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ABSTRACT 
Indexing enormous databases such as RDF has been a focus 

of intense research. As is well understood, indexing plays a 

pivotal role in speeding up data retrieval operations and query 

performance. Besides expediting search, an index can 

motivate new data-store schemes and technologies that can 

possibly revolutionize large data-analytics engine design, 

more often relevant to semantic web. Due to the proliferation 

of internet and the ease of creating and generating data on the 

fly - handling, storing and the subsequent semantic processing 

has proven to be a major bottleneck for the RDF data 

community. Handling data of such scale and magnitude 

requires a parallel approach as provided by the GPUs 

(Graphical processing units). In this paper, a new efficient and 

scalable index is proposed that uses a combination of B+ 

trees, hashing and sparse matrices. These data structures have 

an edge over others in terms of their implementation as a 

parallel algorithm using the CUDA (Compute Unified Device 

Architecture) framework meant to program massively parallel 

GPU multicores. So far, RDF data has been mostly 

implemented either as a RDBMS or as a non-native data-

store, in both cases the sequential indexing strategy fails 

miserably with the scaling of the data-store. Parallel 

implementation of indices provides a suitable option for 

dealing with scalable and dynamically generated data over 

distributed networks. The crucial sparse matrix part of the 

proposed index is benchmarked against different CUDA 

memory implementations to derive optimal matrix processing 

options. The sparse matrix search is profiled using 

cudamemchk and visual profiler for identifying bottlenecks 

and inconsistencies in thread execution called thread 

divergence. Benchmarking the data provides promising results 

for a B+ tree based index coupled with hashing and sparse 

matrix implementations. 
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1. INTRODUCTION 
There are several initiatives to improve the situation and 

reduce the drawbacks of the current web. One of them is a 

Semantic Web, which is coined by the W3C founder Tim 

Berners-Lee in a Scientific American article that is describing 

the future of the Web [1]. The Semantic Web gives better 

structure and computer-understandable meaning that offers a 

common framework for sharing data across applications, 

enterprise and communities. 

The Semantic Web initiates to define information on the web 

in a precise machine comprehensible format. The web in its 

existing incarnation provides information in human 

understandable formats, but the meaning of this information 

and its relation to other pieces of information elsewhere on the 

web are not well­defined. Semantic Web data uses common 

schemas to describe data from disparate sources. Machines 

capable of reading this data could comprehend the data, for 

example inferences could be made about the data based on 

information from other datasets (BernersLee,2001).Semantic 

Web information is often stored in RDF in the form of triples 

(subject, property, object). A combination of many RDF 

triples forms an RDF graph. RDF is a metadata model for web 

resources, and is the reason it is referred as a Resource 

Description Framework (RDF). 

A number of storage implementations and schemes have been 

proposed that use databases to cache RDF triples. Some 

implementations maintain RDF­specific information in the 

application layer, and some store the RDF schema at the 

database level. When stored at the application level, the 

application stays database-independent, and compromises in 

terms of performance and scalability is revealed. When the 

RDF schema is implemented at the database level, RDF 

structure can be exploited to obtain efficiency using existing 

database models. These reviews focus on existing state of the 

art of RDF database storage schemes. The simplest way to 

store RDF data is in a triple store, essentially one large table 

with three columns for subject, predicate, and object. 

Variations on the triple store have shown improvements in 

efficiency and have reduced the number of self joins needed 

when issuing complex queries. 

RDF storage has witnessed numerous research initiatives in 

varied domains. Despite of the best efforts, a scalable, 

efficient and fast index has eluded researcher’s grasp. A 

typical RDF data-store consists of billions of triples (a triple 

comprises of subject, predicate and object) with extensive and 

wide range of self- dependencies among the subject and the 

object field values. The outcome of which results in recursive 

self-joins with an added cost to the query optimizer [1]. 

