
International Journal of Computer Applications (0975 – 8887)

Volume 104 – No.6, October 2014

25

Compiler for Detection of Program Vulnerabilities

Abhishek Nayyar

Department of Computer
Science, NIT Jalandhar

NIT Jalandhar

Arun Kumar
Department of Computer
Science, NIT Jalandhar

NIT Jalandhar

 Umang Saxena
Department of Electronics and
communication, NIT Allahabad

NIT Allahabad

ABSTRACT
Program Vulnerabilities may be unwarranted for any

organization and may lead to severe system failure. Due to the

advancement of technology there has been increase in the area

of vulnerability attacks which are exploited by hackers for

getting access to the system or insertion of their malicious

code. In this paper we present a proposal for compiler design

which prevents some common vulnerability. The output result

for our compiler would be compile time warning stating the

possible vulnerability in the code. We will also look into the

details about the different type of vulnerability and how the

attacker can exploit those vulnerabilities in order to corrupt

the system. The knowledge of various vulnerability creation

areas have been used to design a compiler for vulnerability

prevention. Compiler in this publication uses the symbol table

generation mechanism for syntactically, semantically

segregation of executable code and canary guard mechanism

for the protection of cases of buffer overflow. Major work in

this area deals with the simple scenarios for vulnerability

detection but our aim is to check for various complicated

scenarios and non common possibilities for program attack

and designing a framework preventing such kinds of attacks.

General Terms
Lexical Analysis, Syntax Analysis, Parser, Token, Semantic

Analyzer, Symbol table, Random XOR.

Keywords
Program vulnerabilities, Stack smashing, Buffer overflow,

Canary guard, Compiler, Canaries, Terminator.

1. INTRODUCTION
Simple program vulnerabilities can cause severe damage to

even the most sophisticated and well constructed systems

causing huge loss of finances resources, consumer privacy,

data, etc. Exposing and identifying security vulnerabilities is

notoriously difficult; research efforts in software testing focus

almost exclusively on common case; i.e., the program

behavior that users are likely to encounter when they use the

program correctly. This approach is not conducive to

exposing security flaws as vulnerabilities are typically found

using inputs that users would not normally enter. Consider the

typical stack smashing attack which seeks to overflow a

program buffer and trick the program into running arbitrary

code. Such an attack would require the user to enter the binary

code for particular instructions which is improbable at best.

The lack of testing strategies targeted towards security

concerns results in the software community being more

reactive than proactive with respect to security vulnerabilities.

Software Engineers currently have no easy of testing for

security problems, thus problems are typically found after the

software has been released. Once a program’s vulnerabilities

have been discovered, programmers typically, modify the

code to add a security mechanism tailored to the known

vulnerability and the program. The best solution would be to

engineer programs so that vulnerabilities are not present, but

this is not entirely possible, primarily because attackers

continue to find new vulnerabilities. A variety of strategies for

preventing vulnerabilities have been proposed involving all

aspects of the program and its execution environment. These

techniques can be broadly termed program-based as they

focus upon the program or its execution environment.

Testing of these techniques is often poor. A program with a

known vulnerability is found and recompiled with a particular

protection scheme. The particular input that exploited the

vulnerability is then provided to the program to determine

whether the protection scheme succeeded. This testing scheme

does not inspire great confidence in the security mechanism

since it could only be tried on a few programs with one

particular input triggering a particular type of vulnerability. In

this paper, we present the design of a framework which

enables the automatic and systematic testing of various

security mechanisms. The key insight is that such mechanisms

can be tested without resorting to specially designed test cases

using dynamic compilation technology. Dynamic compilers

are particularly well-suited for this problem because they can

enable a user to modify program state and instructions during

the execution of the program. The broad impact of this

framework will be increased confidence in security

mechanisms developed for program-based vulnerabilities as

well as a framework for experimental investigation into new

security mechanisms.

