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ABSTRACT 

Behaviors of the colonies of small unsophisticated agents 
have been analyzed in the literature with the purpose of 
developing efficient algorithms to solve complex, dynamic 
and burden problems in other societies.  Among them, only a 
few research have been conducted in the area of swarm 
cognition which tries to understand the cognitive behaviors 
exhibited by human brain by using the cognitive behaviors 

demonstrated  by a colony as a self-organized entity. In this 
aspect, the role of a neuron and a role of a insect have been 
equally considered as an unsophisticated agent which adjusts 
its actions  according to the fluctuations of local environment 
without knowing any global information. The cognitive 
behavior, such as effective labor division of honeybees at food 
foraging process, was analyzed in this paper and  has been 
exploited under operant conditioning. The paper has proposed 

a simple but effective computational model which 
demonstrates that, the positive reinforcement and the negative 
reinforcement in operant conditioning are the real factors that 
affect to the emergent of cognitive behaviors at swarm level 
when swarm is observed as a self-organized entity. 
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1. INTRODUCTION 
A swarm is a large number of unsophisticated agents with 
limited capabilities, interacting cooperatively and locally 
among themselves, and environment, with no central control. 
These local interactions of the agents in a swarm allow the 
emergent of globally interesting behaviors that is necessary 

for their survival. The interaction of these social insects can 
be direct or indirect. Visual or audio contact, such as waggle 
dance and tremble dance, of honeybees are examples of direct 
communication while stigmergy or pheromones based 
communication between social insects are some examples for 
indirect communication[1].  

The collective intelligence behavior of these natural 
organizations such as food foraging, division of labor, nest 
building, etc. are emerged in these colonies when the swarm is 

self-organized. Self organization is a set of dynamical 
mechanisms whereby global representation appears from the 
interactions of its lower level components. The ingredients of 
self-organism are multiple interactions which results in 
positive feedback and negative feedback that allows 
amplification of random fluctuations and control the 
evolution.  

This analysis of the natural self-organized systems has been 
further diversified into the development of efficient 
algorithms when it comes to the discussion of how nature-

inspired self-organized societies can be used to solve and 
optimize the complex problems in other societies. This 
swarm-based algorithms are capable of providing low cost, 
efficient, and robust solutions to solve complex problems in 
other information societies. Ant Colony Optimization 
(ACO)[2], Artificial Bee Colony (ABC)[3], and Particle 
Swarm Optimization(PSO) are such significant swarm 
algorithms which have been introduced by observing the ants 

food foraging, bee food foraging and nest selection, and birds 
flocking respectively.  The principle of these algorithms are 
successfully applied in image and data analysis, machine 
learning, operational research, and in finance and business 
applications[4]. Moreover many significant attempts[5,6] 
have been made in developing models to demonstrate the 
dynamicity of these societies, and to investigate how random 
fluctuations of the key parameters of self-organization affect 

to the decision making process of the swarm. 

In the field of Swarm Cognition, the cooperative interactions 
of swarm that is necessary for the emergent of collective 
intelligence such as census decision making, finding the 
shortest path to the food sources, etc are exploited in the 
perspective of understating higher cognitive behaviors in 
human beings. Swarm cognition[7] works on the basic 
postulation that a neuron as a part of the brain can be 

expressed  in similar to a social insect as a part of colony. A 
neuron in isolation has very limited capabilities and depends 
only on local interactions, however, brain demonstrates highly 
complex cognitive process similar to what swarm displays as 
a colony. Self-organism is the common mechanism that 
enables these simple units to display higher cognitive 
behaviors through the cooperative and local interactions 
between them. Therefore, behavior of a colony and cognitive 
process of a brain can be explained using simple rules of self-

organization. In self-organizing communities each individual 
either a insect or a neuron acts according to the information it 
receives from its local community, without having any global 
representation, but by following simple individual rules. 

