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ABSTRACT  
This paper proposes a design of a framework structure for 
analysis of cardiac MRI to find out cardiovascular Disease 
easily and increase patent life. Segmentation of volumetric 
medical data is extremely time- consuming if using semi-
automatically segmentation techniques with the first 
contribution involves the introduction of a new algorithm for 

fitting 4D Active Appearance Models on cardiac MRI, using 
the Simple interactive object extraction (SIOX), have observe 
a 43- fold increase in fitting accuracy that is on par with fuzzy 
clustering. We show the high quality results that are derived 
by the use of fuzzy clustering, and describe the ways in which 
it could improve the automated analysis of medical images. 

Keywords: MRI, SIOX, Fuzzy Clustering,  

1. INTRODUCTION 
In 2010, Cardiovascular Disease (CVD) contributed to almost 
one third of global deaths. CVD is the leading cause of death 

in the developed world and by 2013; CVD is estimated to be 
the main cause of death in developing countries. According to 
2001 estimates, if all forms of CVD in the India were 
eliminated, the average life expectancy would increase by 
around ten years.  An elimination of all forms of cancer, on 
the other hand, would cause the average life expectancy to 
increase by three years [2]. 

Three dimensional imaging of the heart using imaging 

modalities such as Ultrasound, Magnetic Resonance Imaging 
(MRI) and X-ray Computed Tomography is a rapidly 
developing area of research in medical imaging. Screenings 
that detect problems at an early stage, when treatment is most 
effective, can help prevent heart disease. The manual 
segmentation of short axis cardiac MRI (identifying the 
various structures of interest in the image) can provide 
clinically. 

Recently a lot of extensions for AAMs have been proposed. 
While the original AAMs work with gray value images in 2D, 
different strategies for adaptations to higher dimensions have 
been suggested. In theory such adaptations can be done 
straight forward. Practically there are some critical aspects. 
Different methods have been proposed to overcome the 
problems in higher dimensions. Applications include time-
continuous (2D+time) segmentation of image sequences 
[Lelieveldt et al., 2001; Edwards et al., 1998], real-time 
combined 2D+3D AAMs [Xiao et al. 2004], and bi-temporal 

3D AAMs [Stegmann and Pedersen, 2005]. Normally an 
increase in dimensionality inevitably causes a rapid increase 
of data. Especially the number of texture samples mounts 
significantly for higher dimensional data. Large data is the 
reason why methods for compression of texture data using 
wavelets [Wolstenholme and Taylor, 1999; Stegmann et al., 
2004] or wedgelets [Darkner et al., 2004] recently have been 
proposed [2]. 

The Standard numerical optimization methods for the fitting 
of AAMs, such as gradient descent, are very slow, mainly due 
to the high number of parameters that have to be optimized. 
when moving from 2-D AAMs to 3-D AAMs this problem is 
further exacerbated. When using 3-D AAMs for the 
segmentation of the left ventricle, it is not uncommon for such 
models to use 50-100 parameters. an effort to deal with this, 
efficient algorithms for fitting AAMs have been developed. 

However, the fitting accuracy and the convergence rates of 
such algorithms are known to be suboptimal in many 
applications. Recently, a novel algorithm for the fitting of 2-D 
AAMs was introduced in. Its applicability was demonstrated 
on artificial data and on real life data for face tracking. 
However, as cites, there was no known way of extending the 
algorithm to higher dimensions. This was mainly so because a 
certain argument used in the paper applied only to 2-D 
similarity transformations. This literature present an extension 
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of this algorithm for the fitting of 3-D AAMs, when used for 
the segmentation of short axis cardiac MRI. By definition, 
short axis cardiac MR images are such that the long axis of 
the heart is perpendicular to the acquisition image plane. In 
practice, this means that during the AAM fitting we need to 

rotate our model only around the long axis of the heart. We 
take advantage of this fact to design an efficient fitting 
algorithm, which will rotate the model about the axis 
perpendicular to the image acquisition plane. To the best of 
our knowledge, this is the first effort at extending the inverse 
compositional image alignment algorithm to 3-D AAMs, and 
testing its applicability to the interpretation of medical 
images. 