2. BACKGROUND

2.1 Attack History
The July 2005 announcement by computer security researcher

Michael Lynn at the Black Hat security conference of a

software flaw in Cisco Systems routers grabbed media

attention worldwide. The flaw was an instance of a buffer

overflow; a security vulnerability that has been discussed for

40 years yet remains one of the most frequently reported types

of remote attack against computer systems. In 2004, the

national cyber-security vulnerability database (nvd.nist.gov)

reported 323 buffer overflow vulnerabilities, an average of

more than 27 new instances per month. For the first six

months of 2005, it reported 331 buffer overflow

vulnerabilities. Meanwhile, securities researchers have sought

to develop techniques to prevent or detect the exploitation of

these vulnerabilities. Here, we discuss what buffer overflow

attacks are and survey the techniques that can be used to

mitigate their threat to computer systems [5].

International Journal of Computer Applications (0975 – 8887)

Volume 104 – No.6, October 2014

26

Table 1. Data summarization of major attacks affecting

systems in past

Attack

Source

Date of

Attack

Attack type Affect

Comair

Airline

Dec

25,2005

Integer

overflow

1100 flights

were

grounded

Unix OS Feared Jan

19,2038

Integer

overflow

Income tools

Morris

Worm

1998 Buffer

overflow

Internet shut

down

AOL ‘s

AIM

2004 Buffer

overflow

Attack

possibility on

user click

Blaster

Worm

August,200

3

Buffer

overflow

Corrupted

Microsoft

window

system

IE 4.0 & 4.1 Nov

12,1997

Buffer

overflow

Affected IE

behavior

Malicious code is any code added, changed, or removed from

a software system to intentionally cause harm or subvert the

system’s intended function. Although the problem of

malicious code has a long history, a number of recent, widely

publicized attacks and certain economic trends suggest that

malicious code is rapidly becoming a critical problem for

industry, government, and individuals. Attack scripts are

programs written by experts that exploit security weaknesses,

usually across the network, to carry out an attack.

 Attack scripts exploiting buffer overflows by

“smashing the stack” are the most commonly

encountered variety.

 Java attack applets are programs embedded in Web

pages that achieve foothold through a Web browser.

 Dangerous ActiveX controls are program

components that allow a malicious code fragment to

control applications or the operating system.

Graph 1. Attack summarization on the basis of year [5]

2.2 Early developments to the problem
There has been development of static source analysis

technique for vulnerability detection in C based on the

combination of taint analysis and value range propagation

technique used for compiler optimization [1]. There have been

work specific to cross 86 platform for virtual execution

environment that combines information from compositional,

static, and dynamic program analysis to identify

vulnerabilities and timing channels, and uses code

transformations to prevent those from being exploited [2].

RICH (Run time integer Checker) for detection of integer

based attacks in C [3]. The approach used by the above

methods is related to specific type of attack. We present the

solution of different types of attacks in our design of compiler

for vulnerability detection.

3. ATTACK DETECTION
Before moving into the concept of compiler design for the

attack prevention it’s important to understand the various

methods of detecting any attack. For understanding the

method of attack detection, we must have some insight about

the types of attacks. This section presents the in depth

description and analysis of the various program-based attacks

implemented in this project. The various attacks which have

been implemented here are stack smashing, buffer overflow,

declaration attack.

3.1 Stack Smashing
In software, a stack smashing (also known as stack buffer

overflow) occurs when a program writes to a memory address

on the program's call stack outside of the intended data

structure; usually a fixed length buffer. Stack buffer overflow

bugs are caused when a program writes more data to a buffer

located on the stack than there was actually allocated for that

buffer. This almost always results in corruption of adjacent

data on the stack, and in cases where the overflow was

triggered by mistake, will often cause the program to crash or

operate in undesirable way. This type of overflow is part of

the more general class of programming bugs known as buffer

overflows.

Exploiting stack overflow: The canonical method for

exploiting a stack based buffer overflow is to overwrite the

function return address with a pointer to attacker-controlled

data (usually on the stack itself).This is illustrated in the

example below:

International Journal of Computer Applications (0975 – 8887)

Volume 104 – No.6, October 2014

27

This code takes an argument from the command line and

copies it to a local stack variable c. This works fine for

command line arguments smaller than 4 characters. Any

arguments larger than 4 characters long will result in

corruption of the stack. (The maximum number of characters

that is safe is one less than the size of the buffer here because

in the C programming language strings are terminated by a

zero byte character. A four-character input thus requires five

bytes to store; the input followed by the sentinel zero byte.