2. SELF-ORGANIZATION IN HUMAN 

BRAIN 
In order to understand how the key components of  self-
organization affect to the decision making process of human 
brain, we explored the swarm of honeybees food foraging 
process as a decision making process, which demonstrates 

smart division of observers in the colony  into foragers and 
receivers to have efficient nectar take in and storing 
mechanism. This decision making process can be 
characterized by the information which is processing through 
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multiple local communication and the adaptive behavior of 
bees which adjust their responses according to their 
neighborhood environments[8]. This adaptation of honeybees 
is similar to the adaptation made by neurons when learning 
occurs at human brain. There a neuron adjust its internal 

metabolic processes according to its local environmental 
fluctuations by updating its synaptic strength by creating new 
synaptic connections or by withdrawing existing synaptic 
connections[9]. 

Two key types of learning mechanisms have been discussed 
in the literature which define the change of behavior 
according to the responses of the surrounding environments. 
They are: classical conditioning and operant conditioning. 

2.1 Classical Conditioning  
Classical conditioning [10]  explains the learning as: it occurs 
through the associations between neutral stimulus and 
environmental stimulus. While in operant conditioning[11] 
learning occurs as changes in behaviors of  an individual that 

are results of the individual's responses to the events that 
occur in the environment. For example, assume a dog receives 
tasty foods, soon after it hears a bell. The dog is very happy to 
receive the food and he starts dancing by wagging his tail.  
Repeating  this process many times,  the dog starts dancing 
when he hears the bell.  Pavlov[10] explained this change of 
behavior of the dog under classical conditioning. He described 
the sound of the bell as the neutral stimulus, presentation of 

foods to the dog as environmental stimulus. The dance of the 
dog is called naturally occurring response. So by associating 
this neutral stimulus with the environmental stimulus, the 
sound of the bell could alone can make the dog dance. Thus, 
by building this association, the neutral stimulus becomes 
conditioned stimulus while the dance of the dog is the 
conditioned response. The conditioned response is the learned 
response to the neutral stimulus. By pairing and un-pairing 
this association between the neutral stimulus and 

environmental stimulus, the dog can be made to learn or 
unlearn the conditional behavior. 

2.2 Operant Conditioning  
On the other hand, in operant conditioning, learning is 
described as a change of behavior that is resulted by causes of 

actions and its consequences [11]–[13].  According to 
Skinner,  three types of operants can be identified based on 
the type of responses of the environment that change the 
probability of the behavior being repeated: neutral operant (if 
the responses do not change the probability of the behavior 
being repeated), reinforces (if the responses increase the 
probability of the behavior being repeated and these reinforces 
can either be positive or negative), and punishers (if the 

responses decrease the probability of the behavior being 
repeated. The negative reinforce increase the probability when 
behavior being repeated is withdrawn). The key differences 
between the two learning approaches are: in operant 
conditioning the learner is actively and voluntarily 
participated while in classical conditioning the learner is 
passively involuntary participated. In fact many studies in the 
literature have thoroughly discussed the behavior of 

honeybees when they operate under classical conditioning[14] 
and rewarding mechanism[15]. In our research, we focused on 
an extensive study about the adapting behavior of honeybees 
under operant conditioning than classical conditioning  
because the role played by honeybees in a colony is active and 
voluntary. 

 

This paper postulates that cognitive behaviors that are 
emergent from a swarm as a self-organized system can be 
explained using operant conditioning. And thereby the swarm 
behaviors can be used to explain the emergent of cognitive 
behavior at human brain. By doing so, we argue that positive 

reinforcement and negative reinforcement in operant 
conditioning are the key factors that control the self-
organization of any dynamic system and the emergent of 
cognitive behavior. 

The paper is organized as follows: section 3 describes the 
nectar foraging process of honeybee colonies, section 4 
mathematically models the process described in section 3. 
And section 5 presents the results of the simple computational 

model that align to the model presented in section 4. Section 5 
discusses and concludes our findings. 

