International Journal of Computer Applications (0975 — 8887)
Volume 104 — No.4, October 2014

A Simple Approach to SQL Joins in a Relational
Algebraic Notation

C.Bhanuprakash
Assistant Professor,
Dept.of MCA, SIT
Tumkur — 572103,Karnataka.

ABSTRACT

Join is an operation in accessing the data from table if number
of tables exceeds one. Whenever we need the data which is
not available from a single table, then it needs to necessitate
using join operation. Sometimes join is required even if there
is a single table. It all depends on the format in which we need
to display the data in the user environment.

In join processes, the accessing of the data depends on the
joining conditions with different operators. Here, join
condition is a must. For this purpose, generally we are using
relational operators along with logical operators. The problem
presently we are facing is many of them are not knowing
exactly all types of joins, their proper syntaxes and their
proper usage. Sometimes it is vey difficult for the teacher or
trainer to convince the trainees, students, research scholars in
giving right practical examples while we teach SQL joins to
them. Even if we use some conventional operators, the
performance of the query may results in delayed accessing
time in retrieving the data from N number of tables. This is
due to lack of knowledge of the programmers on evaluation
criteria of the joined queries. Since the present tables are
dealing with millions of records, if we take these tables as
example tables, then it is very difficult to give the exact
demonstration regarding the number of records to be
accessed, because, many joining concepts dealing with exact
number of records which are working based on Cartesian
Product. To avoid all these uncertainties, confusion,
ambiguities, in this paper, it has been used with only three
simple tables which are given from Oracle Corporation in user
schema scott/tiger. The number of records used in these tables
is very minimum and are meaningful records.

After understanding the basics of all SQL joins, then it is
necessary to represent the same queries in relational algebraic
notations, because, those are the standard and uniform
syntaxes which will be applicable in any of the database
software. But the present problem is many of the software
developers, specialists, programmers, and researchers are not
aware of how to represent queries exactly in that syntax. In
order to overcome this, the main focus is to make a familiarity
in writing the SQL queries in relational algebraic format along
with different types of joins.

The main focus of this paper is to learn the basic
fundamentals of all types of SQL joins along with algebraic
notations in a very easiest, convinced and simple approach.
On many stages, it is given with live examples along with
SQL code and its result set by using SQLPLUS interface.

Y.S.Nijagunarya, PhD
Professor,
Dept.of CSc and Engg, SIT
Tumkur-572103, Karnataka.

M.A.Jayaram, PhD
Professor,
Dept.of MCA, SIT
Tumkur — 572103, Karnataka

General Terms

In this paper, records of the table are referred as result set and
the records which are matching the joining condition are
referred as matching records.

Keywords

SQL Joins, Relational operators, Relational Algebraic
expressions, Query evaluation, Access time, matching
records, Result set.

1. INTRODUCTION

A join is a query that combines data records from two or more
tables. We perform a join whenever multiple tables appear in
the FROM clause of the query. We can specify any number of
columns of the table in the select clause of the query. Then
find out the common column from both the tables for framing
the join condition along with some relational operator,
preferably always with equal operator (=). If any two of these
tables have a common column name, then we refer these
columns throughout the query with table name as primary
identifier to avoid ambiguity (Example : Emp.Deptno).

The basic set of operations to manipulate the relational model
is the relational algebra. These operations familiarize the user
to specify basic retrieval requests. The result of a retrieval is
always becomes the new relation [1], that may be formed
from one or more relations. The algebra operations thus
produce new relations which can be further manipulated using
the same algebraic operations. A sequence of relational
algebra operations forms a relational algebra expression,
whose result will also be a relation that represents the result of
a database query. The relational algebra is very important for
several reasons.

e |t provides a proper and basic foundation for
relational model operations.

e |tis used as a basic template for implementing and
optimizing queries in RDBMS

e Some of its concepts are used in SQL.

Presently, even though no RDBMS software is providing an
interface for relational algebra queries, the core operations and
functions of any relational system are based on relational
algebra operations only.

1.1 Joining conditions

Many of the joining queries contain WHERE clause
conditions that compare two columns, each from a separate
table. Such a condition is called a join condition. To execute
a join, database software combines pairs of record sets, each
of the record set containing one record from each table, for
which the join condition evaluates to TRUE. The columns in

18

the join conditions need not be appear in the select list. It is an
optional one.

To execute a join of three or more tables, SQL engine first
joins two of the tables based on the join conditions comparing
their columns and then joins the result to another table based
on join conditions containing columns of the joined tables and
the new table. SQL engine continues this process until all
tables are joined into the result. The optimizer specifies the
order in which SQL engine joins tables based on the join
conditions, indexes on the tables, and, any available statistics
for the tables [1].

In addition to join conditions, the WHERE clause of a join
query can also contain other conditions that refer to columns
of only one table. These conditions can further filter the
records returned by the join query.