Besides self-joins, unions and null values it also generates 

countless performance related issues. There exists broadly two 

ways to deal with these disputes, either to re-design the RDF 

data-store from scratch using a new setup for representing the 

triples along with the modified query engine design or to 

explore faster and more efficient indexing strategies that 

provide impeccable query processing time irrespective of 

scalability.  

RDF repositories usually create indexes on one or more 

components of an RDF triple. Since the volume of data (RDF-

triples) is quite large, a typical index should at least be 

logarithmic in its time complexity. Many index designs have 

been suggested with most of them relying on B+ tree and 

hashing. In one of the suggested design [10], a forest of B+ 

tree is created that uses different combinations of S, P and O. 

The main drawback of this strategy lies in the complex 

queries resulting in slow data retrieval.  Hexastore sex tuple 
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indexing [18] is another architectural design that suggests six-

fold indexing based on different combinations of S, P and O. 

The search through the data-store takes place in constant time 

but dynamic updates are very slow. This architecture is quite 

suitable for static RDF tables but does not scale well with 

dynamic RDF data. 

In general, multiple indexing [2, 3, 4] has been a very widely 

researched option particularly for designing efficient hashes. 

Multiple indexes mask and moderate intricate complexities 

that arise out of a single-indexing method. The main issue that 

works against a single index is that of transitive closure or 

subject-object pair recursion. Besides, a single subject may 

map to multiple objects. These two observations are rectified 

when multiples indexes are considered. An instance in point is 

that multiple maps of a B+ tree are channelized to different 

positions on a hash map and parallelized, using multiple 

threads which is applied and followed in this paper. 

This paper focuses on the second aspect related to a new 

index design. Indexing is an essential part of the IR systems 

for two reasons.  

 It optimizes the query performance and improves 

the response times.  

 A number of processing tasks are carried out during 

the indexing phase similar to the query processing 

phase, which further improves the performance. 

The data-stores are getting bigger each passing day, a new 

distributed approach using Lucene that uses Map Reduce was 

suggested [1]. The main advantage of this approach is the 

leveraging of the distributed load across different processor-

cores. This highly speeds up the indexing process but the 

issue of self-joins remains.   

2. RELATED WORK 
In this section, we discuss about a recent survey [Yongming 

Luo, 2012] that distinguishes between three different 

perspectives on RDF storage: 

• The relational perspective considers RDF data to be 

relational data, and leverages existing storage and indexing 

techniques originally developed for relational database 

Systems. 

• The entity perspective treats resources in an RDF dataset as 

“entities” associated with a number of (attribute, value) pairs. 

• The graph-based perspective views an RDF dataset as a 

classical graph, where the subject and object parts of each 

triple correspond to nodes and the predicate parts correspond 

to the directed, labelled edges between them. It aims to 

support graph navigation and answering of graph-theoretic 

queries. This perspective of research focuses on semi-

structured- and graph databases. 

The discussion is further extended on the state of storing RDF 

data in Triple Table, with a comprehensive look at the 

property table approach and vertically partitioned approach. 

The RDF data stores in a single triple table which consists of 

three columns, subject, predicate, and object respectively [5]. 

The performance issue of this approach is all the triples stored 

in a single RDF table requires expensive and complex self 

joins over the triples table as pointed out in [11, 12, and 13]. 

Thus, as queries become more complex the execution time 

increases. In addition, it is exceeding the memory size and 

congestion of the RDF data sets. Nevertheless, this approach 

has been implemented by systems like Oracle [14], 3store [5], 

Redland [20], RDFStore [21] and rdfDB [22]. The research 

community later introduces an alternative solution for 

improving the triples table and minimize the number of self-

joins issues. An alternative methodology to the previous is the 

property table approach [6]. 