The zero byte then ends up overwriting a memory location

that's one byte beyond the end of the buffer.)

Fig 1. Data storage representation in stack

Fig 2. Assembler code for function fun in above program

The above figure shows the entry point and the return point

values for the function fun. Give application a very long string

with malicious code. The string length, being much larger

than the space allocated in the heap (buffer size declaration)

causes the heap to overflow into the stack and overwrites the

return address. The return address now points to the beginning

of the malicious code. We can add the extra character which is

more than our buffer size to be our entry address off another

function. Following is depiction for stack smashing case when

length of string is greater than the length of the buffer.

Fig 3. Breakpoint at entry and exit along with the stack

data after the hit of first break point

The following figures show the return address of function

getting modified when entered string has size greater than the

size of buffer. This is termed as stack smashing.

3.2 Buffer Overflow
Buffer Overflows is one of the most common vulnerabilities

in software. It is particularly problematic when present in

system libraries and other code that runs with high execution

privileges [6]. When we normally allocate some buffer of

fixed size and in place of providing the data in accordance

with the size of the buffer, we provide some additional data.

In that case the additional data may overwrite some useful

information in the consecutive locations, which may lead to

various system issues. In this section we will look at a simple

case for buffer overflow in which providing data of size more

than its allocated memory may lead to modification of other

values stored at the adjacent locations in stack.

Exploiting buffer overflow: The canonical method for

exploiting a buffer overflow is to overwrite the values at

adjacent locations with a pointer to attacker-controlled data

(usually on the stack itself).This is illustrated in the example

below:

International Journal of Computer Applications (0975 – 8887)

Volume 104 – No.6, October 2014

28

The code has the reserved memory location of 5 bytes for

array but it is trying to overwrite the value at sixth location

with the new value. Sixth location corresponds to the value of

local variable k , whereas the seventh location corresponds to

the local variable d. Overwriting the value at location six

causes the modification in the value of variable six which is

stored at this address. Let us look at the detail analysis of such

type of vulnerability.

Table 2. Stack depiction during buffer overflow

d = 10 7

K 6

Guard 5

arr[4] 4

arr[3] 3

arr[2] 2

arr[1] 1

arr[0] 0

As we can see in the above figure any modification in the

address location corresponding to the arr[6] will cause

modification in the value of k. The following table illustrates

the buffer overflow attack with the modification in the value

of undesired variable.

Table 3. Value corresponding to various address during

buffer overflow

Variable Address Value

 d 0x7fffffffe20c 0x0000000a

k 0x7fffffffe208 Dummy

Arr[0] 0x7fffffffe1f0 0x00000007

Arr[1] 0x7fffffffe1f4 0x00000009

Arr[2] 0x7fffffffe1f8 0x00000003

Arr[3] 0x7fffffffe1fc 0x0000000c

Arr[4] 0x7fffffffe200 0x00000008

Arr[5] 0x7fffffffe204 0x00007fff (Guard)

Arr[6] 0x7fffffffe208 0x0000001e (modified

k)

Arr[7] 0x7fffffffe20c (can modify d)

3.3 Declaration attack
In programming languages, a declaration specifies

the identifier, type, and other aspects of language elements

such as variables and functions. It is used to announce the

existence of the element to the compiler; this is important in

many strongly typed languages (such as C) that require

variables and their types to be specified with a declaration

before use, and is used in forward declaration. Before

assigning any variable A a value of variable B, variable B

must be properly defined. When we don’t assign any value to

the variable and intern assigns that same variable to another

variable, it is possibility that both variables may end up

containing any garbage value which is also categorized as a

type of vulnerability for the system.

Exploiting declaration attacks: The canonical method for

exploiting a declaration attack is to assign any undefined

variable to some new variable. This will cause both the

variables to have some garbage value .This is illustrated in the

example below:

Here both x and y will contain some dummy values, which

may lead to system corruption in future. So it’s important to

detect such type of attack before only.

