
International Journal of Computer Applications (0975 – 8887)

Volume 104 – No.7, October 2014

31

An Efficient and Scalable RDF Indexing Strategy based

on B-Hashed-Bitmap Algorithm using CUDA

Sharmi Sankara, Munesh Singha, Awny Sayed*, Jihad Alkhalaf Bani-Younisa
a
College of Applied Sciences, Ibri, Postal Code 516, Sultanate of Oman,

* Faculty of Science, Minia University, Egypt

ABSTRACT
Indexing enormous databases such as RDF has been a focus

of intense research. As is well understood, indexing plays a

pivotal role in speeding up data retrieval operations and query

performance. Besides expediting search, an index can

motivate new data-store schemes and technologies that can

possibly revolutionize large data-analytics engine design,

more often relevant to semantic web. Due to the proliferation

of internet and the ease of creating and generating data on the

fly - handling, storing and the subsequent semantic processing

has proven to be a major bottleneck for the RDF data

community. Handling data of such scale and magnitude

requires a parallel approach as provided by the GPUs

(Graphical processing units). In this paper, a new efficient and

scalable index is proposed that uses a combination of B+

trees, hashing and sparse matrices. These data structures have

an edge over others in terms of their implementation as a

parallel algorithm using the CUDA (Compute Unified Device

Architecture) framework meant to program massively parallel

GPU multicores. So far, RDF data has been mostly

implemented either as a RDBMS or as a non-native data-

store, in both cases the sequential indexing strategy fails

miserably with the scaling of the data-store. Parallel

implementation of indices provides a suitable option for

dealing with scalable and dynamically generated data over

distributed networks. The crucial sparse matrix part of the

proposed index is benchmarked against different CUDA

memory implementations to derive optimal matrix processing

options. The sparse matrix search is profiled using

cudamemchk and visual profiler for identifying bottlenecks

and inconsistencies in thread execution called thread

divergence. Benchmarking the data provides promising results

for a B+ tree based index coupled with hashing and sparse

matrix implementations.

Keywords
RDF, B+ tree, hashmap, sparse matrix, CUDA, GPU.

1. INTRODUCTION
There are several initiatives to improve the situation and

reduce the drawbacks of the current web. One of them is a

Semantic Web, which is coined by the W3C founder Tim

Berners-Lee in a Scientific American article that is describing

the future of the Web [1]. The Semantic Web gives better

structure and computer-understandable meaning that offers a

common framework for sharing data across applications,

enterprise and communities.

The Semantic Web initiates to define information on the web

in a precise machine comprehensible format. The web in its

existing incarnation provides information in human

understandable formats, but the meaning of this information

and its relation to other pieces of information elsewhere on the

web are not well­defined. Semantic Web data uses common

schemas to describe data from disparate sources. Machines

capable of reading this data could comprehend the data, for

example inferences could be made about the data based on

information from other datasets (BernersLee,2001).Semantic

Web information is often stored in RDF in the form of triples

(subject, property, object). A combination of many RDF

triples forms an RDF graph. RDF is a metadata model for web

resources, and is the reason it is referred as a Resource

Description Framework (RDF).

A number of storage implementations and schemes have been

proposed that use databases to cache RDF triples. Some

implementations maintain RDF­specific information in the

application layer, and some store the RDF schema at the

database level. When stored at the application level, the

application stays database-independent, and compromises in

terms of performance and scalability is revealed. When the

RDF schema is implemented at the database level, RDF

structure can be exploited to obtain efficiency using existing

database models. These reviews focus on existing state of the

art of RDF database storage schemes. The simplest way to

store RDF data is in a triple store, essentially one large table

with three columns for subject, predicate, and object.

Variations on the triple store have shown improvements in

efficiency and have reduced the number of self joins needed

when issuing complex queries.

RDF storage has witnessed numerous research initiatives in

varied domains. Despite of the best efforts, a scalable,

efficient and fast index has eluded researcher’s grasp. A

typical RDF data-store consists of billions of triples (a triple

comprises of subject, predicate and object) with extensive and

wide range of self- dependencies among the subject and the

object field values. The outcome of which results in recursive

self-joins with an added cost to the query optimizer [1].

Besides self-joins, unions and null values it also generates

countless performance related issues. There exists broadly two

ways to deal with these disputes, either to re-design the RDF

data-store from scratch using a new setup for representing the

triples along with the modified query engine design or to

explore faster and more efficient indexing strategies that

provide impeccable query processing time irrespective of

scalability.

