory (BRAM) and 

MUL is known as OPCODE of 5-bit which determines the 

operation of operands (in this case multiplication) as 

illustrated in Figure 4(b). The readers may refer to the paper 

[23] for details in which an example is clearly described for 

multi-double long multiplication. Let us see Algorithm 1 for 

multiplication of two multi-double long data u and v. 

 

Fig.4.An Instruction Memory and an Instruction Format 

for Multi-Double Data 

 

 

Figure 5: The Proposed Processor Architecture 

Algorithm 1: Multi-Double Long Multiplication  

B: number of digits in radix-217 operands 

n: last number of digit of radix-217 numbers in u 

m: last number of digit of radix-217 numbers in v 

Input:  u = 𝑢𝑖 .𝐵𝑖
𝑛−1

𝑖=0
    ,v = 𝑣𝑖 .𝐵𝑖

𝑚−1

𝑖=0
 

Output: w=u.v 

1. for j=0 to m-1   do 

2. c0 

3. w0 0 

4. for i=0 to n-1   do 

5. {c,wi+j} wi+j  ui  . vj+c 

6. End for 

7. Wn+jc 

8. End for 

9. Return   𝑤𝑖 .𝐵𝑖
𝑛+𝑚−1

𝑖=0
 

Since there is a page limitation, hence the readers may refer to 

the previous paper [23] to show a simple example of the 

above algorithm.  

3. PROPOSED ARCHITECTURE 
Let us briefly describe the proposed processor architecture for 

multiple-length-arithmetic operations. The designed processor 

consists of program counter, instruction memory, address 

counters, data memory, ALU, registers, control units as 

illustrated in Figure 5 and Figure 6. Because of page 

limitation, the readers may refer to the previous paper [23] for 

details.  



International Journal of Computer Applications (0975 – 8887) 

Volume 104 – No.8, October 2014 

28 

 

Figure 6:  ALU Architecture 

In the following section, RSA cryptography is implemented 

using the proposed architecture and it is programmed by 

assembly language. The assembly instructions of number, 

117, each of 54-bit are needed to implement modular 

exponentiation algorithm. In this paper, only the assembly 

code is shown for Montgomery Multiplication as illustrated in 

the previous paper [23]. In below assembly code, the registers 

R1 and R2 are used to take inputs X and Y , each of 64-bit. 

Also 64-bit M is given. The registers R3, R4, R5 is used to 

hold the intermediate results and final results of the 

Montgomery Multiplication is stored either in R6 or C. Note 

that, 64-bit data in register R1 is divided into several blocks of 

17-bit each and these are stored in several block registers such 

as R10, R11, R12, R13 (lower block to higher block). For the 

case of other registers, these can be explained in similar way. 

[Assembly Code for Montgomery Multiplication] 

R1=X, R2=Y;    

R3=0, R4=0, R5=0, R6=0;  

C=0; 

R10 , R20, R30; X (R1)  Y(R2) store in R3 01: MUL, 

02: MOVI, R30 , R40, R33; copy blocks of R3 into R4 

03:MASK, R43 , R43, 1FFF; make last 4-bit of R43 as 0’s 

04: MUL, R40 ,   M0 
1R,50; R4M 1 store in R5 

05: MOVI, R50 , R40, R53; copy blocks of R5 into R4 

06:MASK, R43 , R43, 1FFF; make last 4-bit of R43 as 0’s 

07: MUL, R40 , M0, R50; R4  M store in R4 

08: ADD, R30 , R50, R60; store R3 + R5 in R6 

09: SHR, R63 , R60, 13; 64-bit shift right of R6 

0A: CMP, R60 , M0;  R6 compare with M 

0B: JC, 0D;   if R6 > M, go to OD 

0C: SUB, R60 , M0, R60; R6-M is the results in R6 

0D:MOV, R60 , C0;  results in R6 move to C 

 

4. AN APPLICATION OF RSA 

CRYPTOGRAPHY USING THE 

PROPOSED PROCESSOR 
This section briefly reviews the RSA Cryptography which is 

described details in paper [15]. Using the proposed processor, 

the same algorithm is implemented by software, instead of 

HDL as illustrated in paper [15] to make it easy for 

modifications or changes by a non-expert or by a beginner. 

