
International Journal of Computer Applications (0975 – 8887) 

Volume 104 – No.4, October 2014 

18 

A Simple Approach to SQL Joins in a Relational 

Algebraic Notation 

C.Bhanuprakash 
Assistant Professor, 
Dept.of MCA, SIT 

Tumkur – 572103,Karnataka. 

 

Y.S.Nijagunarya, PhD 
Professor, 

Dept.of CSc and Engg, SIT 
Tumkur-572103, Karnataka. 

 

M.A.Jayaram, PhD 
Professor,  

Dept.of MCA, SIT 
Tumkur – 572103, Karnataka 

 

 

ABSTRACT 
Join is an operation in accessing the data from table if number 

of tables exceeds one. Whenever we need the data which is 

not available from a single table, then it needs to necessitate 

using join operation. Sometimes join is required even if there 

is a single table. It all depends on the format in which we need 

to display the data in the user environment. 

In join processes, the accessing of the data depends on the 

joining conditions with different operators. Here, join 

condition is a must. For this purpose, generally we are using 

relational operators along with logical operators. The problem 

presently we are facing is many of them are not knowing 

exactly all types of joins, their proper syntaxes and their 

proper usage. Sometimes it is vey difficult for the teacher or 

trainer to convince the trainees, students, research scholars in 

giving right practical examples while we teach SQL joins  to 

them. Even if we use some conventional operators, the 

performance of the query may results in delayed accessing 

time in retrieving the data from N number of tables. This is 

due to lack of knowledge of the programmers on evaluation 

criteria of the joined queries.   Since the present tables are 

dealing with millions of records, if we take these tables as 

example tables, then it is very difficult to give the exact 

demonstration regarding the number of records to be 

accessed, because, many joining concepts dealing with exact 

number of records which are working based on Cartesian 

Product. To avoid all these uncertainties, confusion, 

ambiguities, in this paper, it has been used with only three 

simple tables which are given from Oracle Corporation in user 

schema scott/tiger. The number of records used in these tables 

is very minimum and are meaningful records.  

After understanding the basics of all SQL joins, then it is 

necessary to represent the same queries in relational algebraic 

notations, because, those are the standard and uniform 

syntaxes which will be applicable in any of the database 

software. But the present problem is many of the software 

developers, specialists, programmers, and researchers are not 

aware of how to represent queries exactly in that syntax. In 

order to overcome this, the main focus is to make a familiarity 

in writing the SQL queries in relational algebraic format along 

with different types of joins. 

The main focus of this paper is to learn the basic 

fundamentals of all types of SQL joins along with algebraic 

notations  in a very easiest, convinced and simple approach. 

On many stages, it is given with live examples along with 

SQL code and its result set by using SQLPLUS interface. 

 

 

General Terms 

In this paper, records of the table are referred as result set and  

the records which are matching the joining condition are 

referred as matching records.  

Keywords 
SQL Joins, Relational operators, Relational Algebraic 

expressions, Query evaluation, Access time, matching 

records, Result set.      

1. INTRODUCTION 
A join is a query that combines data records from two or more 

tables. We perform a join whenever multiple tables appear in 

the FROM clause of the query. We can specify any number of 

columns of the table in the select clause of the query.  Then 

find out the common column from both the tables for framing 

the join condition along with some relational operator, 

preferably always with equal operator (=).  If any two of these 

tables have a common column name, then we refer these 

columns throughout the query with table name as primary 

identifier to avoid ambiguity (Example : Emp.Deptno).  

The basic set of operations to manipulate the relational model 

is the relational algebra. These operations familiarize the user 

to specify basic retrieval requests. The result of a retrieval is 

always becomes the new relation [1], that may be formed 

from one or more relations. The algebra operations thus 

produce new relations which can be further manipulated using 

the same algebraic operations. A sequence of relational 

algebra operations forms a relational algebra expression, 

whose result will also be a relation that represents the result of 

a database query. The relational algebra is very important for 

several reasons. 

 It provides a proper and basic foundation for 

relational model operations. 