2. TYPES OF JOINS
Mainly there are three types of joins based on the way they
retrieve the records. They are Inner join, Outer join and
joining more than two tables.

2.1 Inner Join : An inner join (sometimes called a
simple join) is a join of two or more tables that returns only
those records that satisfy the join condition. l.e. it is looking
for only the matching records [1].

(' What is a Matching record ? It is the one which satisfies the
joining condition. l.e. its existence and relationship will be
there in both the tables.)

2.2 Outer Join : An outer join extends the result of a
simple join. An outer join returns all records that satisfy the
join condition and also returns some or all of those records
from one table for which no record from the other table satisfy
the join condition. In other words, first of all it is looking for
matching records and remaining records (usually with null
values) from one table or both the tables [1].

2.3 Joining more than Two tables : It is a generalized
joining process in which number of tables is exceeding by
two. Here, the minimum number of joining conditions
required depends on the number of tables being joined. To
join N number of tables, at minimum, we need (N — 1) joining
conditions [4].

3. RELATIONAL OPERATIONS

3.1 The PROJECT operation : It selects certain
columns from the table and discards the remaining columns. If
we want to retrieve only certain attributes of a relation or all
the attributes, we use the PROJECT operation.[6] The general
form of the PROJECT operation is

Tl< attribute list> (R)

Here, m is the symbol used to represent Projection, <attribute
list> is the list of columns (attributes) of a relation R and (R)
is the relation name (table name)

3.2 The SELECT operation : It is used to select a
subset of the records from a relation that satisfies a select
condition. It acts like a filter by selecting only required
records by putting the condition in a query [7]. The general
form of the SELECT operation is

O < select condition> (R)

International Journal of Computer Applications (0975 — 8887)
Volume 104 — No.4, October 2014

The Boolean condition specified in <select condition> is made
up of a number of clauses of the form

<attribute name> <comparison operator> <constant value>

Here, attribute name is column name, comparison operator is
equal operator ‘=" and constant value is a user defined value.

3.3 The JOIN operation : It is used to combine related
records from one, two or more relations in to a single record
[8]. A general form of JOIN operation on two relations is

R = <join condition> S

Here R is the first relation, S is the second relation,
<join condition> contains R.Column=S.Column R and
S are the two relations, Column is the common column
available from both the relations.

If number conditions increases, then conditions will be
included by using Logical operators (i.e. AND, OR, NOT)

3.4 Cartesian Product :

If two tables in a join query have no join condition, then query
results in a type of a result set in the form of Cartesian
product. Query combines each row of one table with each
row of the other [5]. It is in the form of M X N. i.e. M is the
number of records in first table and N is the number of
records in the second table [4]. A Cartesian product always
generates many rows and is rarely useful. For example, the
Cartesian product of two tables, each with 50 rows, has 2,500
rows. Therefore always be careful in using join conditions. If
a query joins three or more tables and you do not specify a
join condition for a specific pair, then the optimizer may
choose a join order that avoids producing an intermediate
Cartesian product.

4. PRACTICAL APPROACH

To explain all the above joining types, here it is used with
following tables which are available from Oracle software
under user schema scott/tiger. Their structures and records are
shown in Table-EMP.

Table-EMP (Table description)

SQL> desc emp;

Name Hull? Type

EHMPHO NOT HULL HUMBER{4)
EHAKE UARCHARZ2{18)
JOB VARCHARZ(9)
HGR HUMBER {4}
HIREDATE DATE

SAL HUMBER(7,2)
COMH HUMBER{7,2)
DEPTHOD NUMBER{2)

This table with the name “EMP” will keep track of the basic
information of an employee regarding his name, id,
designation, salary, date of join, department in which he is
working, commission he his getting and under which manager
he is working. In this table, the column EMPNO is primary
key, DEPTNO is foreign key and MGR is self referential
foreign key. Since we have two foreign keys, this table is
considered as child table. The total number of records in this
table is 17. Its records are shown in Table-EMP

19

Table. : EMP (Table with records)

SOL> select * from emp;

EMPNO ENAME Jop MGR HIREDATE SAL COHH DEPTHO
7369 SHITH CLERK 7902 17-DEC-88 L1l 20
7499 ALLEN SALESHAN 7698 20-FEB-81 1608 300 30
7521 UARD SALESHAN 7698 22-FEB-81 1258 500 30
7566 JONES HANAGER 7839 82-APR-81 2975 28
7654 HARTIN SALESHAN 7698 28-SEP-81 1258 1408 30
7698 BLAKE HANAGER 7839 B1-HAY-81 2858 30
7782 CLARK HANAGER 7839 09-JUN-81 2460 10
7788 SCOTT ANALYST 7566 19-APR-87 3608 28
7839 KING PRESIDENT 17-HOU-81 5618 10
7844 TURHER SALESHAN 7608 BB-SEP-81 1588 8 30
7876 ADAMS CLERK 7788 23-HAY-87 1108 20
7900 JAMES CLERK 7698 83-DEC-81 950 30
7902 FORD ANALYST 7566 83-DEC-81 3000 20
7934 HILLER CLERK 7782 23-JAN-82 1318 10

5000 Bhanu
5081 AMAR
5082 ARUN

(17 rows selected.