RDF repositories usually create indexes on one or more

components of an RDF triple. Since the volume of data (RDF-

triples) is quite large, a typical index should at least be

logarithmic in its time complexity. Many index designs have

been suggested with most of them relying on B+ tree and

hashing. In one of the suggested design [10], a forest of B+

tree is created that uses different combinations of S, P and O.

The main drawback of this strategy lies in the complex

queries resulting in slow data retrieval. Hexastore sex tuple

International Journal of Computer Applications (0975 – 8887)

Volume 104 – No.7, October 2014

32

indexing [18] is another architectural design that suggests six-

fold indexing based on different combinations of S, P and O.

The search through the data-store takes place in constant time

but dynamic updates are very slow. This architecture is quite

suitable for static RDF tables but does not scale well with

dynamic RDF data.

In general, multiple indexing [2, 3, 4] has been a very widely

researched option particularly for designing efficient hashes.

Multiple indexes mask and moderate intricate complexities

that arise out of a single-indexing method. The main issue that

works against a single index is that of transitive closure or

subject-object pair recursion. Besides, a single subject may

map to multiple objects. These two observations are rectified

when multiples indexes are considered. An instance in point is

that multiple maps of a B+ tree are channelized to different

positions on a hash map and parallelized, using multiple

threads which is applied and followed in this paper.

This paper focuses on the second aspect related to a new

index design. Indexing is an essential part of the IR systems

for two reasons.

 It optimizes the query performance and improves

the response times.

 A number of processing tasks are carried out during

the indexing phase similar to the query processing

phase, which further improves the performance.

The data-stores are getting bigger each passing day, a new

distributed approach using Lucene that uses Map Reduce was

suggested [1]. The main advantage of this approach is the

leveraging of the distributed load across different processor-

cores. This highly speeds up the indexing process but the

issue of self-joins remains.

2. RELATED WORK
In this section, we discuss about a recent survey [Yongming

Luo, 2012] that distinguishes between three different

perspectives on RDF storage:

• The relational perspective considers RDF data to be

relational data, and leverages existing storage and indexing

techniques originally developed for relational database

Systems.

• The entity perspective treats resources in an RDF dataset as

“entities” associated with a number of (attribute, value) pairs.

• The graph-based perspective views an RDF dataset as a

classical graph, where the subject and object parts of each

triple correspond to nodes and the predicate parts correspond

to the directed, labelled edges between them. It aims to

support graph navigation and answering of graph-theoretic

queries. This perspective of research focuses on semi-

structured- and graph databases.

The discussion is further extended on the state of storing RDF

data in Triple Table, with a comprehensive look at the

property table approach and vertically partitioned approach.

The RDF data stores in a single triple table which consists of

three columns, subject, predicate, and object respectively [5].

The performance issue of this approach is all the triples stored

in a single RDF table requires expensive and complex self

joins over the triples table as pointed out in [11, 12, and 13].

Thus, as queries become more complex the execution time

increases. In addition, it is exceeding the memory size and

congestion of the RDF data sets. Nevertheless, this approach

has been implemented by systems like Oracle [14], 3store [5],

Redland [20], RDFStore [21] and rdfDB [22]. The research

community later introduces an alternative solution for

improving the triples table and minimize the number of self-

joins issues. An alternative methodology to the previous is the

property table approach [6].

The property approach deformalized the RDF table that stored

in a flattened format. Furthermore, it is classified into two

types which are property class table and clustered property

table. The clustered table contains cluster of properties that

tend to be defined together. The property class table exploits

the type property of subjects to cluster similar sets if subject

together in the same table [7]. The most important advantage

for representing the property tables is that they can reduce

subject-subject self joins of the triples table. However, this

approach may not fit well the RDF data because of

unstructured data and missing properties. In an interpretation,

not all properties will be defined for all subjects and that

perhaps will lead to many NULL values which increases the

overhead in the memory space. Another problem with the

property table is the abundance of multi-valued attributes

found in RDF data which cause further complexity and with

combined data from several tables the issue of improving the

performance of self-joins queries maybe become poor. In

summary, property tables are rarely used due to their

complexity and inability to handle multi-valued attributes.

However, this approach has been used by tools like Sesame

[23], Jena2 [12], RDFSuite [24] and 4store [21].