The property approach deformalized the RDF table that stored 

in a flattened format. Furthermore, it is classified into two 

types which are property class table and clustered property 

table. The clustered table contains cluster of properties that 

tend to be defined together. The property class table exploits 

the type property of subjects to cluster similar sets if subject 

together in the same table [7]. The most important advantage 

for representing the property tables is that they can reduce 

subject-subject self joins of the triples table. However, this 

approach may not fit well the RDF data because of 

unstructured data and missing properties. In an interpretation, 

not all properties will be defined for all subjects and that 

perhaps will lead to many NULL values which increases the 

overhead in the memory space. Another problem with the 

property table is the abundance of multi-valued attributes 

found in RDF data which cause further complexity and with 

combined data from several tables the issue of improving the 

performance of self-joins queries maybe become poor. In 

summary, property tables are rarely used due to their 

complexity and inability to handle multi-valued attributes. 

However, this approach has been used by tools like Sesame 

[23], Jena2 [12], RDFSuite [24] and 4store [21]. 

Abadi et al. [7] proposed vertically partitioned approach is an 

alternative solution to the property table to speed up query 

processing and minimize its limitations by deploying a fully 

Decomposed Storage Model (DSM) [10]. In this approach, an 

RDF table is re-written into n two-column tables, where n is 

the number of unique properties. Furthermore, the first column 

is subject and the second is an object. One of the primary 

benefits of vertical partitioning is the support for rapid subject-

subject joins. This feature is achieved by sorting the tables via 

subject as mentioned above, each binary table has subject and 

object columns. The tables being sorted by subject, one has a 

way to use fast merge joins to reconstruct information about 

multiple properties for subsets of subjects. The experiments in 

these papers [8] and [9] reveals that the vertical partitioning 

approach also performs poorly for querying RDF data and 

slow insertion, because of the multi property tables.  The 

vertical partitioning approach supports multi valued attributes 

and heterogeneous records. In addition, it is eliminating the 

subjects that do not define a particular property. Obviously, it 

reduces the NULLs value through that elimination.  

3.  STORING AND INDEXING UNDER 

RELATIONAL PERSPECTIVE 
The RDF data in relational databases are stored as triples of a 

RDF graph on a single table over a relational schema 

(Subject, Predicate, and Object). An important issue in this 

approach is that due to the large size of the RDF graphs and 

the potential large number of self-joins required to answer 

queries, at most care has been be taken to devise an efficient 

physical layout with suitable indexes to support query 

answering.     

 

Fig. 1. Basic Search Architecture 
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To search the information from on a RDF table, the query 

overcomes the necessity of building text analysis that avoids 

tokenization, word elimination, Normalization, Stemming and 

Lemmatization unlike a search deployed for text analysis. Fig 

1 exposes the search engine’s component support of two major 

functions, the index process build data structures that enable 

searching and the query process uses those data structures to 

satisfy the information need by retrieving it for the user.  

3.1. Proposal to address scalability issue: 
To address the scalability issue, we propose an unclustered-

index on B+ trees comparing the impact of the following 

permutations on S, P, O. Neumann and Weikum [6] take this 

approach further in their RDF-3X engine by adding to the 6 

indexes above, so-called projection indexes for each strict 

subset of {subject; predicate; object}, again in every order. 

This adds an additional 9 indexes: s, p, o, sp, ps, so, os, op, 

and po. Instead of storing triples, the projection indexes 

conceptually map search keys to the number of triples that 

satisfy the search key. For example, the projection index on 

subject alone maps each subject s to the cardinality of the 

multi-set 

{| (p; o) | (s; p; o) occurs in the RDF Graph |} 

The projection indexes are used to answer aggregate queries; 

to avoid computing some intermediate join results and to 

provide statistics that can be used by the RDF-3X cost-based 

query optimizer. RDF-3X also includes advanced algorithms 

for estimating join cardinalities to facilitate query processing. 

The unclustered-indexes entails combined indexing on subject 

and Object (SO) as revealed in Fig 4.  

In addition, Erling and Mikhailov [12] reports that in practical 

RDF graphs, many triples share the same predicate and object. 