3. THE FUNCTION OF NECTAR 

FORAGING OF HONEYBEES 
The complexity and dynamicity of the nectar foraging of 
honeybees was analyzed in the means of identifying key 
parameters that are necessary for efficient nectar gathering 
process. It is well known that honeybees communicate 
through various communication channels such as using 
pheromones, or tactile dancing with or without some vibrating 

sounds. Among these techniques, waggle dance is the key 
communication channel that has been used by honeybees to 
inform new rewarding flowering sites to the colony and to 
recruit new foragers to the newly found flower patches[16]. 
The process of waggle dance with its dependent parameters in 
general ecology of nectar foraging of  honeybees can be 
briefly summarized as follows: 

A honeybee colony is generally composed of a queen, 

workers (all workers are female) and male or drones. The 
worker bees are almost completely responsible for caring 
hives, such as cleaning the hive, caring the larvae and youngs, 
feeding the queen and the drones, making honey, and 
gathering and storing nectar, water, etc.  Therefore around 
90% of the bees in the colony are workers, from 10% of them 
are scouts who find flower patches by searching[17]. A scout 
keep searching until its energy level is depleted or it finds 
flower-patches. If it found a flower patch, it comes to the 

comb and  unloads the nectar sources to receivers at the comb. 
The receiver takes it to the storage area of the hive. 

The returned scout can either be a scout again, or a forager, or 
an unemployed bee. If the returned scout feels that the flower 
patch from where it brought the nectar is in high quality and 
quantity, it performs waggle dance to recruit more foragers.  If 
it is in considerable quality it simply returns and brings the 
nectar from the flower patch.  Otherwise, a scout can forget 

the visited flower patch and settle as an unemployed bee until 
it is recruited, or it can become a scout again searching for 
new flower patches.   

Sometimes forager bees perform tremble dances to get 
unemployed bees to engage in nectar-receiving task [18, 19]. 
Key message that a forager wants to convey through this 
tremble dance is that it has found more-rewarding nectar 
source and no enough receivers to unload them efficiently. 

Meanwhile by performing this dance the forager tries to 
inform other mate-foragers not to recruit additional foragers to 
their nectar sources. Therefore, the tremble dances of 
honeybees help to the colony to keep the balance between 
nectar storing and nectar take-in. Once foragers unloaded their 
nectar they may start to perform waggle dance to recruit 
unemployed foragers to visit their explored flower patches. If 
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a forager bee had to wait too long to unload the nectar (when 
it was unable to find a receiver), then the forager bee does not 
perform the waggle dance to recruit additional foragers bees, 
because it does not have enough receivers to handle the 
unloading process. The receiver bee may get delayed for 

searching further away through the hive when the hive has not 
enough vacant storage cells, and it is almost full.   

Waggle dance[6,16,20-22] is a communication behavior 
which conveys the information about location, and quality 
(high concentration, distance, easy to collect, etc) of the food 
sources that have been found. A dancing bee runs forward and 
performs the waggle dance as shown in the figure 1, while she 
is on the run, she vibrates her abdomen laterally and then 

comes back to her starting point.  According to the sources in 
the literature, a distance to the food source is proportioned to 
the length of this waggle run and the angle of the run to the 
sun represents the direction of the food sources. The higher 
the quality of nectar source, the higher the number of waggle 
runs per dancing bout and that increases the number of 
recruiters. Furthermore, the number of recruiters increases in 
proportion to the probability of returning forger would dance 

and the number of waggle runs made by her per visit. Through 
this mechanism honeybee colonies gather nectar more 
efficiently by sending their foragers to the better flower 
patches by abandoning less reward flower-patches, recruiting 
to more-rewarding patches, and searching for new patches.   

 

Fig 1: Waggle dance of a honeybee 

According to Seeley[21], honeybees measure the profitability 
of located nectar source by sensing the energetic efficiency of 
their foraging. Therefore, the number of waggle runs per 
dance is not directly a linear function of closeness of the 
located nectar source to the hive but the energy expenditure 
per foraging trip. Moreover, through its waggle dance, a 
dancing bee reports on the current level of energy profitability 
of her forage site. Therefore, the number of waggle runs per 
bout is high when the nectar source is abundant, and it is low 

when it is scarce. The dancing bee does not perform her dance 
in one place but distributes it over the dance floor. Therefore 
when number of forage sites are being reported on the dancing 
floor, foragers can easily take a random sample of the dance 
information. This allows the colony to allocate foragers to 
more-rewarding food sources.  