Abadi et al. [7] proposed vertically partitioned approach is an

alternative solution to the property table to speed up query

processing and minimize its limitations by deploying a fully

Decomposed Storage Model (DSM) [10]. In this approach, an

RDF table is re-written into n two-column tables, where n is

the number of unique properties. Furthermore, the first column

is subject and the second is an object. One of the primary

benefits of vertical partitioning is the support for rapid subject-

subject joins. This feature is achieved by sorting the tables via

subject as mentioned above, each binary table has subject and

object columns. The tables being sorted by subject, one has a

way to use fast merge joins to reconstruct information about

multiple properties for subsets of subjects. The experiments in

these papers [8] and [9] reveals that the vertical partitioning

approach also performs poorly for querying RDF data and

slow insertion, because of the multi property tables. The

vertical partitioning approach supports multi valued attributes

and heterogeneous records. In addition, it is eliminating the

subjects that do not define a particular property. Obviously, it

reduces the NULLs value through that elimination.

3. STORING AND INDEXING UNDER

RELATIONAL PERSPECTIVE
The RDF data in relational databases are stored as triples of a

RDF graph on a single table over a relational schema

(Subject, Predicate, and Object). An important issue in this

approach is that due to the large size of the RDF graphs and

the potential large number of self-joins required to answer

queries, at most care has been be taken to devise an efficient

physical layout with suitable indexes to support query

answering.

Fig. 1. Basic Search Architecture

Query/ response

Search

SPO

Analysis

Index

SPO

Analysis

International Journal of Computer Applications (0975 – 8887)

Volume 104 – No.7, October 2014

33

To search the information from on a RDF table, the query

overcomes the necessity of building text analysis that avoids

tokenization, word elimination, Normalization, Stemming and

Lemmatization unlike a search deployed for text analysis. Fig

1 exposes the search engine’s component support of two major

functions, the index process build data structures that enable

searching and the query process uses those data structures to

satisfy the information need by retrieving it for the user.

3.1. Proposal to address scalability issue:
To address the scalability issue, we propose an unclustered-

index on B+ trees comparing the impact of the following

permutations on S, P, O. Neumann and Weikum [6] take this

approach further in their RDF-3X engine by adding to the 6

indexes above, so-called projection indexes for each strict

subset of {subject; predicate; object}, again in every order.

This adds an additional 9 indexes: s, p, o, sp, ps, so, os, op,

and po. Instead of storing triples, the projection indexes

conceptually map search keys to the number of triples that

satisfy the search key. For example, the projection index on

subject alone maps each subject s to the cardinality of the

multi-set

{| (p; o) | (s; p; o) occurs in the RDF Graph |}

The projection indexes are used to answer aggregate queries;

to avoid computing some intermediate join results and to

provide statistics that can be used by the RDF-3X cost-based

query optimizer. RDF-3X also includes advanced algorithms

for estimating join cardinalities to facilitate query processing.

The unclustered-indexes entails combined indexing on subject

and Object (SO) as revealed in Fig 4.

In addition, Erling and Mikhailov [12] reports that in practical

RDF graphs, many triples share the same predicate and object.

To take advantage of this property, Virtuoso builds bitmap

indexes for each ops prefix by default, storing the various

subjects. McGlothlin et al. built on this idea and used bitmap

indexes instead of B-Trees as the main storage structure [7].

In our paper, based on the study made by Neumann and

Weikum [6] and Erling and Mikhailov [12] we have proposed

the idea of using the unclustered index on subject and object

as they can be commonly used and can share different

predicates. Conversely, this unclustered permutation of SO

index on B+ tress seems to materialize the need for easy

storage and retrieval.

4. PROPOSED TECHNIQUE: (B+-hashed-

bitmap index)
Empirical results (Fernandez et al., 2013) [13] show that the

average size of these lists of predicates for subjects and

objects is, at most, one order of magnitude less than the

number of total predicates used in real-world datasets. This

fact not only ensures a great improvement for queries with

unbounded predicate, but also implies a limited additional

space for SO indexes.

 Input: RDF triple (Subject, Predicate, Object) as shown

in fig. 2.

 Create an empty predicate-matrix with SO (Identifiers)

plotted on the rows and predicates listed as columns as

shown in fig. 3.The sparse matrix is optimized using

GPU to improve the efficiency further.

 Create a un-clustered-index on SO over a B+ tree as

shown in fig. 4.

 Deploy a B+ tree index that leads to leafs (Predicates)

as shown in fig. 4.

 The hashed predicate updates the predicate-matrix

table.

Fig 2: RDF triple table

 P1 P2 P P4 P5 …

ID1

ID2

…

…

IDn

Fig. 3. Predicate Matrix

This describes how the B+ tree structure can be applied to the

predicate matrix-bitmap of RDF storage. Our approach is

called B+ hashed predicate matrix-bitmap indexing. A

combined index on subject and object is preferred to retrieve

the appropriate predicates associated with the concerned

subject and object that are common/uncommon as shown in

fig .4. As the query is based on the Subject : “Awny” and

Object: “team”, it branches via the B+ tree pointing to the leaf

nodes as identifiers that list the predicates associated with it.