The algorithms described in the literature for fitting AAMs, 
can be classified as either robust but inefficient gradient 
descent type algorithms, or as the efficient but ad-hoc 
algorithms described next. The original AAM formulation 
uses regression to find a matrix R, such that if the current 
fitting error between the AAM and the image is δt, the 
updated AAM parameters are δp = Rδt. In more recent 
implementations, the estimation of matrix R is superseded by 

a faster and simpler method which regards R as a Jacobian 
matrix of the error function between the AAM and the image. 
In general, there is no reason why the error measure δt should 
uniquely identify the update parameters δp. Such methods 
lack a sound theoretical basis. Moreover, it has been shown 
that using a matrix R to estimate the update parameters can 
lead to suboptimal results. However, the constant matrix 
technique is widely used due to its fitting speed. Later, in, it 

was shown how to use the inverse compositional image 
alignment algorithm to fit 2-D AAMs. 

The algorithm we describe in this paper is an extension of 3-
D, under the constraint that all rotations take place around one 
axis. Our experimental results show that our algorithms 
border positioning errors are significantly smaller than the 
errors reported for other 3-D AAMs which use the constant 
matrix approach for the fitting. We perform experiments 
comparing our algorithm with Gauss-Newton based 

optimization, which is generally known as one of the most 
accurate and reliable optimization algorithms for such 
problems. We observe a 60-fold improvement in the fitting 
speed, with a segmentation accuracy that is as good - and in 
many cases better - as brute force Gauss-Newton 
optimization. We did not use any hierarchical coarse-to-fine 
methods during the optimization, to speed up the fitting 
process, however the effects of such an approach on the 

fitting algorithms could be a topic of future research 

This is an example of the basic Active Shape Model (ASM) 
and also the Active Appearance Model (AAM) as introduced 
by Cootes and Taylor, 2D and 3D with multi-resolution 
approach, color image support and improved edge finding 
method. Very useful for automatic segmentation and 
recognition of biomedical objects[2].  

 

 

Figure 1.  Hand Shape Appearance Model [4]. 

 

1.2 Functional Anatomy of Coronary 

Vessels  
The right and left coronary arteries arise at the root of the 

aorta behind the right and left cusps of the aortic valve, 
respectively. These arteries provide the entire blood supply to 
the myocardium. The right coronary artery principally 
supplies the right ventricle and atrium. The left coronary 
artery, which divides near its origin into the anterior 
descending and the circumflex branches, mainly supplies the 
left ventricle and atrium. There is some overlap between the 
regions supplied by the left and right arteries. In humans, the 
right coronary artery is dominant (supplying most of the 

myocardium) in about 50% of individuals. The left coronary 
artery is dominant in another 20%, and the flow delivered by 
each main artery is about equal in the remaining 30%. The 
epicardial distribution of the coronary arteries and veins is 
illustrated in Figure 2[13]. 
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Figure 2. An Anterior and posterior surfaces of the heart 

illustrating thelocation and distribution of the principal 

coronary vessels13. 

 

Coronary arterial blood passes through the capillary beds; 
most of it returns to the right atrium through the coronary 
sinus. Some of the coronary venous blood reaches the right 
atrium via the anterior coronary veins. In addition, vascular 
communications directly link the myocardial vessels with the 
cardiac chambers; these communications are the 
arteriosinusoidal, arterioluminal, and thebesian vessels. The 

arteriosinusoidal channels consist of small arteries or 
arterioles that lose their arterial structure as they penetrate the 
chamber walls, where they divide into irregular, endothelium-
lined sinuses. These sinuses anastomose with other sinuses 
and with capillaries, and they communicate with the cardiac 
chambers. The arterioluminal vessels are small arteries or 
arterioles that open directly into the atria and ventricles. The 
the besian vessels are small veins that connect capillary beds 

directly with the cardiac chambers and also communicate with 
the cardiac veins. All the minute vessels of the myocardium 
communicate in the form of an extensive plexus of 
subendocardial vessels. However, the myocardium does not 
receive significant nutritional blood flow directly from the 
cardiac chambers [13]. 