Fig 4. Vulnerability summary on the basis of type of

vulnerability

4. ATTACK PREVENTION

4.1 Compiler design
The main target of this publication is to design a compiler

which warns the user of various vulnerabilities. The

vulnerability warnings are included in the list of compile time

warnings. Before understanding the detailed mechanism of

programming vulnerabilities detection, we will look into the

design of compiler phases and some basic terminology

associated with compiler.

International Journal of Computer Applications (0975 – 8887)

Volume 104 – No.6, October 2014

29

A compiler is a computer program (or set of programs) that

transforms source code written in a programming

language (the source language) into another computer

language (the target language, often having a binary form

known as object code). The most common reason for wanting

to transform source code is to create an executable program

[7].

The name "compiler" is primarily used for programs that

translate source code from a high-level programming

language to a lower level language (e.g., assembly or machine

code). If the compiled program can run on a computer

whose CPU or operating system is different from the one on

which the compiler runs, the compiler is known as a cross-

compiler. A program that translates from a low level

language to a higher level one is a decompiler. A
program that translates between high-level languages is

usually called a language translator, source to source

translator, or language converter. A language rewriter is

usually a program that translates the form of expressions

without a change of language. In this project, we deal with a

typical ‘language translator’. A compiler is likely to perform

many or all of the following operations: lexical analysis, pre

processing, parsing, semantic analysis (Syntax-directed

translation), code generation, and code optimization. For sake

of detection of vulnerabilities, we, hereby, exclude from our

discussion phases of code generation and code optimization

[8].

Fig 5. Phases of compiler [4]

Processing during compiler phases

A. A high-level program that takes as input another

high-level program as a string and splits into the

desired program.

B. Inserting of instructions for attack into the program

like stack smashing, overflow etc.

C. Modifying of the return address; changing of the

flow of execution of instructions in the program.

4.1.1 Lexical Analysis
Lexical analysis is the process of analyzing a stream of

individual characters (normally arranged as lines), into a

sequence of lexical tokens (tokenization. for instance of

"words" and punctuation symbols that make up source code)

to feed into the parser. Roughly it is equivalent to splitting

ordinary text written in a natural language (e.g. English) into a

sequence of words and punctuation symbols. In lexical phase

of compiler each word is categorized as a token. A token is a

categorized block of text, usually consisting of indivisible

characters known as lexemes. A lexical analyzer initially

reads in lexemes and categorizes them according to function,

giving them meaning. This assignment of meaning is known

as tokenization.

4.1.2 Syntax Analysis
This is alternatively known as parsing. It is roughly the

equivalent of checking that some ordinary text written in a

natural language (e.g. English) is grammatically correct

(without worrying about meaning).The purpose of syntax

analysis or parsing is to check that we have a valid sequence

of tokens. Note that this sequence need not be meaningful; as

far as syntax goes, a phrase such as "true + 3" is valid but it

doesn't make any sense in most programming languages. The

parser takes the tokens produced during the lexical analysis

stage, and attempts to build some kind of in-memory structure

to represent that input. Frequently, that structure is an 'abstract

syntax tree' (AST).

Fig 6. AST (Abstract syntax tree) representation of code

for compiler execution.

4.1.3 Semantic Analyzer
This phase of compiler design deals with analyzing the

execution code by categorization into symbol table. A symbol

table is a major data structure used in a compiler:

 Associates attributes with identifiers used in a

program

 For instance, a type attribute is usually associated

with each identifier

 A symbol table is a necessary component

 Definition (declaration) of identifiers appears once

in a program

 Use of identifiers may appear in many places of the

program text

 Identifiers and attributes are entered by the analysis

phases

 When processing a definition (declaration) of an

identifier

http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Source_code
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Object_code
http://en.wikipedia.org/wiki/Executable
http://en.wikipedia.org/wiki/High-level_programming_language
http://en.wikipedia.org/wiki/High-level_programming_language
http://en.wikipedia.org/wiki/Machine_code
http://en.wikipedia.org/wiki/Machine_code
http://en.wikipedia.org/wiki/CPU
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Cross-compiler
http://en.wikipedia.org/wiki/Cross-compiler
http://en.wikipedia.org/wiki/Decompiler
http://en.wikipedia.org/wiki/Translator_(computing)
http://en.wikipedia.org/wiki/Rewriting
http://en.wikipedia.org/wiki/Lexical_analysis
http://en.wikipedia.org/wiki/Preprocessing
http://en.wikipedia.org/wiki/Preprocessing
http://en.wikipedia.org/wiki/Parsing
http://en.wikipedia.org/wiki/Syntax-directed_translation
http://en.wikipedia.org/wiki/Syntax-directed_translation
http://en.wikipedia.org/wiki/Code_generation_(compiler)
http://en.wikipedia.org/wiki/Code_optimization

International Journal of Computer Applications (0975 – 8887)

Volume 104 – No.6, October 2014

30

 In simple languages with only global variables and

implicit declarations.

 The scanner can enter an identifier into a symbol

table if it is not already there

 In block-structured languages with scopes and

explicit declarations:

 The parser and/or semantic analyzer enter identifiers

and corresponding attributes

 Symbol table information is used by the analysis

and synthesis phases

 To verify that used identifiers have been defined

(declared).

Table 4. Type table

Type Value

Int 0

Float 1

Double 2

 Char 3

Table 5. Parsing table

No Variable Type Defined Address

1 a 0 0 xx

2 b 3 1 xx

3 c 2 0 xx

4 d 1 1 xx

After parsing the code, compiler fills the data according to the

type and parsing table. This information is used by compiler

at the time of attack prevention.

4.2 Prevention of vulnerability cases

After getting the insight of various vulnerability attacks and

compiler design, our next task is to understand the technique

deployed by compiler in preventing such attacks.

4.2.1 Stack smashing and Buffer overflow
The basic problem of stack smashing has its root cause as

buffer overflow. As the size of data increases the desired

space than the possibility that it modifies the return address

becomes immense. The extra value can be linked with the

entry address of malicious code. So we can say our root cause

of various vulnerabilities is buffer overflow. Our vulnerability

prevention technique mainly focuses on preventing the root

cause which is buffer overflow. Buffer overflow

protection refers to various techniques used during software

development to enhance the security of executable programs

by detecting buffer overflows on stack-allocated variables as

soon after they occur as is practical, and preventing them from

becoming serious security vulnerabilities.

Table 6. Function return address table

Function Name Return Address

Fun1 F1xx

Fun2 F2xx

Fun3 F3xx

Table 7. Function execution address

Function 1 return address F1xx changes to F1xy

Var1

Var2

Var3

.

.

During the return of the program, checked that Fun1 address

should match with Fun1 (table 6 value).

If not matched then there is the stack smashing, and return the

function to the actual return address that store in the function

table If matched with the table value then return. Main

mechanism of buffer overflow prevention is based on

canaries.

Canaries

Canaries are pre known values which are placed between a

buffer and control data on the stack in order to check the

possibility of buffer overflows. In the case of buffer

overflows, the first data to be corrupted will be canary which

will result in the failure of verification of the canary value.

This results in the invalidation of data and compiler warning

for the case of vulnerability detection. This concept is based

on the references of the historic practice of using canaries in

field of coal mines, since they would be affected by toxic

gases earlier than the miners, thus providing a warning

system. The use of canary in order to prevent buffer overflow

is based on three method of its use. These are Terminator,

Random, and Random XOR canaries.

Terminator canaries

Terminator Canaries use the observation that most buffer

overflow attacks are based on certain string operations which

end at terminators. The extra space for any string is reserved

for its terminator. We can analyze the canary character in a

string. If the value of the canary character is modified then it

is the possibility for buffer or stack smashing case.