The predicates are then mapped to the corresponding

identifier which is updated using 1’s and 0’s in predicate

matrix table. This matrix helps to speedup filtering and

updates the mapped results. The complexity involved with

this architecture is log N + 2N. This indexing strategy ensures

a logarithmic complexity which when compared with

quadratic and linear complexity seems to be more promising.

Subject Property Object

ID1 Type FullProfessor

ID1 teacherOf ‘Ali’

 ID1 bachelorFrom ‘MIT’

ID1 mastersFrom ‘Cambridge’

ID1 phdFrom ‘Yale’

ID2 Type AssocProfessor

 ID2 worksFor ‘MIT’

ID2 teacherOf ‘DataBases’

ID2 bachelorFrom ‘Yale’

ID2 phdFrom ‘Stanford’

ID3 Type GradStudent

ID3 Advisor ID2

International Journal of Computer Applications (0975 – 8887)

Volume 104 – No.7, October 2014

34

Fig 4: B+ hash bitmap index functional block diagram

(Unclustered-index)

5. IMPLEMENTATION OF B+-HASHED

BITMAP INDEX USING CUDA

5.1 CUDA Background
GPU acceleration of compute-intensive applications has

emerged a new research frontier with phenomenal success-

rates. Such applications are characterized by large data-sets

being processed by singular functional units (FUs) often

described as SIMD (Single Instruction Multiple Data)

computing.

Moreover, with the proliferation of internet and its easy access

on myriad devices, has resulted in huge amount of data

generation. Initially, such data was considered disconnected

and not related. But with the advent of semantic web, data has

been found to be highly co-related and relevant. Organizing

such huge amount of data and subsequently processing

requires parallel framework that is both distributed and

scalable. Graphical processing units (GPUs) are being actively

probed in the domain of Big Data analysis, machine learning,

and augmented reality since such applications are

characterized by massive data spanned and generated over

distributed network. GPUs provide a parallel programming

framework using CUDA (Compute Unified Device

Architecture) that can be utilized to efficiently collate and

make inferences on these massive data-sets. Further, GPU

multicores are available at commodity rates thus providing an

option for cheap and low-power alternatives.

The exponential growth of semantic web and the resultant

generation of large-scale RDF (Resource Description

Framework) triples pose new challenges in the domain of

RDF-storage and retrieval. RDF data consist of triples

<Subject, Predicate, and Object> which need to be efficiently

indexed. Following are some of the many challenges related

to efficient indexing of RDF triples:

• As RDF-triples extensively contain recursive

redundancies, self-joins so formed are inefficient.

• Self-joins also lead to large scale null values.

5.1.1 Hashing Options
Indexing can be implemented by mapping all the <key, value>

pairs on to an array of the size of the search universe. This can

result in instantaneous search if the extraordinary size of the

array is overlooked. Besides, the search array being of

extraordinary length, it may also be sparse. This may lead to

wastage of space and also will have bearing on the search

complexity (considering the array size to that of the universe,

it is, but obvious that the array cannot be entirely brought into

the RAM.). In order to avoid this colossal waste of space,

hash functions allows search arrays to be of much shorter

lengths (often of fixed size) but at the cost of collisions (refer

Fig 2). Collision resolution has been an active research subject

for many years now. Two popular resolution strategies named

“open addressing” and “chaining” are employed but they fail

miserably when the number of collisions is many. Open

addressing refers to a collision mitigation technique that

involves inserting the generated <key, value> pairs to the next

free space available in the search array. The main drawback of

this technique relates to the provision of in-between free

spaces in the search array (implemented using the judicial

selection of the hash function).

5.1.2 Drawbacks of GPU application of Hash

Table
1. Parallel insertion into the hash table cannot be achieved

as the data structure has to be locked before insertion.

This can be done by atomic instructions provided in

CUDA. This is done to avoid a same memory location

being accessed by multiple CUDA threads thus leading

to race conditions [14].

2. Memory accesses of different (often scattered) memory

locations cannot be optimized as non-contiguous

memory is accessed. As a result, memory coalescing

techniques that use the concept of alignment (Hardware

dependent) cannot be applied. Coalesced memory

access of a warp of threads (32 threads in CUDA are

considered as one warp) results in one or two memory

transactions of a memory bank. This increases the

memory access performance.