In RSA [18], the modular exponentiation C = PE mod M or P 

= CD mod M are computed, where P and C are plain and 

cypher text, and (E, M) and (D, M) are encryption and 

decryption keys. Usually, the bit length in P , E, D, and M is 

512 or larger. Also, the modulo exponentiation is repeatedly 

computed for fixed E, D, and M , and various P and C. Since 

modulo operation is very costly in terms of the computing 

time and hardware resources, Montgomery modular 

multiplication [19], [20], [21] is used, which does not directly 

compute modulo operation. 

Montgomery multiplication [19], [20], [21] is an optimal 

method to calculate modular exponentiation. Three R-bit 

numbers X, Y , and M are given, and (X · Y + q · M ) · 2−R 

mod M is computed, where an integer q is selected such that 

the least significant R bits of X · Y + q · M are zero. The 

value of q can be computed as follows. Let (−M−1) denote the 

minimum non-negative number such that (−M−1) · M ≡ −1( or 

2R− 1) (mod 2R). Since M is odd, then (−M−1) < 2R always 

holds. The q can be selected such that q = ((X · Y ) · 

(−M−1))[r − 1, 0]. For such q, (X · Y +q · M )[r −1, 0] are 

zero. The readers may refer to paper [23] for an example. 

Radix-2r Montgomery multiplication is shown in Algorithm 2. 

In Algorithm 2, d = [R/r] presents the number of digits in 

radix-2r operands. The multiplier Y is partitioned by each r-bit 

and Yi represents the i-th digit of Y. Therefore, Y could be 

given by 𝑌 =  2𝑖𝑟𝑑−1
𝑖=0 .𝑌𝑖 . After d loops, R-bit Montgomery 

multiplication can be computed. As far as now, Montgomery 

multiplication could be computed by multiplication, addition 

and shift operations without modulo operations. 

Algorithm 2: radix-2r Montgomery Multiplication  

radix-2r, d = [R/r], X, Y, M ∈ {0, 1, ..., 2R− 1}, 







1

0
.2

d

i i
ir YY , Yi∈ {0, 1, ..., 2r− 1} 

(−M−1) · M ≡ −1 mod 2r, −M−1∈ {0, 1, ..., 2r− 1} 

Input: X, Y, M, −M−1 

Output: Sd = X · Y · 2−dr mod M 

1. S0 ← 0 

2. for i = 0 to d − 1 do 

3. qi ← ((Si + X · Yi ) · (−M−1)) mod 2r 

4. Si+1 ← (X · Yi + qi· M + Si ) / 2
r 

5. end for 

6. if (M ≤ Sd) then Sd ← Sd – M 

Since X · Y + q · M ≡ X · Y (mod M), the (X · Y + q · M ) · 

2−R mod M = X · Y · 2−R mod M can be written . Let us see 

how Montgomery modular multiplication is used to compute 

C = PE mod M. Suppose C = PE mod M needs to be computed. 

For simplicity, assume that E is a power of two. Since R and 

M are fixed, again assume that 22R mod M is computed 

beforehand. First compute P·(22R mod M)·2R mod M =P · 2R 



International Journal of Computer Applications (0975 – 8887) 

Volume 104 – No.8, October 2014 

29 

mod M using the Montgomery modular multiplication, then 

compute the square (P ·2R mod M ) . (P · 2R mod M ) · 2−R 

mod M = P2·2R mod M. It should be clear that, by repeating 

the square computation using the Montgomery modular 

multiplication, having PE· 2R mod M. After that, multiply 1, 

that is (PE· 2R mod M ) · 1 · 2−R mod M =PE mod M is 

computed. In this way, cypher text C could be obtained. 