To take advantage of this property, Virtuoso builds bitmap 

indexes for each ops prefix by default, storing the various 

subjects. McGlothlin et al. built on this idea and used bitmap 

indexes instead of B-Trees as the main storage structure [7]. 

In our paper, based on the study made by Neumann and 

Weikum [6] and Erling and Mikhailov [12] we have proposed 

the idea of using the unclustered index on subject and object 

as they can be commonly used and can share different 

predicates. Conversely, this unclustered permutation of SO 

index on B+ tress seems to materialize the need for easy 

storage and retrieval. 

4. PROPOSED TECHNIQUE: (B+-hashed-

bitmap index) 
Empirical results (Fernandez et al., 2013) [13] show that the 

average size of these lists of predicates for subjects and 

objects is, at most, one order of magnitude less than the 

number of total predicates used in real-world datasets. This 

fact not only ensures a great improvement for queries with 

unbounded predicate, but also implies a limited additional 

space for SO indexes. 

 Input: RDF triple (Subject, Predicate, Object) as shown 

in fig. 2. 

 Create an empty predicate-matrix with SO (Identifiers) 

plotted on the rows and predicates listed as columns as 

shown in fig. 3.The sparse matrix is optimized using 

GPU to improve the efficiency further. 

 Create a un-clustered-index on SO over a B+ tree as 

shown in fig. 4. 

 Deploy a B+ tree index that leads to leafs (Predicates) 

as shown in fig. 4. 

 The hashed predicate updates the predicate-matrix 

table. 

 

 

Fig 2: RDF triple table 

 

  P1 P2 P P4 P5 … 

ID1       

ID2       

…       

…       

IDn       

 

Fig. 3. Predicate Matrix 

This describes how the B+ tree structure can be applied to the 

predicate matrix-bitmap of RDF storage. Our approach is 

called B+ hashed predicate matrix-bitmap indexing. A 

combined index on subject and object is preferred to retrieve 

the appropriate predicates associated with the concerned 

subject and object that are common/uncommon as shown in 

fig .4. As the query is based on the Subject : “Awny” and 

Object: “team”, it branches via the B+ tree pointing to the leaf 

nodes as identifiers that list the predicates associated with it. 

The predicates are then mapped to the corresponding 

identifier which is updated using 1’s and 0’s in predicate 

matrix table. This matrix helps to speedup filtering and 

updates the mapped results. The complexity involved with 

this architecture is log N + 2N. This indexing strategy ensures 

a logarithmic complexity which when compared with 

quadratic and linear complexity seems to be more promising. 

Subject Property  Object 

ID1 Type FullProfessor 

ID1 teacherOf ‘Ali’ 

 ID1 bachelorFrom ‘MIT’ 

ID1 mastersFrom ‘Cambridge’ 

ID1 phdFrom ‘Yale’ 

ID2 Type AssocProfessor 

 ID2 worksFor ‘MIT’ 

ID2 teacherOf ‘DataBases’ 

ID2 bachelorFrom ‘Yale’ 

ID2 phdFrom ‘Stanford’ 

ID3 Type GradStudent 

ID3 Advisor ID2 
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Fig 4: B+ hash bitmap index functional block diagram 

(Unclustered-index) 

5. IMPLEMENTATION OF B+-HASHED 

BITMAP INDEX USING CUDA 

5.1 CUDA Background  
GPU acceleration of compute-intensive applications has 

emerged a new research frontier with phenomenal success-

rates. Such applications are characterized by large data-sets 

being processed by singular functional units (FUs) often 

described as SIMD (Single Instruction Multiple Data) 

computing. 

Moreover, with the proliferation of internet and its easy access 

on myriad devices, has resulted in huge amount of data 

generation. Initially, such data was considered disconnected 

and not related. But with the advent of semantic web, data has 

been found to be highly co-related and relevant. Organizing 

such huge amount of data and subsequently processing 

requires parallel framework that is both distributed and 

scalable. Graphical processing units (GPUs) are being actively 

probed in the domain of Big Data analysis, machine learning, 

and augmented reality since such applications are 

characterized by massive data spanned and generated over 

distributed network. GPUs provide a parallel programming 

framework using CUDA (Compute Unified Device 

Architecture) that can be utilized to efficiently collate and 

make inferences on these massive data-sets. Further, GPU 

multicores are available at commodity rates thus providing an 

option for cheap and low-power alternatives. 