5.1.3 Proposed modification to Hashing with

relevance to sparse matrix
The previous two sub-sections provide the limitations for

implementing hashing in a parallel GPU environment coupled

with the data to be hashed residing on a sparse matrix (Fig. 4).

Since the thread divergence is a major issue in GPUs, hashing

typically provides random distribution of data which in the

conventional sequential sense is quite an equitable

distribution. But in the case of GPUs this is inefficient and

leads to performance degradation.

The perfect spatial hashing [25] provides a solution to the

random hashing by providing two levels of hashing. This is

represented by the following equation:

Where, h0 and h1 refers to two imperfect hash functions

coupled to one another using an offset table ϕ. The main task

of the offset table is to force the h0 function from an imperfect

hash to a perfect hash using the second level of indirection

thus providing clustered hash mappings amenable to a typical

CUDA kernel function. This process leads to spatial

coherence that is a very common technique used when

computing graphical applications in CUDA. So, in effect the

combination of two imperfect hashes is coerced into a hash

International Journal of Computer Applications (0975 – 8887)

Volume 104 – No.7, October 2014

35

Sparse

RDF

matrix

H2

Offset

table

Spatially

coherent

hash

table

H1

function that provides spatial locality of reference. As a result

our RDF sparse matrix is compacted into a spatially coherent

hash table thus providing ample opportunities for CUDA

warps (group of threads that executes in unison

simultaneously) to execute without any chance of divergence.

This factor contributes to the higher efficiency of the

proposed B+ Hashed indexes. The whole sequence of the

spatial hash framework is depicted in Fig 5.

Fig 5. Perfect Spatial Hashing

The above technique provides spatial coherency at the

expense of additional memory, which is not a big

consideration now in CUDA as the large matrices are tiled

and brought one by one as a single tile into the limited device

shared memory. Besides other CUDA memory optimizations

such as pinned or page-locked memory accesses may be

attempted if the memory access is read-only which is

precisely the case in RDF sparse matrix.

5.1.4 Boolean (logical) Sparse Matrix

implementation using CUDA
A typical sparse matrix consists of large number of zero

values with very few dispersed non-zero ones. The opposite to

that of the sparse matrix is the dense-matrix which comprises

more non-zero elements than the zero ones. Sparse matrices

find usages in large and varied domains of computational

science research and are formed primarily from the solution of

partial differential equations. Sparse matrices also find usages

in 3D-maps used by Google in solving non-linear issues.

Ceres Solver [15] is a portable C++ library used by Google

maps to reconstruct 3D-maps using 2-D photographs that uses

non-linear sparse arrays.

It is often noticed that some operations belonging to dense-

matrices may scale very poorly on sparse matrix. Hence

different sets of operations that can efficiently run on sparse

matrices are needed. Most of the software languages have

support for sparse matrices in the form of libraries and APIs.

Some of them are cuSparse for CUDA C/C++, SciPy 2-D

sparse matrix package for numeric data in Python and many

others.

In order to provide efficient sparse matrix operations, there is

a need for an efficient sparse matrix representation. Many

representations (data structures) have been suggested, but

since GPUs are being used to expedite search, cuSparse

CUDA library is used as it specifies different matrix

representation formats. These formats are listed as under:

 Dense format: This format is a typical row-major order

which is used for storing dense-matrices

conventionally. (Nvidia CUDA library cuBLAS uses it

as default).

 Coordinate format (COO): This format has been

specifically designed for sparse matrices taking into

consideration the non-zero values and ignoring the

zero ones. The matrix is stored in a row-major order.

 Compressed Sparse Row Format (CSR): CSR format

is very similar to COO except for the row indices

which are compressed and aggregated.

 Compressed Sparse Column Format (CSC): CSC

stipulates matrices to be stored in a column-major

order and compresses columns instead of rows as in

the case of the above mentioned CSR format.

For the sake of brevity CSR format is proposed to be used to

represent sparse matrices derived during indexing. Since, the

Boolean sparse matrix consists of only 0’s and 1’s, each

element of the matrix can be represented using a single bit.

Thus a sparse matrix having 10 million elements can easily be

represented in a dense format with 10 million bits roughly

equivalent to a few megabytes. If a compression format such

as CSR is applied, the size for storing a matrix may dwindle

further. Since the CSR format can take any values for non-

zero, the Boolean data further reduces the space requirements

by restricting matrix element values to a single bit size

representing either one of the value – 0 or 1. The next section

gives a detailed preview of the modified CSR format.