4. MODELING FOOD FORAGING 

FUNCTION OF HONEYBEES 
The emergent of cognitive behavior at swarm level, a decision 
making process which divides the labors at the colony 

efficiently to streamline the food foraging process was 
analyzed in our research. This analysis was carried out to 
identify the key factors or reinforcements that enable the 

swarm as a self-organized system to demonstrate this highly 
cognitive task. Here, we have restricted our analysis by 
considering only the impacts of direct communication of 
honeybees on this foraging task. Further, we have assumed 
these bees can remember one flower patch at a time and can 

harvest only one flower per trip from the comb as in [6]. 

Let mathematically model the world of swarm as  square-grid 
of length m (m >0 and odd integer in meters) in which flower 
patches are placed on the environment  according to a 

Gaussian distribution ),( 2N    where   is 2/0 m   

when the comb is placed at the middle of the square. Let the 
maximum distance a scout can fly without returning the comb 
is  l >0. Let quality of the nectar concentration at flower 

patches ( Un ) are uniformly distributed in three states: low (1 

unit), moderate (2 units) and high (3 units). Moreover, the 

available quantity of the nectar in a flower patch is measured 
in terms of the number of bloomed flowers it has. Let the 
number of bloomed flowers are randomly distributed using a 

discrete uniform distribution from 1 to N ( ),1(~ NUnU ). 

Then, the overall quality of nectar a flower patch has, is 

defined by NUf nnn   . Honeybees, in a colony of size 

colony_size, are initially distributed to scouts, foragers, 

receivers, and observers with probabilities ,Prs ,Prf ,Prr

and oPr respectively. 

We adapted the equation from[22] which measures the quality 

of the food sources in terms  d  and maxd   where d  is the 

distance from the comb to a flower patch and  maxd   is the 

maximum direct distance from the comb to the edge of the 

square through the flower patch and, fn  - the overall quality 

of the nectar at a flower patch.  We can define the quality of a 
flower patch as in eq. (1).  As given in the equation, the higher 
quality flower patches which locate near to the comb gets 

higher fQ  . A scout honeybee starts Levy flight to find these 

flower patches. 

)1(
max

max



 f

f
f n

d

dd
Q

 
The number of waggle runs (w) performed by a honeybee is 

based on fQ   and it is in the form of fQw  . A returned 

forager waits time  unloadtowaitt __  to unload nectar that have 

been brought-in to a receiver in a colony; 

)__/exp(1

1
__

receiversofnumbert
t unloadtowait


  

where number_of_receivers is the number of receivers in the 
colony at time step t. The expected time duration a honeybee 

has to wait to unload nectar waitt  is measured in terms of the 

quality of the flower patches that have been reported to the 

colony so far. i.e. )(5.0 kQt fwait  .  If the foraging 

honeybee has to wait   unloadtowaitwait tt __ , the forager bee 

tends to perform tremble dance. The duration of the tremble 

dance is unloadtowaitwait tt __ . The parameter k is 

determined by a honeybee by randomly sampling its 
neighborhood,  i.e. the roughly taking the quality of the flower 

patches that have been reported to the comb; so nQk
n

i
i . 
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If  unloadtowaitwait tt __ ,   is a parameter, the forager 

stops foraging the current site.  A given forager bee can turn 
either to a scout, or an observer. A forager performs a waggle 

dance mainly based on fQ ,  the duration of the waggle bout 

is restricted by if any tremble dances performed at the colony. 
If forager bee encountered trem number of tremble dances that 
have being currently reported in the comb, then

  cntremQw f // ; where n is the size of the random 

sample and c is a constant. 

A observer bee can turn to a forager, or a receiver or remain 
as a observer based on the dominant requirement that is 
exhibited by the random sample that it has taken from the 

colony. A receiver bee can change its role to a observer if it 

has to wait too long to receive nectar, 1__ receivetowaitt ; 

where 1 is a parameter. 