Table : DEPT (Table description)

SOL> desc dept;

Name Hull? Type

DEPTHO HOT HULL MUMBER(2)
DNAME UARCHAR2(14)
Loc UARCHAR2(13)

This table with the name “DEPT” will keep track of
the data of the different departments regarding the department
Id, department Name and its location in an organization. In
this table, the column DEPTNO is the primary key. Since we
do not have any foreign key in this table, we consider this
table as MASTER TABLE. There are 7 records in this table.
Its records are displaying as shown in Table - DEPT.

Table — DEPT. (Table with records)

S0L> select = from dept;

DEPTHD DHAHE LOC
18 ACCOUNTIHG HEW YORK
28 RESEARCH DALLAS
38 SALES CHICAGOD
48 OPERATIOHS BOSTOH
58 DESIGH BAHGALORE
68 55 Club Tumkur
F8 SIT Club Tumkur

7 rows selected.

Table — 3 : SALGRADE (Table description)

SOL> desc salgrade;

Name Hull? Type

GRADE HUMBER
LosAL HUMBER
HISAL HUHBER

International Journal of Computer Applications (0975 — 8887)
Volume 104 — No.4, October 2014

This table with the name “SALGRADE” will keep track of
the data of the salary grades maintaining in an organization in
the form of Grade, staring salary limit, upper salary limit. In
this table, we do not have any primary key or foreign key, we
consider this table as a general table . There are 5 records in
this table. Its records are shown below. We will be using this
table when we need the grade of an employee based on the
salary he is getting.

Table — SALGRADE (Table with records)

50L> select = from salgrade;

GRADE LOSAL HISAL
1 Foa 1208
2 1201 1408
3 1401 2008
LS 2001 3000
5 3801 9990

4.1 INNER JOIN : As mentioned earlier, this join will
mainly looking for matching records. i.e. the records which
satisfy the joining condition [3]. There are three types in this
inner join. They are

a) Inner Equi join,

b) Inner Non-Equi join

c) Inner Self join

4.1.a. Inner Equi-Join : An equijoin is a join with a
join condition containing an equality operator [2]. An equijoin
combines records that have equivalent values for the specified
columns. Depending on the implicit algorithmic plan, the
optimizer chooses the execution plan for this equijoin. The
size of the columns specified in the joining condition in a
table may be restricted to the size of a data block without
some overheads. The size of a data block is specified by the
initialization parameter DB_BLOCK_SIZE [1].

To give an example to this join, here it is used with EMP and
DEPT tables. This join needs one common column. i.e.
DEPTNO which acts as Primary key in DEPT table and
Foreign key in EMP table. The joining condition requires the
usage of EQUAL operator. The following SQL query
retrieves the employee number, employee name, designation
and department name from the tables EMP and DEPT

Example : SQL>select empno,ename,job,dname
From emp, dept
Where emp.deptno=dept.deptno;
Relational Algebra notation :
In this notation, the above query is a combination of

Projection and Join. Therefore we need to use both the
syntaxes in the following way.

20

Result = 7 <empno,ename,job,dname>("" OO <

deptnozdeptno>)GIePt

or it can also be represented as

R1-> 7 <empno,ename,job,dname>°"P 4¢Pt
em| dept

R2> ™ 23 < deptno=deptno> P

The resultant result is given by
R 2> R1(R2)

After execution, the query will get only 14 matching records.
i.e. records which satisfies the joining condition.

50L> select empno,ename,job,dname
2 from emp,., dept
3 where emp.deptno=dept.deptno;

EMPHO EHNAME JOB DHAME

7369 SHITH CLERK RESEARCH
7499 ALLEH SALESHAM SALES

7521 WARD SALESHAN SALES

7566 JONES MANAGER RESEARCH
7654 MARTIH SALESHAN SALES

7698 BLAKE MANAGER SALES

7782 CLARK MANAGER ACCOUNT ING
7¥88 SCOTT AMALYST RESEARCH
7839 KIHG PRESIDENT ACCOUNTIHG
7844 TURHER SALESHMAN SALES

FB¥G ADAMS CLERK RESEARCH
7288 JAHMES CLERK SALES

79082 FORD AMALYST RESEARCH
7934 MILLER CLERK ACCOUNT ING

14 rows selected.