Algorithm 3 shows the modular exponentiation using 

Montgomery multiplication of Algorithm 2. In Algorithm 3, 

Eb represents the size of E. Inputs 22dr mod M and −M−1 are 

given. To use Montgomery modular multiplication, C and P 

are converted from 1 and P in the 1st line and the 2nd line, 

respectively. The line 1, 2, 4, 5 and 7 in Algorithm 3 can be 

computed using Montgomery multiplication of Algorithm 2. 

 Algorithm 3: Modular Exponentiation 

0 ≤ E ≤ 2Eb− 1, 





1

0
.2

bE

i i
i EE , Ei∈ {0, 1} 

Input: P, E, M, −M−1, 22dr mod M 

Output: C = PE mod M 

1. C ←(22dr mod M ) · 1 · 2−dr mod M ; 

2. P ← (22dr mod M ) · P · 2−dr mod M ; 

3. for i = Eb − 1 downto 0 do 

4. C ← C · C · 2−dr mod M ; 

5. if Ei = 1 then C ← C · P · 2−dr mod M ; 

6. end for 

7. C ← C · 1 · 2−dr mod M ; 

 Let {A : B} denote a concatenation of A and B. For example, 

if A = (F F )16 and B = (EC)16, {A : B} = (F F EC )16. 

Algorithm 4 is an improved algorithm from Algorithm 2. 

Considering the features of the target Virtex 6 FPGA, radix-

217 is selected. Let R denotes the size of Montgomery 

multiplier operands X, Y, and M. Also, d = [R/17] is the 

number of digits of the operands on radix-217. In the 

algorithm, the 17d ≥ R + 3 condition is introduced to ignore 

the subtraction shown in the 6th line of Algorithm 2. If the 

condition is satisfied, it can be guaranteed that at least 3-bit 0 

is padded to the most significant bits of the most significant 

digit as the redundancy. Due to the stringent page limitation, 

the proof is omitted. However, M ≥ C is always satisfied in 

the modular exponentiation shown in Algorithm 3. Further, in 

practical RSA encryption, the size of operands is radix-2 

numbers such as 512-bit, 1024-bit, 2048-bit, and 4096-bit. For 

radix-217 system, the condition 17d ≥ R +3 is satisfied. If the 

condition is not satisfied, then it needs to append one 

redundant digit at the most significant digit. 

Algorithm 4: Montgomery Algorithm  

radix-217 , d = [R/17], 17d ≥ R + 3, 

X, Y, M, Si∈ {0, 1, ..., 2R− 1}, 

−M−1, α, β, γ, Cα, Cβ∈ {0, 1, ..., 217 − 1}, Cγ , CS∈ {0, 1}, 







1

0

17 .2
d

i i
i XX , Xi ∈ {0, 1, ..., 217− 1}, Xd= 0 







1

0

17 .2
d

i i
i YY , Yi∈ {0, 1, ..., 217− 1} 







1

0

17 .2
d

i i
i MM , Mi ∈ {0, 1, ..., 217− 1}, Md= 0 







1

0 ),(
17 .2

d

j ji
j

i SS , S(i,j) ∈ {0, 1, ..., 217 − 1}, Sd= 0 

Input: X, Y, M, −M−1 

Output: Sd = X · Y · 2−17d mod M 

1. S0 ← 0 

2. for i = 0 to d − 1 do 

3. q ← ((X0 · Yi + S(i,0)) · (−M−1)) mod 217 

4. Cα, Cβ , Cγ , CS ← 0 

5. for j = 0 to d do 

6. {Cα: α} ← Xj · Yi + Cα 

7. {Cβ: β} ← q · Mj + Cβ 

8. {Cγ: γ} ← α + β + Cγ 

9. {CS: S(i+1,j −1)} ← γ + S(i,j) + CS 

10. end for 

11. end for 

Algorithm 4 is a radix-217digit serial Montgomery algorithm 

from Algorithm 2. In other words, each 17-bit, as 1 digit, is 

processed every clock cycle. For this reason, the operands X, 

Y , M , and Si are split into 17-bit digits Xj , Yj , Mj, and S(i,j) , 

respectively. The loop from the 2nd to 11th lines of Algorithm 

4 corresponds to the 2nd to 5th lines of Algorithm 2. 