1.3 Basic idea ASM 
The ASM model is trained from manually drawn contours 
(surfaces in 3D) in training images. The ASM model finds the 
main variations in the training data using Principal 
Component Analysis (PCA), which enables the model to 

automatically recognize if a contour is a possible/good object 
contour. Also the ASM modes contains matrices describing 
the texture of the lines perpendicular to the control point, 
these are used to correct the positions in the search step. 

After creating the ASM model, an initial contour is deformed 

by finding the best texture match for the control points. This 
is an iterative process, in which the movement of the control 
points is limited by what the ASM model recognizes from the 
training data as a "normal" object contour.  

1.4 Basic idea AAM 
PCA is used to find the mean shape and main variations of the 
training data to the mean shape. After finding the Shape 
Model, all training data objects are deformed to the main 
shape, and the pixels converted to vectors. Then PCA is used 
to find the mean appearance (intensities), and variances of the 

appearance in the training set. Both the Shape and 
Appearance Model are combined with PCA to one AAM-
model.  
By displacing the parameters in the training set with a know 
amount, and model can be created which gives the optimal 
parameter update for a certain difference in model-intensities 
and normal image intensities. This model is used in the search 
stage. 

 

2. PROCESS OF DATA ANALYSIS IN 

SIMPLE FORM 

2.1 Image Analysis 
Image analysis is the process of extracting meaningful 
information from images such as finding shapes, counting 
objects, identifying colors, or measuring object properties. 

Image Processing Toolbox provides a comprehensive suite of 
reference-standard algorithms and visualization functions for 
image analysis tasks such as statistical analysis, feature 
extraction, and property measurement. 

2.2 Image Transforms 
Image transforms play a critical role in many image 
processing tasks, including image enhancement, analysis, 
restoration, and compression. Image Processing Toolbox 
provides several image transforms, including Hough, Radon, 
FFT, DCT, and fan-beam projections. You can reconstruct 

images from parallel-beam and fan-beam projection data 
(common in tomography applications). 

2.3 Hough Transform 
The Hough transform is designed to identify lines and curves 
within an image. Using the Hough transform you can: 

 Find line segments and endpoints 

 Measure angles 

 Find circles based on size 

 

Figure 3. Detect and Measure Circular Objects in an 

Image Statistical Functions 

 

http://www.mathworks.in/help/images/pixel-values-and-image-statistics.html
http://www.mathworks.in/help/images/getting-information-about-image-pixel-values-and-image-statistics.html
http://www.mathworks.in/help/images/ref/regionprops.html
http://www.mathworks.in/help/images/fan-beam-projection-data.html#f21-26788
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2.4 Statistical functions let you analyze the general 

characteristics of an image by: 

 Computing the mean or standard deviation 

 Determining the intensity values along a line 

segment 

 Displaying an image histogram 

 Plotting a profile of intensity values 

 

Figure 3.1 Identifying Round Objects Device-Independent 

Color Management 

Device-independent color management enables you to 
accurately represent color independently from input and 
output devices.  This is useful when analyzing the 
characteristics of a device, quantitatively measuring color 
accuracy, or developing algorithms for several different 
devices. With specialized functions in the toolbox, you can 

convert images between device-independent color spaces, 
such as sRGB, XYZ, xyY, L*a*b*, uvL, and L*ch. 

 

Figure 3.2 Color-Based Segmentation Using the L*a*b* 

Color Space 

3. METHODS 

3.1 Optimization of 3D AAMs for short axis 

cardiac MRI segmentation 

Active appearance models (AAMs) provide a robust approach 
for the analysis of medical images (Cootes and Taylor, 1998, 

2004). The ability of AAMs to learn the 3D structure of the 
heart and not lead to unlikely segmentations has stirred up 
interest in the medical imaging community regarding their use 
for the segmentation of the left ventricle from short axis 
cardiac MRI (Frangi et al., 2001; Mitchell et al., 2002). 

 

 

Figure4 (A):  Short axis cardiac MRI. 