The exponential growth of semantic web and the resultant 

generation of large-scale RDF (Resource Description 

Framework) triples pose new challenges in the domain of 

RDF-storage and retrieval. RDF data consist of triples 

<Subject, Predicate, and Object> which need to be efficiently 

indexed. Following are some of the many challenges related 

to efficient indexing of RDF triples: 

• As RDF-triples extensively contain recursive 

redundancies, self-joins so formed are inefficient. 

• Self-joins also lead to large scale null values. 

5.1.1 Hashing Options 
Indexing can be implemented by mapping all the <key, value> 

pairs on to an array of the size of the search universe. This can 

result in instantaneous search if the extraordinary size of the 

array is overlooked. Besides, the search array being of 

extraordinary length, it may also be sparse. This may lead to 

wastage of space and also will have bearing on the search 

complexity (considering the array size to that of the universe, 

it is, but obvious that the array cannot be entirely brought into 

the RAM.). In order to avoid this colossal waste of space, 

hash functions allows search arrays to be of much shorter 

lengths (often of fixed size) but at the cost of collisions (refer 

Fig 2). Collision resolution has been an active research subject 

for many years now. Two popular resolution strategies named 

“open addressing” and “chaining” are employed but they fail 

miserably when the number of collisions is many. Open 

addressing refers to a collision mitigation technique that 

involves inserting the generated <key, value> pairs to the next 

free space available in the search array. The main drawback of 

this technique relates to the provision of in-between free 

spaces in the search array (implemented using the judicial 

selection of the hash function). 

5.1.2 Drawbacks of GPU application of Hash 

Table 
1. Parallel insertion into the hash table cannot be achieved 

as the data structure has to be locked before insertion. 

This can be done by atomic instructions provided in 

CUDA. This is done to avoid a same memory location 

being accessed by multiple CUDA threads thus leading 

to race conditions [14]. 

2. Memory accesses of different (often scattered) memory 

locations cannot be optimized as non-contiguous 

memory is accessed. As a result, memory coalescing 

techniques that use the concept of alignment (Hardware 

dependent) cannot be applied. Coalesced memory 

access of a warp of threads (32 threads in CUDA are 

considered as one warp) results in one or two memory 

transactions of a memory bank. This increases the 

memory access performance. 

5.1.3 Proposed modification to Hashing with 

relevance to sparse matrix 
The previous two sub-sections provide the limitations for 

implementing hashing in a parallel GPU environment coupled 

with the data to be hashed residing on a sparse matrix (Fig. 4). 

Since the thread divergence is a major issue in GPUs, hashing 

typically provides random distribution of data which in the 

conventional sequential sense is quite an equitable 

distribution. But in the case of GPUs this is inefficient and 

leads to performance degradation.  

The perfect spatial hashing [25] provides a solution to the 

random hashing by providing two levels of hashing. This is 

represented by the following equation: 

                     

Where, h0 and h1 refers to two imperfect hash functions 

coupled to one another using an offset table ϕ. The main task 

of the offset table is to force the h0 function from an imperfect 

hash to a perfect hash using the second level of indirection 

thus providing clustered hash mappings amenable to a typical 

CUDA kernel function. This process leads to spatial 

coherence that is a very common technique used when 

computing graphical applications in CUDA. So, in effect the 

combination of two imperfect hashes is coerced into a hash 
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function that provides spatial locality of reference. As a result 

our RDF sparse matrix is compacted into a spatially coherent 

hash table thus providing ample opportunities for CUDA 

warps (group of threads that executes in unison 

simultaneously) to execute without any chance of divergence. 