5.2 Compressed Sparse Row – (Boolean)

Format (CSRB)
So the Boolean CSR matrix as defined in CUSPARSE library

[16] is modified for Boolean values instead of floats. The

modified table represents the CSRB matrix as under:

nnz (integer) The number of ones in the

matrix

csrbRowPtrA (pointer) Points to the integer array of

length m+1. The first m+1

elements of this array consist

of all 1’s indices A. The last

(m+1)th value consist of

nnz+csrbRowPtrA(0).

csrbColIndA (pointer) Points to the integer array of

length nnz containing the

column indices.

It may be noted that the modified CSRB Format does not need

an extra vector csrValA [16] that list all non-zero value

elements belonging to a matrix A. Only two linear vectors

(csrbRowPtrA and csrbColIndA) are sufficient to depict

matrix A.

Consider a Boolean sparse matrix (A) of size 4×5, where the

number of rows is 4 and the number of columns is 5.

A=

 (1)

Storage in CSRB format using zero-based indexing, as

depicted below:

csrbRowPtrA=[0,2,3,5,nnz+csrbRowPtrA(0)] = [0,2,3,5,7] (2)

csrbColIndA=[0,1,2,1,2,2,4]

It can be noticed that a single matrix A of size 4×5 consisting

of 20 elements is reduced to vectors consisting in sum a total

of 12 elements, a reduction ratio of 60%. Hence, the Boolean

Sparse Matrix Reduction Ration (BSMR) can be derived as

under:

International Journal of Computer Applications (0975 – 8887)

Volume 104 – No.7, October 2014

36

BSMR(%)=(|csrbRowPtrA|+|csrbColIndA|)/(M×N)×100 (3)

BSMR Ratio besides providing sparse matrix space

complexity also derives the following implications:

The sparse matrix may turn into a dense matrix if the number

of 1’s increase suddenly. This may create a belief that the

sparse matrix representation as CSRB format may turn out to

be inefficient. After scanning the BSMR Ratio (3) it can be

pointed out that the increase in the number of elements will

have a corresponding increase in csrbColIndA vector but will

not affect csrbRowPtrA vector since it consist of the initial

indices values for each column that remain more or less

unchanged. Thus we can derive the following analogy:

|A|∝|csrbColIndA| (4)

5.3 CUDA multithreaded model for

implementation of Boolean Sparse matrix

(CSRB Format)
CUDA supports parallel matrix operations on each individual

element asynchronously. Since CUDA derives its origin from

the days of graphics pixel programming and rendering, it

provides seamless multithreaded options of processing

matrices with ease. CUDA threads are organized in a

hierarchy of Grids and Blocks. In the absence of any data

dependencies and memory bank conflicts and proper memory

coalescing, a warp comprising of 32 threads of a block is

capable of simultaneous execution on each SM (Streaming

processor).

The following thread model is proposed for thread allocation:

 A sparse matrix comprising millions of elements is

divided into equal sized tiles of 32×32 elements.

 Each tile is processed simultaneously using a cuSparse

library using shared memory. Shared memory is a fast

but small cache memory (equivalent to that of L1

cache). Each block has its own shared memory cache.

Since the size of shared memory is small (32 KB or 48

KB), the predicate matrix need to be tiled.

5.3.1 Benchmarking Boolean Sparse matrix

against different memory factors
Efficient tiling methods using shared memories that take into

account memory bank conflicts are experimented with the

following results. For the sake of providing increased

complexity in terms processing, matrix copy and matrix

transpose operation is considered as a benchmark.

Legends for Table 1

MatCopy – Matrix Copy

MatCopySh – Matrix Copy Shared

TransBasic – Transpose Basic

TransCoal – Transpose Coalesced

TransCFree – Transpose Conflict Free

Table 1 simulation data obtained from test runs is plotted

against the matrix varying sizes as depicted in Fig. 5. It can

conveniently be pointed out that despite the scaling of the

matrix from 512 to 4096-square elements the effective

bandwidth measured in GB per second does not show is

decrease. The bandwidth continues to improve with the

scaling which is a desired property for RDF type voluminous

databases. Considering various types of memory accesses in

the experimentation it can be factually stated that the effective

bandwidth maintains a stable growth proportional to the

growth in the size of the matrices. Copy matrix experiment is

taken as the most effective benchmark as copy operation is

among the fastest. Thus, the selection of predicate matrix for

storing Boolean values against the <subject, object> map is

convincing and implementable.