4.1.b Inner Non Equijoin : A Non equijoin is a join
with a join condition without containing an equality operator.
A non-equijoin combines records that have equivalent values
for the specified columns. Depending on the implicit
algorithmic plan the optimizer chooses the execution plan for
this join [3].

To give an example to this join, here it is used with
EMP and SALGRADE tables. This join does not require any
common column or master child relationship among the
tables. The joining condition prohibits the usage of EQUAL
operator. The following SQL query retrieves the employee
number, employee name, salary and grade from the tables
EMP and SALGRADE.

Example : SQL>select empno,ename,sal,grade
From emp, salgrade
Where sal>=losal and sal <= hisal;

Relational Algebra notation :

Result = 1 <empno,ename,sal,grade>(""" &0 < sal =>
losal AND sal <= hisal >)*9"%

or it can also be represented as

R1- 1t <empno,ename,sal grade>S"P S2l0rade

salgrade

em|
R2-> “™ OO < sa1 >= osal AND sal <= hisal>
The resultant result is given by

R > R1(R2)

International Journal of Computer Applications (0975 — 8887)
Volume 104 — No.4, October 2014

After execution, the query will get only 14 matching records.
i.e. records which satisfies the join condition.

SQL> select empno,ename,sal,qrade
2 from emp, salgrade
3 where sal>=losal and sal<=hisal;

EMPHD ENHAME SAL GRADE
7369 SHMITH goo 1
7876 ADAMS 1188 1
7988 JAMES 058 1
7521 WARD 1258 2
7654 MARTIN 1258 2
7934 MILLER 1318 2
7499 ALLEN 1688 3
7844 TURNER 1588 3
7560 JOHES 2975 4
7698 BLAKE 2858 L)
7782 CLARK 2468 4
7788 SCOTT 3088 L)
7982 FORD 3008 4
7839 KING ce18 5

14 rows selected.

This can also be executed by using one more operator
“BETWEEN”

Example : SQL>select empno,ename,sal,grade
From emp, salgrade
Where sal between losal and hisal;

Note : be careful in using BETWEEN operator, i.e. the first
parameter value should be less than second parameter.

4.1.c Inner Self Join : A self-join is a join of a table to
itself. Since a join requires minimum of two tables, here, we
refer the same table twice in the FROM clause and is followed
by table aliases that qualify column names in the join
condition. To perform a self-join, oracle combines and
retrieves records of the table that satisfy the join condition [3].

To give an example to this join, here it is used with EMP table
only. In this table, the column EMPNO is primary key and
MGR is foreign key which references primary key of the same
table. This join is the concept works under the UNARY
relationship. The following SQL query retrieves the employee
name in one column and their respective managers in the
other column. Here, the same EMP table will be referenced
twice with alias name.

Example : SQL>select E.ename as Employee, M.ename as
Manager
From emp E, emp M
Where M.empno=E.mgr;

Relational Algebra notation :

Result = m <E.ename as Employee, M.ename as
E.emp _ M.emp
Manager>(>0 < M.empno = E.mgr >)

or it can also be represented as

R1-> @ <Eename as Employee, M.ename as
Manager>E¢mP:M-emp

E. M.
R2> =™ 20 < M.empno = Emgr>

The resultant result is given by
R > R1(R2)

21

After execution, the query will get only 13 matching records.
i.e. records which satisfies the join condition. Why only 13
records ? why not 14 as in the case of previous two cases.
Here one of the employees with the name ‘KING’ do not have
manager. That’s why, it is only 13 records here.

SOQL> select E._ename as Employee, M_ename as Manager
2 From emp E, emp H
3 where H.empno=E.mgr;

EMPLOYEE MANAGER

SMITH FORD
ALLEH BLAKE
WARD BLAKE
JOHNES KIHNG
MARTIH BLAKE
BLAKE KIHNG
CLARK KIHNG
SCOTT JONES
TURHNER BLAKE
ADAMS SCOTT
JAMES BLAKE
FORD JOMNES
HILLER CLARK

13 rows selected.

4.2 OUTER JOIN : As mentioned earlier, this join is
an extension of inner join. It is mainly looking for matching
records and remaining records from either of the tables or
both the tables [2]. There are three types in this outer join.
They are

a) Left outer join
b) Right outer join
c¢) Full outer join

4.2.a) Left Outer Join : As the name itself indicates that,
this query mainly looking for matching records and remaining
records from left table [7]. How do we know that which is left
table ? and which is right table ?. It will be decided by looking
the following join condition.

Table-A.Column_ld = Table-B.Column_Ild(+)

Here, the table which is located at the left hand side of
equality operator is considered as Left table and the table
specified at the right hand side of equality operator is
considered as Right table. In the above case, Table-A is left
table and Table-B is right table. There is a provision to use
any table in any of the side.