Comparing the two algorithms, Si+1 ← (X · Yi + qi· M + Si )/ 

2r of the 4th line of Algorithm 2 corresponds to the digit serial 

processing by 4th to 10th lines of Algorithm 4 . In Algorithm 

4, Cα , Cβ , Cγ , and CS are carries and they are added at the 

next loop. In the algorithm, Cα, Cβ are 17-bit carries for 17-bit 

MACC, and Cγ , CS are 1-bit carries for 17-bit addition. For 

example, at the 6th line Xj , Yi are timed and added to 17-bit 

carry Cα , the result is 34-bit. A product of Xj and Yi , and an 

addition of the product and Cα are computed. The resulting 

upper 17-bit denotes a carry Cα which can be added at next 

loop. The lower 17-bit of result is α which is used at the 8th 

and 9th lines. These carries in the algorithm appear in both the 

17-bit MACC and the 17-bit adder to prevent a long carry 

chain that causes circuit delay. 

The proposed flexible-length-arithmetic processor architecture 

is used to implement modular exponentiation algorithm and 

evaluate on Xilinx Vertex-6 XC6VLX240T-3FF1156, 

programmed by software and synthesis with Xilinx ISE 

Foundation 13.4. Table II and Table I show the synthesized 

result for this work. 

For the benefit of readers, an optimal implementation[15] is 

recalled, which is evaluated on Xilinx Virtex-6 FPGA 

XC6VLX240T-1, programmed by hardware description 

language Verilog HDL and synthesized by Xilinx ISE 

Foundation 11.4. Note that, the optimal one, programmed by 

HDL is specialized design by an expert so that it is difficult to 

debug or change by a non-expert or sometimes even by an 

expert. However, proposed approach is in between software 

and hardware which makes debugging easy to the non-experts 

or beginners. 

This implementation is near to the optimal one [15]. Hence, it 

is said that the implementation is an almost scalable in this 

paper. However, the optimal one [15] is designed to be 

implemented by hardware language, HDL which is difficult 

for modifications or changes by non-expert, because this is 

specially designed by an expert.  



International Journal of Computer Applications (0975 – 8887) 

Volume 104 – No.8, October 2014 

30 

On the other hand, the implementation of RSA 

encryption/decryption using proposed processor architecture 

is designed to be implemented by software, more specifically 

by assembly language; hence it is easy for modifications or 

changes by a non-expert or by a beginner which makes it 

flexible. Even though, it has ability to support higher bit 

(more than 2048-bit) of RSA encryption/decryption. 

5. EXPERIMENTAL RESULTS AND 

DISCUSSIONS 
The proposed flexible-length-arithmetic processor architecture 

is used to implement modular exponentiation algorithm and 

evaluate on Xilinx Vertex-6 XC6VLX240T-3FF1156, 

programmed by software and synthesis with Xilinx ISE 

Foundation 13.4. Table I shows the synthesized result for the 

work in comparison to soft processor in FPGAs. 

Table I and Table II show the synthesized results of Virtex-6 

for comparing both implementations. In Table I, it is 

compared how much resource used to implement RSA 

Cryptography. In this table, the implementation uses 4 block 

RAMs and 1 DSP slice. On the other hand, 70 block RAMs 

and 3 DSP slices are require for the same implementation 

using soft processor, MicroBlaze in FPGAs. Hence, it is said 

that this work is more resource efficient. 