Table 1: Bandwidth comparisons on different matrix

memory accesses

Matri

x Size

Mat

Cop

y

MatC

opySh

Trans

Basic

Trans

Coal

Trans

CFree

512×5

12

15.9

6

8.13 5.67 5.89 7.47 Band

width

NVS5

400M
1024×

1024

16.3

0

8.19 5.76 6.13 8.63

2048×

2048

16.3

8

8.21 6.35 7.20 9.08

4096×

4096

17.4

0

9.87 6.56 7.21 9.08

512×5

12

12.4

6

6.07 5.69 4.41 4.73 Band

width

GeFor

ce GT

540M

1024×

1024

12.4

6

6.10 5.76 4.47 4.75

2048×

2048

12.6

8

6.12 5.84 4.49 4.76

4096×

4096

12.6

9

6.12 5.81 4.49 4.76

Device: NVS5400M

Device: GeForce GT 540M

Fig. 6: Plot against different matrix-memory operations

vs Bandwidth (GB/seconds)

International Journal of Computer Applications (0975 – 8887)

Volume 104 – No.7, October 2014

37

5.3.2 Optimization issues on CSRB Matrix
 Any occurrences of rows and columns that have entire

rows or columns as zeroes can be dealt with by

deleting the particular row/column. Since initial sparse

matrix will have at least one non-zero (1’s) entry in

each of its row but subsequent update of the predicate

matrix may result in some rows or columns to be

entirely zero. In such cases, the row/column may be

deleted.

 The standard CSR matrix format (refer cusparse

documentation) has been modified to represent a

Boolean matrix. In this process a vector that stores all

non-zero values may be ignored as all non-zero values

happen to be 1. As a result a space complexity of the

standard CSR format is further reduced thus providing

optimized space requirements.

Standard CSR format space complexity = 2nnz+n+1

Proposed CSRB format space complexity = nnz+n+1

Where nnz is the total number of non-zero elements, n is the

size of the row/column (we assume square matrix) .

5.3.3 CUDA implementation of CSRB
The implementation part in CUDA C is outlined in the

following steps briefly:

 The standard memory allocation and the Host to

Device memory transfer operations using cudaMalloc,

cudaMemcpy are omitted for the sake of brevity.

 N-Square Boolean matrices of different sizes are

considered. The code can be modified with ease for

matrices with different number of rows and columns.

The sizes on which test runs are conducted are

512×512, 1024×1024, 2048×2048 and 4096×4096.

 The following kernel template is used for matrix

processing:

6. CONCLUSION AND FUTURE WORK
The B+ tree Hashed Predicate Matrix index provide a multi-

level index structure that uses a modular approach to reduce

indexing complexity. This is a common pattern in modern

indexing structures. The prime requirement for multi-level

indexes is the large volume of RDF-triple data coupled with

extensive self-join complexities due to recurrences in the RDF

table. The time complexity of the proposed index structure

comes out to be lower ⌊log (n+2n)⌋. The 2n cost is negligible

in most cases considering multi-level reduction of the search

space. Empirically the cost is 2n<<log (n), thus providing

logarithmic time.

The multi-level index provides ample avenues for providing

improved query designs. Multi-level indexes has significantly

reduced the number of block accesses required to search for a

record given its indexing field value. The reorganization of

entire file is not required to the maintain performance is one

another added advantage of using this strategy. The next

target is to integrate the index in different RDBMS databases

and ascertain the speed-up with different RDF data-sets.

Further since the index runs on a GPU-enabled machine, it

provides a shield against scalable issues of the data-sets. This

has not been the case so far with contemporary indexes.

7. REFERENCES
[1] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic

web, Scientific American, 284(5), May 2001.

[2] Wolfgang Nejdl, Hadhami Dhraief, Martin Wolpers, O-

Telos-RDF: A Resource Description Format with

Enhanced Meta-Modeling Functionalities based on O-

Telos

[3] Svihla,M. Transforming Relational Data into Ontology

Based RDF Data(a doctoral thesis). June 2007.

[4] Antoniou, G. and van Harmelen, F. (2004). A Semantic

Web Primer. Cambridge: The MIT Press.

[5] Speeding up on-disk RDF index lookups using B+Hash

trees, Minh Khoa Nguyen, Cosmin Basca, Abraham

Bernstein, IOS Press, 2012

[6] T. Neumann and G. Weikum, RDF-3X: A RISC-style

engine for RDF, Proc. VLDB, 1(1), 2008

[7] Mohammed Hussain, Pankil Doshi, Latifur Khan, James

McGlothlin, Murat Kantarcioglu, Bhavani

Thuraisingham, Efficient Query Processing for Large

RDF Graphs Using Hadoop and MapReduce, Technical

Report UTDCS-41-09, Department of Computer

Science, The University of Texas at Dallas, November,

2009.