To give an example to this join, here it is used with
EMP table as left table and DEPT table as right table. The
following SQL query retrieves the records containing the
employee number, employee name, designation, and
department name in which he is working.

Example : SQL>select empno, ename, job, dname
from emp, dept
Where emp.deptno=dept.deptno (+);

Relational Algebra notation :
Result = m <empno,ename,job,dname>(*" M <
deptno=deptno >)°*""

or it can also be represented as

R1-> 1 <empno,ename,job,dname>°""" %t

dept
R2-> ™ < deptno=deptno>

International Journal of Computer Applications (0975 — 8887)
Volume 104 — No.4, October 2014

The resultant result is given by
R > R1(R2)

After execution, the query will get 17 records. Out which, 14
records are matching records and remaining 3 records are
from only left table. i.e. the records with null values in the
columns job and dname.

SOL> select empno,ename, job,dname
2 from emp, deptl
3 where emp.deptno=dept_deptno{+);

EMPHO ENAME JOB DHAME
7369 SMITH CLERK RESEARCGH
7499 ALLEH SALESHMAN SALES
7521 WARD SALESMAN SALES

F566 JOHES MANAGER RESEARCH
Fo54 MARTIHN SALESHMAN SALES

F698 BLAKE MANAGER SALES

F¥82 CLARK MANAGER ACCOUNT IHG
F¥EE SCOTT AHALYST RESEARCH

F839 KIHG
Fiu4 TURHER

PRESIDENT ACCOUNTIHG
SALESHMAN SALES

FB76 ADAME CLERK RESEARCH
7998 JAMES CLERK SALES

7982 FORD ANALYST RESEARCH
7934 HMILLER CLERK ACCOUNT IHG

500808 Bhanu
S 881 aMAR
5882 ARUHNH

17 rouws selected.

The same query can also be written as follows.

SQL > select empno,ename,job,dname
From emp left outer join dept
On emp.deptno=dept.deptno;

4.2.b) Right Quter Join : This join query mainly
looking for matching records and remaining records from
right table [4].

To give an example to this join, here it is used with
EMP table as left table and DEPT table as right table. The
following SQL query retrieves the records containing the
employee number, employee name, designation, and
department name in which he is working.

Example : SQL>select empno,ename,job,dname
from emp, dept
Where emp.deptno(+)=dept.deptno;

Relational Algebra notation :

Result = 7 <empno,ename,job,dname>(*"" DX <
deptno=deptno >)°*"
OR it can also be represented as

R1-> & <empno,ename,job,dname>°"P: 4t

em dept
R2-> P M < deptno=deptno> P
The resultant result is given by

R > R1(R2)

After execution, the query will get 18 records. Out which, 14
records are matching records and remaining 4 records are
from only right table. i.e. the records with null values in the
columns empno, ename and job.

22

3QL> select empno,ename,job,dname
2 from emp, dept
3 where emp.deptno{+)=dept.deptno;

EMPHO ENAME JOB DHAME

7782 CLARK MANAGER ACCOUNTING
7839 KING PRESIDENT ACCOUNTIHG
7934 HMILLER CLERK ACCOUNTIHG
7369 SHITH CLERK RESEARCH
7876 ADAMS CLERK RESEARCH
79982 FORD AHALYST RESEARCH
7788 SCOTT AHALYST RESEARCH
7566 JONES MANAGER RESEARCH
7499 ALLEH SALESHMAN SALES

7698 BLAKE HANAGER SALES

7654 MARTIN SALESHMAN SALES

7908 JAMES CLERK SALES

784k TURHER
¥521 WARD

SALESHAN SALES
SALESHAN SALES
OPERATIONS
DESIGH
53 Club
3IT Club

18 rows selected.

The same query can also be written as follows.

SQL > select empno,ename,job,dname
From emp right outer join dept
On emp.deptno=dept.deptno;

4.2.c) FULL Outer Join : This join query mainly
looking for matching records and remaining records from both
the tables [3].

To give an example to this join, here it is used with EMP
table as left table and DEPT table as right table. The following
SQL query retrieves the employee number, employee name,
designation, and department name in which he is working.

Example : SQL>select empno,ename,job,dname
from emp Full outer join dept
on emp.deptno=dept.deptno;

Relational Algebra notation :

Result = 7 <empno,ename,job,dname>(*"" M <
deptno=deptno >)°*"

or it can also be represented as

R1-> 7 <empno,ename,job,dname>¢"P 4Pt

R2-> ™ M < deptnozdeptno>dept
The resultant result is given by
R > R1(R2)
After execution, the query will get 21 records. Out which, 14

records are matching records and remaining 3 records are
from left table and remaining 4 records from right table.