 It is used as a basic template for implementing and 

optimizing queries in RDBMS 

 Some of its concepts are used in SQL.   

 

Presently, even though no RDBMS  software is  providing an 

interface for relational algebra queries, the core operations and 

functions of any relational system are based on relational 

algebra operations only. 

1.1 Joining conditions 
Many of the joining queries contain WHERE clause 

conditions that compare two columns, each from a separate 

table. Such a condition is called a join condition. To execute 

a join, database software combines pairs of record sets, each 

of the record set containing one record from each table, for 

which the join condition evaluates to TRUE. The columns in 



International Journal of Computer Applications (0975 – 8887) 

Volume 104 – No.4, October 2014 

19 

the join conditions need not be appear in the select list. It is an 

optional one. 

To execute a join of three or more tables, SQL engine first 

joins two of the tables based on the join conditions comparing 

their columns and then joins the result to another table based 

on join conditions containing columns of the joined tables and 

the new table. SQL engine continues this process until all 

tables are joined into the result. The optimizer specifies the 

order in which SQL engine joins tables based on the join 

conditions, indexes on the tables, and, any available statistics 

for the tables [1]. 

In addition to join conditions, the WHERE clause of a join 

query can also contain other conditions that refer to columns 

of only one table. These conditions can further filter the 

records returned by the join query.  

2. TYPES OF JOINS 
Mainly there are three types of joins based on the way they 

retrieve the records. They are Inner join, Outer join and 

joining more than two tables. 

2.1 Inner Join : An inner join (sometimes called a 

simple join) is a join of two or more tables that returns only 

those records that satisfy the join condition. I.e. it is looking 

for only the matching records [1]. 

( What is a Matching record ? It is the one which satisfies the 

joining condition. I.e. its existence and relationship will be 

there in both the tables.)  

2.2 Outer Join : An outer join extends the result of a 

simple join. An outer join returns all records that satisfy the 

join condition and also returns some or all of those records 

from one table for which no record from the other table satisfy 

the join condition. In other words, first of all it is looking for 

matching records and remaining records (usually with null 

values) from one table or both the tables [1]. 

2.3 Joining more than Two tables : It is a generalized 

joining process in which number of tables is exceeding by 

two. Here, the minimum number of joining conditions 

required depends on the number of tables being joined. To 

join N number of tables, at minimum, we need (N – 1) joining 

conditions [4]. 

3. RELATIONAL OPERATIONS  
3.1 The PROJECT operation : It selects certain 

columns from the table and discards the remaining columns. If 

we want to retrieve only certain attributes of a relation or all 

the attributes, we use the PROJECT operation.[6] The general 

form of the PROJECT operation is  

π< attribute list> (R)  

Here, π is the symbol used to represent Projection,   <attribute 

list> is the list of columns (attributes) of a relation R and (R) 

is the relation name (table name)  

3.2 The SELECT operation : It is used to select a 

subset of the records from a relation that satisfies a select 

condition. It acts like a filter by selecting only required 

records by putting the condition in a query [7]. The general 

form of the SELECT operation is  

σ < select condition> (R)  

 

The Boolean condition specified in <select condition> is made 

up of a number of clauses of the form 

 

<attribute name> <comparison operator> <constant value> 

 

Here, attribute name is column name, comparison operator is 

equal operator ‘=’ and constant value  is a user defined value. 

 

3.3 The JOIN operation :  It is used to combine related 

records from one, two or more relations in to a single record 

[8]. A general form of JOIN operation on two relations is  

 

 R  <join condition> S 
 

    Here  R is the first relation, S is the second relation,  

          <join condition> contains  R.Column=S.Column R and 

S are the two relations, Column is the common column 

available from both the relations. 