In Table II, time complexity to implement RSA Cryptography 

is compared. In this table, the implementation requires 

0.42ms. On the other hand, soft processor, MicroBlaze needs 

152.28ms for the same implementation. Hence, it is said that 

this work is more efficient in term of time complexity. 

Based on results in Table I and Table II, it is said that, this 

implementation of RSA encryption/decryption using proposed 

processor is significantly efficient (less resource used, less 

time) in comparison to soft processor, MicroBlaze. Also 

designed processor architecture can be used to implement 

256-bit, 512-bit, 1024-bit, even more than 2048-bit RSA 

encryption/decryption without further modifications or 

changes. Hence it is flexible.  

Table I: Comparison of Resource Used to Implement 128-

bit RSA Cryptography 

Target FPGA: 

Vertex-6 FPGA 

Designed 

Processor: 

Flexible Length 

Arithmetic 

Processor 

Soft Processor 

in FPGA: 

MicroBlaze 

Slice Used 170/301440 6984/301440 

Block RAM Used 4/416 70/416 

DSP (DSP48E1) 

Used 
1/768 3/768 

Clock Frequency in 

MHz 
299.90 150 

 
 

 

 

 

 

 

Table II: shows the synthesized result to compare time 

complexity 

6. CONCLUSIONS 
In this paper, an intermediate approach of software and 

hardware is presented using DSP Slices and Block RAMs in 

FPGAs. More specifically, a flexible-length-arithmetic 

processor based on FDFM approach is presented that supports 

arithmetic operations for numbers with flexibly many bits, 

even longer than 2048 bits. The potentiality of this processor 

is shown through the implementation of modular 

exponentiation algorithm and compares it with the 

implementation results using 32-bit soft processor, 

MicroBlaze in FPGA. The results in Table I and Table II 

show that this work is significantly efficient in terms of 

resource used and time complexity. In future, it can be applied 

for higher bit RSA cryptography. 

7. REFERENCES 
[1] VIRTEX-6 FPGA Memory Resources (V1.5), Xilinx Inc., 

2010.  

[2] VIRTEX 6 ML605 Hardware USER GUIDE (V1.2.1), 

Xilinx Inc., 2010.  

[3] VIRTEX-6 FPGA DSP48E1 SLICE USER GUIDE 

(V1.3), Xilinx Inc., 2011.  

[4] J. Bordim, Y. Ito, and K. Nakano, “Accelerating the 

CKY parsing using FPGAs,” IEICE Transactions on 

Information and Systems, vol. E86-D, no. 5, pp. 803–

810, 2003.  

[5] J. L. Bordim, Y. Ito, and K. Nakano, “Instance-specific 

solutions to accelerate the CKY parsing for large 

context-free grammars,” International Journal on 

Foundations of Computer Science, vol. 15, no. 2, pp. 

403–416, 2004.  

[6] Y. Ito and K. Nakano, “A hardware-software cooperative 

approach for the exhaustive verification of the Collatz 

conjecture,” in Proc. of International Symposium on 

Parallel and Distributed Processing with Applications, 

2009, pp. 63–70.  

[7] K. Nakano and Y. Yamagishi, “Hardware n choose k 

counters with applications to the partial exhaustive 

search,” IEICE Transactions on Information and 

Systems, vol. E88-D, no. 7, 2005.  

[8] Y. Ito and K. Nakano, “Efficient exhaustive verification 

of the Collatz conjecture using DSP blocks of Xilinx 

FPGAs,” International Journal of Networking and 

Number of bits, R 64bits 128bit 

A: Soft Processor 

“MicroBlaze” 

No. of Cycles 3081947 22841973 

Worst Case 

Execution 

Time[ms] 

20.55 152.28 

A/B: Ratio of 

Execution Time 
186.80 362.5 

B: Designed 

Processor: Flexible 

Length Arithmetic 

Processor 

No. of Cycles 34116 127025 

Worst Case 

Execution 

Time[ms] 

0.11 0.42 



International Journal of Computer Applications (0975 – 8887) 

Volume 104 – No.8, October 2014 

31 

Computing, vol. 1, no. 1, pp. 19–62, 2011.  