International Journal of Computer Applications (0975 — 8887)
Volume 104 — No.4, October 2014

SQL> select empno,ename,job,dname
2 from emp Full outer join dept
3 on emp.deptno=dept.deptno;

EMPHO EHAHE Joe DHAME

7934 HMILLER CLERK ACCOUNHTIHG
7839 KIHG PRESIDENT ACCOUHNTIHG
7782 CLARK HAHAGER ACCOUNHTIHG
7982 FORD AHALYST RESEARCH
7876 ADAMS CLERK RESEARCH
7788 SCOTT AHALYST RESEARCH
7566 JOHNHES HAHAGER RESEARCH
7369 SHITH CLERK RESEARCH
7988 JAMES CLERK SALES

7844 TURHER SALESMAH SALES

7698 BLAKE HAHAGER SALES

7654 MARTIH SALESMAH SALES

7521 WARD SALESHMAN SALES

7499 ALLEHN SALESHMAN SALES

5862 ARUN

5861 AHMAR

5888 Bhanu
DESIGH
$S Club
SIT Club
OPERATIONS

21 rows selected.

4.3 Joining more than two tables : It is a
generalized joining process in which number of tables are
exceeding by two. Here, the minimum number of joining
conditions required depends on the number of tables being
joined [4]. To join N number of tables, at minimum, we need
(N — 1) joining conditions.

To give an example to this join, here it is used with 5 tables.
Namely BRANCH, CLASS, SUBJECT, TEACHER and
STUDENT. Their structures and records are as follows :

Table- Branch

SQL*> desc branch

Hame Hull? Type
BRANCHID NOT NULL UARCHAR2{2)
BRAHCHNAKE UARCHARZ({15)

SQL> select = from branch;

BR BRANCHNANE

B1 Compsc

B2 InfoSc

B3 EC

B4 IT

B5 Electrical

This Branch table is a master table which keep tracks of all
the branches in a college. Here, the column, Branchld is a
primary key.

Table- Class

SQL> desc class;
Name Null? Type
CLASSID NOT NULL VARCHARZ2(2)
GLASSNAME UARCHARZ(18)

SQL> select = from class;

CL CLASSHAHE
C1 I Sem

C2 II Sem

C3 III Sem
C4 IV Sem

23

This Class table is a master table which keep tracks of all the
classes in a college. Here, the column Classld is a primary
key.

Table- Subject

SQL> desc subject
Name Null? Type

SUBJECTID
SUBJECTHNAME

NOT NULL VARCHARZ{2)
UARCHARZ(15)

SQL> select * from subject;

SU SUBJECTNAME

$1 Haths

S2 ¢ Lang

33 Chemistry
S4 Physics

S5 Electronics
56 Electrical

6 rows selected.

This Subject table is a master table which keep tracks of all
the subjects taught in a college. Here, the column Subjectld is
a primary key.

Table- Teacher

SQL> desc teacher;
Name Null? Type

TEACHERID
TEACHERNAME

NOT HULL URRCHARZ2(2)
UARCHAR2(15)

SQL> select * from teacher;

TE TEACHERMAME

T1 Ravindran
T2 Alex

T3 Stephen
T4 Saravanan

This Teacher table is a master table which keep tracks of all
the Teachers in a college. Here, the column Teacherld is a
primary key.

Table- Student

SQL> desc student;

NHame NHull? Type

STUDENTID HOT NULL UARCHARZ (5}
STUDENTHAME UARCHAR2{15)
BRANCHID UARCHAR2(2)
CLASSID UARCHARZ(2)
SUBJECTID UARCHAR2({2)
TEACHERID UARCHAR2({2)

S0L> select = from student;

STUDE STUDENTHAHE BR CL SU TE
ST1 Arun B1 C1 51 T4
ST2 Ajay B1 C1 S1 T1
ST3 Arjun B1 G2 52 T2
ST4 Bharath B2 C1 53 T3
ST5 Kawya B2 C1 53 T3
STé Suma B2 C2 Sh Th
ST7 Ravi B2 G2 S4 T4
ST8 Shyam B3 C3 S5 T1
ST John B3 €3 S5 T4
ST18 Dinakar B3 C3 S5 T1

18 rouws selected.

International Journal of Computer Applications (0975 — 8887)
Volume 104 — No.4, October 2014

This Student table is a child table which keep tracks of all the
students in a college. Here, the column Studentld is a primary
key and columns Branchid, Classld, Subjectld, and Teacherld
are foreign keys. i.e. student is the child table having
relationship with remaining four tables. If we access the
records from student table, the data leads to lot of ambiguities,
confusions to the users. They may not know what is branchid,
subjectid, classid or teacherid. To avoid this, we will be
joining all the above tables to give meaningful data to the
users. i.e. to display Branch name, Class name, subject name,
teacher name to the users, but all these columns are available
from master tables and their id columns are shared with child
table. That’s why it needs to join these tables to give
meaningful result.