This factor contributes to the higher efficiency of the 

proposed B+ Hashed indexes. The whole sequence of the 

spatial hash framework is depicted in Fig 5. 

 

 

 

 

Fig 5. Perfect Spatial Hashing 

 

The above technique provides spatial coherency at the 

expense of additional memory, which is not a big 

consideration now in CUDA as the large matrices are tiled 

and brought one by one as a single tile into the limited device 

shared memory. Besides other CUDA memory optimizations 

such as pinned or page-locked memory accesses may be 

attempted if the memory access is read-only which is 

precisely the case in RDF sparse matrix.  

5.1.4 Boolean (logical) Sparse Matrix 

implementation using CUDA 
A typical sparse matrix consists of large number of zero 

values with very few dispersed non-zero ones. The opposite to 

that of the sparse matrix is the dense-matrix which comprises 

more non-zero elements than the zero ones. Sparse matrices 

find usages in large and varied domains of computational 

science research and are formed primarily from the solution of 

partial differential equations. Sparse matrices also find usages 

in 3D-maps used by Google in solving non-linear issues. 

Ceres Solver [15] is a portable C++ library used by Google 

maps to reconstruct 3D-maps using 2-D photographs that uses 

non-linear sparse arrays. 

It is often noticed that some operations belonging to dense-

matrices may scale very poorly on sparse matrix. Hence 

different sets of operations that can efficiently run on sparse 

matrices are needed. Most of the software languages have 

support for sparse matrices in the form of libraries and APIs. 

Some of them are cuSparse for CUDA C/C++, SciPy 2-D 

sparse matrix package for numeric data in Python and many 

others. 

In order to provide efficient sparse matrix operations, there is 

a need for an efficient sparse matrix representation. Many 

representations (data structures) have been suggested, but 

since GPUs are being used to expedite search, cuSparse 

CUDA library is used as it specifies different matrix 

representation formats. These formats are listed as under: 

 Dense format: This format is a typical row-major order 

which is used for storing dense-matrices 

conventionally. (Nvidia CUDA library cuBLAS uses it 

as default). 

 Coordinate format (COO): This format has been 

specifically designed for sparse matrices taking into 

consideration the non-zero values and ignoring the 

zero ones. The matrix is stored in a row-major order. 

 Compressed Sparse Row Format (CSR): CSR format 

is very similar to COO except for the row indices 

which are compressed and aggregated.  

 Compressed Sparse Column Format (CSC): CSC 

stipulates matrices to be stored in a column-major 

order and compresses columns instead of rows as in 

the case of the above mentioned CSR format. 

For the sake of brevity CSR format is proposed to be used to 

represent sparse matrices derived during indexing. Since, the 

Boolean sparse matrix consists of only 0’s and 1’s, each 

element of the matrix can be represented using a single bit. 

Thus a sparse matrix having 10 million elements can easily be 

represented in a dense format with 10 million bits roughly 

equivalent to a few megabytes.  If a compression format such 

as CSR is applied, the size for storing a matrix may dwindle 

further. Since the CSR format can take any values for non-

zero, the Boolean data further reduces the space requirements 

by restricting matrix element values to a single bit size 

representing either one of the value – 0 or 1. The next section 

gives a detailed preview of the modified CSR format. 

5.2 Compressed Sparse Row – (Boolean) 

Format (CSRB) 
So the Boolean CSR matrix as defined in CUSPARSE library 

[16] is modified for Boolean values instead of floats. The 

modified table represents the CSRB matrix as under: 

 

nnz (integer) The number of ones in the 

matrix 

csrbRowPtrA (pointer) Points to the integer array of 

length m+1. The first m+1 

elements of this array consist 

of all 1’s indices A. The last 

(m+1)th value consist of 

nnz+csrbRowPtrA(0). 

csrbColIndA (pointer) Points to the integer array of 

length nnz containing the 

column indices. 