[9] K. Nakano and E. Takamichi, “An image retrieval 

system using FPGAs,” IEICE Transactions on 

Information and Systems, vol. E86-D, no. 5, pp. 811–

818, May 2003.  

[10] Y. Ago, Y. Ito, and K. Nakano, “An FPGA 

implementation for neural networks with the FDFM 

processor core approach,” International Journal of 

Parallel, Emergent and Distributed Systems, vol. 28, no. 

4, pp. 308–320, 2013.  

[11] Y. Ito and K. Nakano, “Low-latency connected 

component labeling using an FPGA,” International 

Journal of Foundations of Computer Science, vol. 21, no. 

03, pp. 405–425, 2010.  

[12] X. Zhou, N. Tomagou, Y. Ito, and K. Nakano, “Efficient 

Hough transform on the FPGA using DSP slices and 

block RAMs,” in Proc. of International Parallel and 

Distributed Processing Symposium Work-shops, May 

2013, pp. 771–778.  

[13] VIRTEX-6 FPGA DSP48E1 SLICE USER GUIDE 

(V1.2), Xilinx Inc., 2009.  

[14] Y. Ago, A. Inoue, K. Nakano, and Y. Ito, “The parallel 

FDFM processor core approach for neural networks,” in 

Proc. of International Conference on Networking and 

Computing, December 2011, pp. 113–119.  

[15] S. Bo, K. Kawakami, K. Nakano, and Y. Ito, “An RSA 

encryption hardware algorithm using a single DSP Block 

and single Block RAM on the FPGA,” International 

Journal of Networking and Computing, vol. 1, no. 2, pp. 

277–289, July 2011.  

[16] Y. Ito, K. Nakano, and S. Bo, “The parallel FDFM 

processor core approach for CRT-based RSA 

decryption,” International Journal of Networking and 

Computing, vol. 2, pp. 56–78, 2012.  

[17] K. Nakano, K. Kawakami, and K. Shigemoto, “RSA 

encryption and decryption using the redundant number 

system on the FPGA,” in In Proc. IEEE International 

Symposium on Parallel and Distributed Processing, May 

2009, pp. 1–8.  

[18] R. L. Rivest, A. Shamir, and L. Adleman, “A method for 

obtaining digital signatures and public-key 

cryptosystems,” Commun. ACM, vol. 21, no. 2, pp. 120-

126, 1978 

[19] T. Blum and C. Paar, “Montgomery modular 

exponentiation on recon-figurable hardware,” in Proc. of 

the 14th IEEE Symposium on Computer Arithmetic, 

1999, pp. 70–77.  

[20] P. L. Montgomery, “Modular multiplication without trial 

division,” Math. of Comput., vol. 44, pp. 519–521, 1985.  

[21] A. F. Tenca and C. K. Koc¸, “A scalable architecture for 

Montgomery multiplication,” in Proc. of the First 

International Workshop on Crypto-graphic Hardware 

and Embedded Systems, 1999, pp. 94–108.  

[22] M. Niimura and Y. Fuwa, “Improvement of radix-2k 

signed-digit number for high speed circuit,” Formalized 

Mathematics, vol. 11, no. 2, 133–137, January 2003 

 [23] Md. Nazrul Islam Mondal, Kohan Sai, K. Nakano, and 

Y. Ito, “A Flexible-Length-Arithmetic Processor Using 

Embedded DSP Slices and Block RAMs in FPGAs,” In 

Proc. of the First International Symposium on 

Computing and Networking (CANDAR’13),  pp. 75–84, 

December 2013. 

 

IJCATM : www.ijcaonline.org 