3.2. 3-D.  Active appearance Model (AAMs) 
In this section, we describe our implementation of the 3-D 
AAM of the left ventricle and its application for cardiac MRI 
segmentation. It has some similarities to the methodology 

used in but with many novel differences. We begin by quickly 
over-viewing point distribution models (PDMs) for 3-D 
AAMs. We proceed by describing how we align the 
landmarks which made up our training set and we conclude 
with an overview of how we handle appearance variation. 

 

Figure 4 (B): Endocardial and epicardial landmarks 

stacked on top of each other. displayed as curves for 

greater clarity. 

 

3.3 The Point Distribution Model 
Figure 4(B) represents a short axis cardiac MR image. A stack 
of such images gives us a volumetric representation of the 
heart. Manual segmentations of the left ventricle provide 
contours representing the endocardium and epicardium of the 
left ventricle. By uniformly sampling each of these contours 
at i0 points along their arc length, each contour is represented 

by a set of landmarks. In our implementation each slice 
consists of the same number of landmarks. By stacking the 
landmarks on top of each other we obtain a 3-D 
representation of the endocardium and epicardium of the left 
ventricle, as shown on figure 1.B. However, the number of 
images intersecting the left ventricle is not the same for every 
patient. Therefore, we need to interpolate between the 
contours so that every 3-D model is made up of the same 

number of slices. If we want to create a contour at height z0 
located between two contours, we can simply do the 
following: From the line segment joining the landmark in the 
two contours, we find the location with height z0. This gives 
the landmark in the new contor. In our implementation, we 
created 15 contours, evenly sampled along the z-axis, located 
between the apex and basal contours, as shown in figure 4.B. 

 

http://www.mathworks.in/help/images/getting-information-about-image-pixel-values-and-image-statistics.html
http://www.mathworks.in/help/images/analyzing-the-texture-of-an-image.html
http://www.mathworks.in/help/images/converting-color-data-between-color-spaces.html#f8-22706
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Assuming that we have a set of N sample shapes, each sample 
made up of l landmarks, we can represent each shape sample 
as a 3l dimensional vector, since each landmark is made up of 
3 coordinates. Applying principal component analysis (PCA) 
on the distribution of the shape vectors, any shape s out of the 

N shapes can be represented as 

    

For some p = (p1, ..., pn) ∈  _n, where s0 is the mean shape 
vector (a.k.a base mesh), and si indicates the ith eigenvector. 
We are summing over n eigenvectors si with eigenvalues λ1 ≥ 
λ2 ≥ ... ≥ λn ≥ 0. These are the n eigenvectors with highest 
eigenvalues that we found with PCA. We choose a value for n 
such that it accounts for around 90%-95% of the variation. 
Empirically, it has been hown that this is a good value. Higher 

values tend to lead to PDMs which overfit the training set, 
and much smaller values lead to PDMs which cannot 
generalize to new shapes. The greater the value of n, the 
better the approximation in becomes. 

3.4 Appearance Variation 
Here need to model the appearance variation of the volume 
enclosed by the shape. Firstly, we manually tetrahedrize s0, as 
shown in figure 4.C. This splits the left ventricular volume 
enclosed by s0 into tetrahedra whose appearance we model. In 
other words we are modeling the appearance of the interior of 
the LV (in the same way that Mitchell did in), and not just the 
appearance of the walls of the endocardium and epicardium. 
We use the same landmark  connectivity defining the 

tetrahedra of s0 to define the tetrahedrization of any shape 
variation resulting from Equation above. Then, we sample the 
appearance enclosed  by each training shape using the same 
methodology as in which is a 3D extension of the method 
described it for the 2D case: Firstly, we choose a set of 
sampling points inside each tetrahedron of s0. Each such point 
has a barycentric coordinate with respect to the tetrahedron 
enclosing it (by definition, the summation of the barycentric 
coordinates must equal 1). Then, we sample each tetrahedron 

in the training set at the same barycentric coordinates that we 
sampled its corresponding tetrahedron in s0. We review in 
more detail the definition of barycentric coordinates, and how 
to sample the interior of each tetrahedron. 

 

Figure 4(c): Tetrahedrization of base mesh s0. Every 

tetrahedron represents a part of the myocardial muscle or 

a part of the left ventricle’s blood pool [1]. 