 

It may be noted that the modified CSRB Format does not need 

an extra vector csrValA [16] that list all non-zero value 

elements belonging to a matrix A. Only two linear vectors 

(csrbRowPtrA and  csrbColIndA) are sufficient to depict 

matrix A. 

Consider a Boolean sparse matrix (A) of size 4×5, where the 

number of rows is 4 and the number of columns is 5.  

A= 

     
     
     
     

    (1) 

Storage in CSRB format using zero-based indexing, as 

depicted below:  

csrbRowPtrA=[0,2,3,5,nnz+csrbRowPtrA(0)] = [0,2,3,5,7] (2) 

csrbColIndA=[0,1,2,1,2,2,4] 

It can be noticed that a single matrix A of size 4×5 consisting 

of 20 elements is reduced to vectors consisting in sum a total 

of 12 elements, a reduction ratio of 60%. Hence, the Boolean 

Sparse Matrix Reduction Ration (BSMR) can be derived as 

under: 
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BSMR(%)=(|csrbRowPtrA|+|csrbColIndA|)/(M×N)×100  (3) 

BSMR Ratio besides providing sparse matrix space 

complexity also derives the following implications: 

The sparse matrix may turn into a dense matrix if the number 

of 1’s increase suddenly. This may create a belief that the 

sparse matrix representation as CSRB format may turn out to 

be inefficient. After scanning the BSMR Ratio (3) it can be 

pointed out that the increase in the number of elements will 

have a corresponding increase in csrbColIndA vector but will 

not affect csrbRowPtrA vector since it consist of the initial 

indices values for each column that remain more or less 

unchanged. Thus we can derive the following analogy: 

|A|∝|csrbColIndA|   (4)                                                                      

5.3 CUDA multithreaded model for 

implementation of Boolean Sparse matrix 

(CSRB Format) 
CUDA supports parallel matrix operations on each individual 

element asynchronously. Since CUDA derives its origin from 

the days of graphics pixel programming and rendering, it 

provides seamless multithreaded options of processing 

matrices with ease. CUDA threads are organized in a 

hierarchy of Grids and Blocks. In the absence of any data 

dependencies and memory bank conflicts and proper memory 

coalescing, a warp comprising of 32 threads of a block is 

capable of simultaneous execution on each SM (Streaming 

processor).  

The following thread model is proposed for thread allocation: 

 A sparse matrix comprising millions of elements is 

divided into equal sized tiles of 32×32 elements.  

 Each tile is processed simultaneously using a cuSparse 

library using shared memory. Shared memory is a fast 

but small cache memory (equivalent to that of L1 

cache). Each block has its own shared memory cache. 

Since the size of shared memory is small (32 KB or 48 

KB), the predicate matrix need to be tiled.  

5.3.1 Benchmarking Boolean Sparse matrix 

against different memory factors 
Efficient tiling methods using shared memories that take into 

account memory bank conflicts are experimented with the 

following results. For the sake of providing increased 

complexity in terms processing, matrix copy and matrix 

transpose operation is considered as a benchmark. 

Legends for Table 1 

MatCopy – Matrix Copy 

MatCopySh – Matrix Copy Shared 

TransBasic – Transpose Basic 

TransCoal – Transpose Coalesced 

TransCFree – Transpose Conflict Free 

 

Table 1 simulation data obtained from test runs is plotted 

against the matrix varying sizes as depicted in Fig. 5. It can 

conveniently be pointed out that despite the scaling of the 

matrix from 512 to 4096-square elements the effective 

bandwidth measured in GB per second does not show is 

decrease. The bandwidth continues to improve with the 

scaling which is a desired property for RDF type voluminous 

databases. Considering various types of memory accesses in 

the experimentation it can be factually stated that the effective 

bandwidth maintains a stable growth proportional to the 

growth in the size of the matrices. Copy matrix experiment is 

taken as the most effective benchmark as copy operation is 

among the fastest. Thus, the selection of predicate matrix for 

storing Boolean values against the <subject, object> map is 

convincing and implementable. 