Under this mathematical model, the energetic efficiency of the 
nectar source of flower patches foraged by honeybees 
influence the entire nectar foraging cycle of  the colony. 
Furthermore, this energetic efficiency, is the key factor that 
determines the duration of waggle runs performed and in fact 
it affects to the proper division of labors in the colony.  

Therefore, we can postulate that, energetic efficiency of the 
nectar source is the positive reinforcement that a honeybee 

receives to perform waggle dance and to recruit more 
foragers, and the arises of cognitive function which makes the 
decision on dividing the labors at the colony appropriately. On 
contrast, the time duration, a forager bee has to wait  to unload 
its nectar source to a receiver is the negative reinforcement 
that a honeybee receives from the environment to discourage 
the foraging of low quality flower patches compared to what 
have been reported to the colony.  

So we can postulate that these two forms of reinforcements 
from the environment allow the entire colony to keep its 
balance between nectar take-in and storage process by 
efficiently dividing its labors to appropriate task according to 
the dynamic environmental fluctuations  (according to the 
distribution of the quality of the nectar sources that have been 
reported) and according to the information communicated by 
its surrounding environment to the honeybees.   

Therefore,  a cognitive  process, such as decision making 
which is exhibited by a self-organized system, is mainly 
arisen as learning adjustments which are made by each 
individual as responses to environmental positive and 
negative reinforcements.  

5. RESULTS 
A simple computer model was developed to simulate the 

effect of the positive ( fQ ) and negative ( unloadtowaitt __ ) 

reinforcements on the labor division at swarm food foraging 
process.  

The total quality of a flower, i.e. fQ (referred as qltyFlower 

in figures), the mean of the quality of flower patches that have 
been really reported to the colony, i.e. k  (referred as 
meanQltyFlower in figures), the time duration a honeybee 

waits to unload the nectar, i.e. unloadtowaitt __  (referred as 

wTime in figures) and the expected time duration a honeybee 

must wait to unload the nectar, i.e. waitt  (referred as mwTime 

in figures) were monitored in this process in addition to the 
recording of the number of receivers, the number of foragers 
and the number of observers in the colony.  

The computer model had a colony of 150 foragers, 130 
observers, and 120 receivers.  The overall quality of a flower 

patch, i.e. fQ - (0,1) was randomly generated. Initially the 

value of k was set to 0.3. If fQ  > k , a observer is turned to a 

forager, otherwise a forager is turned to an observer. If 

unloadtowaitwait tt __ , we increase the number of receivers 

by one and decrease the number of observers by one. 
Otherwise we decrease the number of receivers by one and 
increase the number of observers by one. With this simple 

model we were able to demonstrate the effect of positive and 
negative reinforcements on each individual's action and 
thereby the emergent of cognitive behavior at swarm level.   

From figure 2 to figure 5, each figure consists of three 
subfigures, namely, (a), (b) and (c).  Subfigure (a) 
demonstrates the distribution of honeybees in the colony in 
terms of the number of receivers,  the number of foragers and 
the number of observers when all the four parameters 

(qltyFlower, meanQltyFlower, mWTime, and wTime) were 
calculated as defined in the mathematical model. The 
subfigures (b) and (c) show the fluctuations of qltyFlower, 
and meanQltyFlower, and meanWTime and wTime related to 
the scenario depicted in subfigure (a) respectively.  

Figure 2 shows the situation when we let the system to run 
around 100 steps without enforcing any other constraints. As 
shown in figure.2,  the increases of the number of foragers 

have decreased the number of observers and has increased the 
number of receivers.   

As shown in figure.3. we artificially set the value of 
meanQtyFlower to 0.8. So that we artificially informed the 
colony that the colony has been reported by high quality 
flower patches which are in the range of 0.8. As shown in 
figure 3 (b) , since the quality of the flower patches that have 
been really reported by the honeybees are less than this 

artificial value,  wTime of foragers have been increased 
compared to the expected waiting time, i.e. mwTime.  