Random canaries

Random canaries can be generated randomly. This is achieved

usually from an entropy-gathering daemon, so as to prevent an

attacker from knowing their value. Usually, it is not logically

possible to read the canary for exploiting; the canary is a

secure value known only by those who need to know it—the

buffer overflow protection code in this case.

http://en.wikipedia.org/wiki/Buffer_overflow
http://en.wikipedia.org/wiki/Call_stack
http://en.wikipedia.org/wiki/Computer_security

International Journal of Computer Applications (0975 – 8887)

Volume 104 – No.6, October 2014

31

Normally, a random canary is generated at program

initialization, and stored in a global variable. This variable is

protected by padding of unmapped pages, in order to avoid

any attempt to read it using any kinds of tricks which may

lead to some kind of segmentation fault or some abnormal

termination in ram. If the attacker knows the canary location,

it may still be possible to read the canary.

Random XOR canaries

Random XOR Canaries are Random Canaries that are XOR

scrambled using all or part of the control data. In this way,

once the canary or the control data is clobbered, the canary

value is wrong. Random XOR Canaries have the same

vulnerabilities as Random Canaries, except that the 'read from

stack' method of getting the canary is a bit more complicated.

The attacker must get the canary, the algorithm, and the

control data to generate the original canary for re-encoding

into the canary he needs to use to spoof the protection.

In addition, Random XOR Canaries can protect against a

certain type of attack involving overflowing a buffer in a

structure into a pointer to change the pointer to point at a

piece of control data. Because of the XOR encoding, the

canary will be wrong if the control data or return value is

changed. Because of the pointer, the control data or return

value can be changed without overflowing over the canary.

4.2.2 Declaration attacks
After parsing of executable code we update the value

corresponding to the defined column (table 5). At the start of

the executable stage for any program code we look into the

value of declared variables in parsing table. If any variable in

parsing table is not defined, warning would be raised as not

defined variable. Parsing of definition check is based on the

flow diagram in Fig 7.

Fig 7. Flow diagram for definition check

5. CONCLUSION
We have presented the design of a framework allowing the

testing of security frameworks and detection of program

vulnerabilities on the basis of program-based attacks. Such a

framework would allow for more efficient testing of these

mechanisms, without resorting to complex methodologies.

The key insight of this framework is that dynamic compilation

technology allows us to insert and simulate attacks during

program execution.

6. FUTURE SCOPE
Various areas outlined briefly in this section are open research

issues that need to be explored further for future works in this

area. It includes implementation of the framework with proper

interfacing between the different modules and implementation

of inter-process communication, Expansion of the attacks, in

the attack generator, in a general fashion to work with all

types of programs , Research into investigating of information

needed to determine successful attacks and coverage

information in the execution monitor.

7. ACKNOWLEDGMENTS
It gives us a great pleasure to express my deep sense of

gratitude and indebtedness to our guide Mr. Deepak Kumar

Gupta, Associate Professor NIT Jalandhar for their valuable

support and encouraging mentality throughout the research

work. We also want to express our gratitude to Mr. Ashwani

Malhotra and Mr. Amit Kumar, Assistant Professor NIT

Jalandhar for their support.

8. REFERENCES
[1] Alexander Ivanov Sotirov, automatic vulnerability

detection using static source code analysis.

[2] Kirill Kononenko, A Unified Approach to Identifying

and Healing Vulnerabilities in x86 Machine Code.

[3] David Brumley, Tzi-cker Chiueh, Robert Johnson,

RICH: Automatically Protecting Against Integer-Based

Vulnerabilities.

[4] Steven Muchnick, Advance compiler design and

implementation.

[5] James C Foster, Vitlay Osipov, Nish Bhalla, Niels

Heinen, Book on Buffer overflow attack.

[6] R.Bodik, R.Gupta and V.Sarkar. “ABCD: Eliminating

array bound checks on demand”. Programming language

design and Implementation, 2000.

[7] K. V. N Sunitha, Book on Compiler Construction

[8] Alfred V. Aho, Monica S. Lam, Ravi Sethi and D.

Jeffrey Ullman, Book on Compilers Principles

Techniques And Tools

[9] D. M. Gallagher, W. Y. Chen, S. A. Mahlke, J. C.

Gyllenhaal, and W.-m. W. Hwu. Dynamic memory

disambiguation using the memory conflict buffer.

[10] M. Gschwind and E. R. Altman. Precise exception

semantics in dynamic compilation.

IJCATM : www.ijcaonline.org