 

Table 1: Bandwidth comparisons on different matrix 

memory accesses 

 
Matri

x Size 

Mat

Cop

y 

MatC

opySh 

Trans

Basic 

Trans

Coal 

Trans

CFree 

 

512×5

12 

15.9

6 

8.13 5.67 5.89 7.47 Band

width 

NVS5

400M 
1024×

1024 

16.3

0 

8.19 5.76 6.13 8.63 

2048×

2048 

16.3

8 

8.21 6.35 7.20 9.08 

4096×

4096 

17.4

0 

9.87 6.56 7.21 9.08 

512×5

12 

12.4

6 

6.07 5.69 4.41 4.73 Band

width 

GeFor

ce GT 

540M 

1024×

1024 

12.4

6 

6.10 5.76 4.47 4.75 

2048×

2048 

12.6

8 

6.12 5.84 4.49 4.76 

4096×

4096 

12.6

9 

6.12 5.81 4.49 4.76 

 

Device: NVS5400M 

 

 

Device: GeForce GT 540M 

Fig. 6: Plot against different matrix-memory operations 

vs Bandwidth (GB/seconds) 
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5.3.2 Optimization issues on CSRB Matrix 
 Any occurrences of rows and columns that have entire 

rows or columns as zeroes can be dealt with by 

deleting the particular row/column. Since initial sparse 

matrix will have at least one non-zero (1’s) entry in 

each of its row but subsequent update of the predicate 

matrix may result in some rows or columns to be 

entirely zero. In such cases, the row/column may be 

deleted. 

 The standard CSR matrix format (refer cusparse 

documentation) has been modified to represent a 

Boolean matrix. In this process a vector that stores all 

non-zero values may be ignored as all non-zero values 

happen to be 1. As a result a space complexity of the 

standard CSR format is further reduced thus providing 

optimized space requirements. 

Standard CSR format space complexity = 2nnz+n+1 

Proposed CSRB format space complexity = nnz+n+1 

Where nnz is the total number of non-zero elements, n is the 

size of the row/column (we assume square matrix) . 

5.3.3 CUDA implementation of CSRB  
The implementation part in CUDA C is outlined in the 

following steps briefly: 

 The standard memory allocation and the Host to 

Device memory transfer operations using cudaMalloc, 

cudaMemcpy are omitted for the sake of brevity.  

 N-Square Boolean matrices of different sizes are 

considered. The code can be modified with ease for 

matrices with different number of rows and columns. 

The sizes on which test runs are conducted are 

512×512, 1024×1024, 2048×2048 and 4096×4096. 

 The following kernel template is used for matrix 

processing: 

 

 

 

 

 

 

 

 

 

6. CONCLUSION AND FUTURE WORK 
The B+ tree Hashed Predicate Matrix index provide a multi-

level index structure that uses a modular approach to reduce 

indexing complexity. This is a common pattern in modern 

indexing structures. The prime requirement for multi-level 

indexes is the large volume of RDF-triple data coupled with 

extensive self-join complexities due to recurrences in the RDF 

table. The time complexity of the proposed index structure 

comes out to be lower ⌊log (n+2n)⌋. The 2n cost is negligible 

in most cases considering multi-level reduction of the search 

space. Empirically the cost is 2n<<log (n), thus providing 

logarithmic time.  

The multi-level index provides ample avenues for providing 

improved query designs. Multi-level indexes has significantly 

reduced the number of block accesses required to search for a 

record given its indexing field value. The reorganization of 

entire file is not required to the maintain performance is one 

another added advantage of using this strategy. The next 

target is to integrate the index in different RDBMS databases 

and ascertain the speed-up with different RDF data-sets. 

Further since the index runs on a GPU-enabled machine, it 

provides a shield against scalable issues of the data-sets. This 

has not been the case so far with contemporary indexes. 
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