In order to observe behaviors of the colony for lower quality 
flower patches, we artificially set meanQtyFlower to 0.4. So 
that we artificially informed the colony that it has been 
reported by low quality flower patches and it is in the range of 
0.4. As shown in figure 4(b), since the quality of the flower 
patches that have been really reported by the honeybees are 
higher than this artificial value, honeybees were not requested 

to wait too long to unload the nectar and in fact the time they 
really waited is less than the expected time duration, i.e. 
wTime < meanWTime. This adjustment of the system has 
decreased both the number of observers and the number of 
foragers and consecutively it has increased the number of 
receivers. 

Finally, we evaluated the behavior of the system by artificially 
setting mTime to 0.7 as shown in figure .5.  As shown in 

figure 5.(c) when wTime is higher than the expected waiting 
time, i.e mWTime, the system has increased the number of 
observers, and decreased the number of receivers. When 
wTime was less than the mWTIme, the system has increased 
the number of receivers and decreased the number of 
observers. 
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Fig 2: Distribution of Honeybees in the Colony 

 

 

 

 

 

 

 

 

Fig 3: Distribution of Honeybees in the Colony when meanQltyFlower was artificially set to 0.8 

 

 

 

 

 

 

 

 

 

Fig 4: Distribution of Honeybees in the Colony when meanQltyFlower was artificially set to 0.4 
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Fig 5: Distribution of Honeybees in the Colony when wTime was artificially set to 0.7 

6. DISCUSSION 
As shown in figure.2 when the colony was reported by higher 
quality flower patches compared to what have being reported 

to the colony so far, the system has increased the number of 
foragers, and the number of receivers while the number of 
observers have been decreased. This was an accepted behavior 
by the system which has encouraged the foragers who have 
reported higher quality flower patches by decreasing their real 
waiting time than the expected waiting time.  

The qltyFlower that has been reported to the colony has 
affected to the system as a positive reinforcement, as given 
figure.3. By increasing the number of observers in the colony, 

system has assumed that, it allows the foragers who have 
reported quality flower patches in 0.8 range, to broadcast their 
foraging sites effectively to the colony. So the foragers who 
have reported poor quality flower patches have been 
discouraged by increasing their real waiting time, i.e. wTime, 
than the expected waiting time, i.e. mWTime. Therefore, in 
this scenario, wTime has been applied on the system as a 
negative reinforcement to discourage foraging of poor quality 

flower patches.  

When quality of the flower patches that have been reported is 
set to 0.4, the system has encouraged foragers who have 
reported high quality flower patches (figure. 4(b)) by 
decreasing their real waiting time than the expected waiting 
time. So it has increased the number of receivers and the 
number of foragers and decreased the number of observers. 
Therefore, as expected, the system has considered qltyFlower 

as a positive reinforcement.  

Finally when we set wTime to 0.7 as in figure.5. It has 
negatively impacted on the system behavior. That is, when 
wTime is higher than the expected, it has further decreased 
the number of receivers, and increased the number of 
observers, by assuming that, the system is being reported by 

low quality flower patches. And accordingly, when wTime is 
less than the expected waiting time, it has increased the 
number of receivers and the number of foragers, while it has 
decreased the number of observers, by assuming that the 
colony has been reported by higher quality flower patches.   

Through this simple but effective simulation, we could show 
that the operant conditioning, which explains the responses 

made by a simple individual to the environmental positive and 
negative reinforcements as learning adjustments, is the 
underline phenomena of self-organization of dynamic system 
and the exhibition of cognitive behavior, such as division of 
colony labors effectively at the nectar foraging process. 

Therefore, similar to the emergent of cognitive behavior at 
swarm level, the cognitive behavior emergent at human brain 
can also be explained using operant conditioning by taking the  

brain as a self-organized system. As the future work, the 
deeper analysis into the emergent of a particular cognitive 
behavior at human brain is needed to be exploited under 
operant conditioning as a means of discovering the underlying 
positive reinforcement and negative reinforcement. Doing so, 
the adjustment that happen at individual neuronal level to 
these reinforcements can be taken as the process that resulted 
in emergent of cognitive behavior.   
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