Let the mean appearance we get by averaging the sampled 
appearances be A0(x) and the k eigenvectors we found by 
PCA, describing around 90%-95% of the appearance variation 
(defined in section 3.1), be A1(x), A2(x), ...,Ak(x) (where x 
denotes a voxel coordinate where we sampled the base model 

s0). Then for different values of the bi 

 
Defines the different appearance variations the model has 
learned from our training data. 

4. QUALITATIVE RESULTS 
Above we have considered models which were matched to all 
data sets. In this section we concentrate on more details of 
individual AAM searches applied to selected single data sets. 
The intention is to show how different parameters influence 
the matching process. 

4.1 Leave-One-Out 
From the quantitative results it can be learned that data set 
number 13 leads to better matching results than data set 
number 18. The reason for this difference in quality of 
matches seems to be that data set 13 explains its appearance 
by modes that represent statistically frequent details. Data set 
18 on the other hand seems to comprise statistically rare 
features. 

Both data sets 13 and 18 were taken from the set of 15 data 
sets manually identified as qualitatively good. A leave-one-
out test was carried out such that for both data sets a model of 
the remaining 14 data sets was built and then matched with 
the one that was left out. 

For both data sets multiple AAM searches were performed 
which differ in the initial displacements of the model’s 
position. Figure 5. shows the progress of matching in terms of 

APS. For all initial positions the model converges on data set 
13. The matching of data set 18 proceeds not so stable and 
diverges for two of the four tests. 

In the following we present results of matching the model 
from 14 good data sets to data set 13. Figure5.1. the model 
initially was displaced by 15mm in direction of the X- and by 
30mm in direction of the Y-axis. Red color represents a point 
to- surface distance of 10mm or more. Blue indicates a point-

to-surface distance of 5mm and green a distance of 0mm. 
Other color values are interpolated accordingly. The color 
coded surface distance is only calculated for individual model 
points and not over the whole surface. Colors are smoothly 
interpolated between points in the mesh. The black wire frame 
represents the shape of the ground truth for the considered 
data set 13. 

Figure 5.1 shows the converged model together with the 
ground truth. Endoand epicardium of model and ground truth 

are shown separately. 

Figure5.3. illustrates the differences in texture of the same 
matching process using volume visualization. The three 
volumes shown are again the difference volumes before the 
first, after the 4th and after the 8th (converged) iteration. The 
same matching process is visualized differently in figure 5.4. 
Three slices were interpolated for the initial model placement, 
after the 4th iteration and after the 8th (converged) iteration. 

The data together with the model superimposed on it are 
shown. The bottom row shows the original data with the 
shape of the converged model. 
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Figure 5: progress of show result area, Standard 

Deviation, or intensity of ENDO / EPI the cardiac MRI. 

 

 

 

 

Figure 5.1: Matching data set 13. The Result is shown for    

endocardium (left) and epicardium (right) separately[3]. 

 

Figure 5.2: Matching data set 13 (all iterations) with a 

model built from 14 data sets not including data set 13. 

The matching process starts at the image on the top left 

and ends at the right bottom. Each image represents one 

iteration. [3] 

 

 

Figure 5.3: Matching data set 13 (difference volumes). 

This figure shows the initial difference volume, the 

difference volume after 4th, and after 8th (converged) 

iteration [3]. 
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Figure 5.4: Matching data set 13 with slice-wise texture 

visualization. The top row shows three slices of data with 

the initial model superimposed. The second and third 

rows show the model after the 4th and 8th (converged) 

iteration respectively. The bottom row shows the data 

with the matched model’s shape points. 

 

5. CONCLUSION 
In this paper we have discussed 4D cardiac MRI data. We 

first presented an algorithm for fitting 4D active appearance 
models on short axis cardiac MR images, and observed an 
almost 43-fold improvement in the segmentation speed and a 
segmentation accuracy that is on par (and often better) with 
Simple interactive object extraction (SIOX), the most widely 
used algorithm for such optimization problems. We have 
outlined the importance of fast automatic and semiautomatic 
segmentation of such data. We shortly reviewed the 
anatomical background and outlined special properties of 

cardiac MRI data. 
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