SQL> select studentid, studentname,BranchName,ClassName,SubjectName,TeacherNane
2 from Student, Branch, Class, Subject, Teacher
3 where Student.BranchId=Branch.Branchld
4 and Student.ClassId=Class.Classld
5 and Student.Subjectld=Subject.Subjectld
6 and Student.TeacherId=Teacher.TeacherId;

STUDE STUDENTNAME BRANCHHARE CLASSHAME SUBJECTHAME TEACHERNAME
ST1 Arun CompSc [Sem Haths Ravindran
S12 hjay ConpSc [Sem Haths Ravindran
ST3 Arjun CompSc I1 Sem C Lang flex

$T4 Bharath InfoSc [Sem Chenistry Stephen
$T5 Kawya InfoSc [Sem Chenistry Stephen
§T6 Suma InfoSc I1 Sem Physics Saravanan
ST7 Ravi InfoSe I1 Sem Physics Saravanan
$T8 Shyam EC [11 Sem Electronics Ravindran
ST9 John EC I11 Sem Electronics Ravindran
$T10 Dinakar EC I11 Sem Electronics Ravindran

18 rows selected.

Relational Algebra notation : Here it is a combination of
projection and Join.

Result = 7 <Studentld, StudentName, BranchName,
Classname, Subjectname,

Teachername>(""*" OO <Branchld=Branchld >)®™"
AND (*"“®*™ 0 < Classld=Classld >)“*

AND ("™ 50 < Subjectld=Subjectld)™t

AND (*“*™ 0 < Teacherld=Teacherld >) "

or it can also be represented as

R1-> & < Studentld, StudentName,BranchName,

Classname,Subjectname,
Teachername >student,Branch,CIass,Subject,Teacher

R2-> (*“®*" C < Branchld=Branchld >)B""
AND (*“®™ 50 < Classld=Classld >)°"*

AND (™™ 50 < Subjectld=Subjectld >)3**t
AND(®"*™ 0 < Teacherld=Teacherld >)"""

The resultant result is given by
R 2> R1(R2)

This is at minimum, to join n number of tables we need n-1
joining conditions. i.e. in the above case, to join 5 tables, it is
used with 4 joining conditions. Student table is considered as
a common table which is being used in all the joining
conditions, because it is the child table to the remaining
master tables. The maximum of number of joining conditions

24

needed depends on our requirement. Say for example, If we
need the details of the students belongs to only computer
science branch, then we need n-1 joining conditions and
condition which access the computer science branch students.
This is as follows.

SQL> select studentid, studentnane,Branchame,ClassHane,SubjectNane,Teacherbane
2 fron Student, Branch, Class, Subject, Teacher

3 where Student.BranchId=Branch.Branchld

4 and Student.ClassId=Class.Classid

5 and Student.SubjectId=Subject.Subjectld

6 and Student.Teacherld=Teacher.Teacherd

7 and BranchHame="Conpsc';
STUDE STUDENTNAME ~ BRANCHNARE CLASSMAME SUBJECTNAME TEACHERNAHE
ST1 Arun CompSe I Sem Haths Ravindran
§12 Rjay CompSc 1 Sen Haths Ravindran
§T3 Arjun CompSe II Sen € Lang fley

Relational Algebra notation : Here it is a combination of
Projection, Selection and Join.

Result > & <Studentld, StudentName, BranchName,
Classname, Subjectname,
Teachername>(o<Branchname="CompSc’>) """
AND (*"®*" 50 < Branchld=Branchld >)&""
AND (****™ 50 < Classld=Classld >)“**
AND("®™ 0 < Subjectld=Subjectld >)>"et
AND(*"™®™ o0 < Teacherld=Teacherld >)"#"")

or it can also be represented as

R1-> 7 < Studentld, StudentName, BranchName,

Classname, Subjectname, Teachername
>student,Branch,CIass,Subject,Teacher

R2-> o<Branchname="CompSc>>"""

R3-> (®"*" 50 < Branchld=Branchld >)&""
AND (*"*™ 50 < Classld=Classld >)“**
AND(®"*™ 50 < Subjectld=Subjectld >)SUect

AND(*™®™ 0 < Teacherld=Teacherld >) ™"
The resultant result is given by

R = R1 (R2 (R3))
In addition to this if we need to access the student details
belongs to | semester computer science students then it needs

one more additional condition.

SOL> select studentid, studentname,Branchbame,GlassHame,SubjectHane,TeacherNane
2 from Student, Branch, Class, Subject, Teacher

3 where Student.BranchId=Branch.BranchId

4 and Student.Classld=Class.Classld

5 and Student.SubjectId=Subject.SubjectId

6 and Student.TeacherId=Teacher.TeacherId

7 and BranchHame='CompSc’

8 and ClassHame='T Sem';
STUDE STUDENTNAME BRANCHNAME CLASSHAHE SUB.JECTHAME TEACHERHAHE
ST fArun CompSc [Sen Haths Ravindran
§T2 Rjay ConpSc [Sen Haths Ravindran

International Journal of Computer Applications (0975 — 8887)
Volume 104 — No.4, October 2014

Relational Algebra notation :

Here it is a combination of projection, Selection and Join.