[8] Hexastore: Sextuple Indexing for Semantic Web Data

Management, Cathrin Weiss, Panagiotis Karras,

Abraham Bernstein

[9] Large RDF Representation Framework for GPUs Case

Study Key-Value Storage and Binary Triple Pattern,

Chidchanok Choksuchat, Chantana Chantrapornchai,

International Computer Science and Engineering

Conference (ICSEC), 2013

[10] Binary RDF representation for publication and exchange

(HDT), Javier D. Fernandez, Miguel A. Martinez-Prieto,

Claudio Gutierrez, Axel Polleres, Mario Arias, Journal of

Web Semantics: Science, Services, and Agents on the

World Wide Web, Elsevier

[11] Optimizing RDF stores by coupling General-purpose

Graphics Processing Units and Central Processing Units,

Bassem Makni

[12] Erling and Mikhailov, RDF Support in the Virtuoso

DBMS

__

global__ void transposeNoBankConflicts(float

*odata, const float *idata)

{

 __shared__ float tile[TILE_DIM][TILE_DIM+1];

 int x = blockIdx.x * TILE_DIM + threadIdx.x;

 int y = blockIdx.y * TILE_DIM + threadIdx.y;

 int width = gridDim.x * TILE_DIM;

 for (int j = 0; j < TILE_DIM; j += BLOCK_ROWS)

 tile[threadIdx.y+j][threadIdx.x] =

idata[(y+j)*width + x];

 __syncthreads();

 x = blockIdx.y * TILE_DIM + threadIdx.x; //

transpose block offset

 y = blockIdx.x * TILE_DIM + threadIdx.y;

 for (int j = 0; j < TILE_DIM; j +=

BLOCK_ROWS)

 odata[(y+j)*width + x] =

tile[threadIdx.x][threadIdx.y + j];

}

International Journal of Computer Applications (0975 – 8887)

Volume 104 – No.7, October 2014

38

[13] Javier D. Fernándeza, Miguel A. Martínez-Prietoa,

Claudio Gutiérrezb, Axel Polleresc, Mario Ariasa,

Binary RDF representation for publication and exchange

(HDT), Web Semantics: Science, Services and Agents on

the World Wide Web, Vol. 19, March 2013

[14] Efficient Hash Tables on the GPU, Dan Anthony

Feliciano Alcantara, PhD Thesis, University of

California, Davis

[15] ceres-solver - Google Code:

https://code.google.com/p/ceres-solver/

[16] NVIDIA Cusparse Library, DU-06709-001_v5.5, July

2013, Nvidia Corporation.

[17] D. J. Abadi, A. Marcus, S. R. Madden, and K.

Hollenbach. Scalable semantic web data management

using vertical partitioning. In VLDB, pages 411–422,

2007.

[18] Hexastore: Sextuple Indexing for Semantic Web Data

Management, Cathrin Weiss, Panagiotis Karras,

Abraham Bernstein, 2008.

[19] Semantic Search over the Web Data-Centric Systems and

Applications 2012, pp 31-60.

[20] Beckett, D., The design and implementation of the

Redland RDF application framework. Computer

Networks, 39(5):577-588, 2002.

[21] Lee Feigenbaum, Sean Martin, Matthew N. Roy,

Benjamin Szekely and Wing C. Yung: Boca: an open-

source RDF store for building Semantic Web

applications, Brief Bioinform (2007) 8 (3): 195-200.

[22] Guha, R., rdfDB: An RDF Database,

http://www.guha.com/rdfdb, 2007.

[23] Broekstra, J., Kampman, A., van Harmelen. Sesame: A

Generic Architecture for Storing and Querying RDF and

RDF Schema. ISWC, Springer, Sardinia, 2002.

[24] Towards distributed processing of RDF path queries,

pages 207-230, Richard Vdovjak, Jeen Broekstra, Geert-

Jan Houben

[25] Perfect Spatial Hashing, Sylvian Lefebvre, Hugues

Hoppe, Microsoft Research.

IJCATM : www.ijcaonline.org

http://link.springer.com/book/10.1007/978-3-642-25008-8
http://link.springer.com/bookseries/5258
http://link.springer.com/bookseries/5258
http://dl.acm.org/author_page.cfm?id=81100159067&CFID=338666794&CFTOKEN=67068347
http://dl.acm.org/author_page.cfm?id=81100369115&CFID=338666794&CFTOKEN=67068347
http://dl.acm.org/author_page.cfm?id=81336489844&CFID=338666794&CFTOKEN=67068347
http://dl.acm.org/author_page.cfm?id=81336489844&CFID=338666794&CFTOKEN=67068347