Result = & <Studentld, StudentName, BranchName,
Classname, Subjectname,
Teachername>(o<Branchname="CompSc’

AND <ClassName="T Sem’>)&""

AND (*“*™ 0 < Branchld=Branchld >)&""
AND (*“®" o0 < Classld=Classld >)*

AND (*“®™ o0 < Subjectld=Subjectld >)>"**
AND (*“*™ 50 < Teacherld=Teacherld >)™%"™")

or it can also be represented as

R1-> & < Studentld, StudentName, BranchName,

Classname, Subjectname,
Teachername >student,Branch,CIass,Subject,Teacher

R2-> 6<Branchname="CompSc’
AND ClassName="T Sem’ >5"""

R3-> (" o <Branchld=Branchid >)&™"
AND (*"“®™ o0 < Classld=Classld >)°"*

AND (*“®™ o0 < Subjectld=Subjectld >)3?*!
AND (*"*™ 5O < Teacherld=Teacherld >) "

The resultant result is given by
R > R1 (R2 (R3))

Like these, if more number of tables to be joined with varied
type of requirements, then complexity in making the joining
conditions may also increases. But it needs basic knowledge
on SQL queries with proper syntaxes and skills in arranging
the conditions. Thorough working on different queries with
varied requirements will make you more perfect in framing
the SQL statements in more effective ways.

5. CONCLUSION AND FUTURE WORK

In this paper, the concept of different SQL joins has been
explained by giving simple examples along with their
respective relational algebraic notations. These notations are
applied on simple database tables for easy understanding and
also to accessing the data set from different tables in an
easiest way. While doing so, the difficulty in learning some of
the complex joins has been minimized. It is mainly focused on
how to write relational algebraic notation by splitting into
smaller result sets and then combine them to become resultant
result. This is simply to understand in a step by step by
approach in case of complex join conditions. But still lot of
scope will be there to make lot of research in this regard to
enhance the performance level of the join queries to the
optimized extent.

To explain these concepts effectively to the trainees, scholars
and students, here it is taken with simple generalized tables
which were given by Oracle Corporation with less number of
records with user schema scott/tiger (username as “scott” and
“tiger” as password). To work with these SQL join queries
practically, it is suggesting to use oracle software with
minimum version of 9i onwards.

25

6. REFERENCES

(1]

(2]

(3]

(4]

(5]

Oracle® Database SQL Reference

10g Release 1 (10.1), Documentation.
Fundamentals of Database Systems, Fifth Edition, by

Ramez Elmasri, Shamkant B.Navathe, Pearson
Publications, 2009.
Database Management Systems, By -

Raghuramakrishnan, Gehrke, Third Edition, McGraw-
Hill Publications, 2003.

Pratt, Phillip J (2005), A Guide To SQL, Seventh Edition,
Thomson Course Technology, ISBN 978-0-619-21674-0

Shah, Nilesh (2005) [2002], Database Systems Using
Oracle — A Simplified Guide to SQL and PL/SQL Second

IJCA™ : www.ijcaonline.org

International Journal of Computer Applications (0975 — 8887)

(6]

(71

(8]

Volume 104 — No.4, October 2014

Edition (International ed.), Pearson Education

International, ISBN 0-13-191180-5

Yu, Clement T.; Meng, Weiyi (1998), Principles of
Database Query Processing for Advanced Applications,
Morgan Kaufmann, ISBN 978-1-55860-434-6, retrieved
2009-03-03

M. Tamer Ozsu; Patrick Valduriez (2011). Principles of
Distributed Database Systems (3rd ed.). Springer. p. 46.
ISBN 978-1-4419-8833-1.

C. J. Date (2011). SQL and Relational Theory: How to
Write Accurate SQL Code. O'Reilly Media, Inc. pp. 133-
135. ISBN 978-1-4493-1974-8.

26

http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/978-0-619-21674-0
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-13-191180-5
http://books.google.com/?id=aBHRDhrrehYC
http://books.google.com/?id=aBHRDhrrehYC
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/978-1-55860-434-6
http://books.google.com/books?id=TOBaLQMuNV4C&pg=PA46
http://books.google.com/books?id=TOBaLQMuNV4C&pg=PA46
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/978-1-4419-8833-1
http://books.google.com/books?id=WuZGD5tBfMwC&pg=PA133
http://books.google.com/books?id=WuZGD5tBfMwC&pg=PA133
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/978-1-4493-1974-8