 

If number conditions increases, then conditions will be 

included by using Logical operators (i.e.  AND, OR, NOT)  

3.4 Cartesian Product :  
If two tables in a join query have no join condition, then query 

results in a type of a result set in the form of  Cartesian 

product. Query combines each row of one table with each 

row of the other [5]. It is in the form of M X N. i.e. M is the 

number of records in first table  and N is the number of 

records in the second table [4]. A Cartesian product always 

generates many rows and is rarely useful. For example, the 

Cartesian product of two tables, each with 50 rows, has 2,500 

rows. Therefore always be careful in using join conditions. If 

a query joins three or more tables and you do not specify a 

join condition for a specific pair, then the optimizer may 

choose a join order that avoids producing an intermediate 

Cartesian product. 

4. PRACTICAL APPROACH   
To explain all the above joining types, here it is used with  

following tables which are available from Oracle software 

under user schema scott/tiger. Their structures and records are 

shown in Table-EMP.             

 Table-EMP  (Table description) 

 

This table with the name “EMP” will keep track of the basic 

information of an employee regarding his name, id, 

designation, salary, date of join, department in which he is 

working, commission he his getting and under which manager 

he is working. In this table, the column EMPNO is primary 

key, DEPTNO is foreign key and MGR is self referential 

foreign key. Since we have two foreign keys, this table is 

considered as child table. The total number of records in this 

table is 17. Its records are shown in Table-EMP 



International Journal of Computer Applications (0975 – 8887) 

Volume 104 – No.4, October 2014 

20 

   Table. : EMP  ( Table with records ) 

 

   

Table : DEPT  ( Table description) 

 

This table with the name “DEPT” will keep track of 

the data of the different departments regarding the department 

Id, department Name and its location in an organization. In 

this table, the column DEPTNO is the primary key. Since we 

do not have any foreign key in this table, we consider this 

table as MASTER TABLE.  There are 7 records in this table. 
Its records are displaying as shown in Table - DEPT. 

 Table – DEPT. ( Table with records ) 

 

 Table – 3 : SALGRADE  ( Table description ) 

 

 

 

This table with the name “SALGRADE” will keep track of 

the data of the salary grades maintaining in an organization in 

the form of Grade, staring salary limit, upper salary limit. In 

this table, we do not have any primary key or foreign key, we 

consider this table as a general table .  There are 5 records in 

this table. Its records are shown below. We will be using this 

table when we need the grade of an employee based on the 

salary he is getting. 

 

Table – SALGRADE (Table with records) 

 
 

4.1 INNER JOIN : As mentioned earlier, this join will 

mainly looking for matching records. i.e. the records which 

satisfy the joining condition [3]. There are three types in this 

inner join. They are  

a) Inner Equi join, 

b) Inner Non-Equi join  

c) Inner Self join   

 

4.1.a. Inner Equi-Join : An equijoin is a join with a 

join condition containing an equality operator [2]. An equijoin 

combines records that have equivalent values for the specified 

columns. Depending on the implicit algorithmic plan, the 

optimizer chooses the execution plan for this   equijoin. The 

size of the columns specified in the joining condition in a 

table may be restricted to the size of a data block without 

some overheads. The size of a data block is specified by the 

initialization parameter DB_BLOCK_SIZE [1]. 

 

To give an example to this join, here it is used with EMP and 

DEPT tables. This join needs one common column. i.e. 

DEPTNO which acts as Primary key in DEPT table and 

Foreign key in EMP table. The joining condition requires the 

usage of EQUAL operator. The following SQL query 

retrieves the employee number, employee name, designation 

and department name from the tables EMP and DEPT 

 

Example : SQL>select empno,ename,job,dname 

   From emp, dept 

   Where emp.deptno=dept.deptno; 

 

Relational Algebra notation :  

 

In this notation, the above query is a combination of 

Projection and Join. Therefore we need to use both the 

syntaxes in the following way.  



International Journal of Computer Applications (0975 – 8887) 

Volume 104 – No.4, October 2014 

21 

Result  π <empno,ename,job,dname>(
emp

  < 

deptno=deptno>)
dept

 
 

or it can also be represented as  

   

R1 π <empno,ename,job,dname>
emp,dept

 

R2 
emp

  < deptno=deptno>
dept 

 

The resultant result is given by  

 

                      R  R1(R2) 

 

After execution, the query will get only 14 matching records. 

i.e. records which satisfies the joining condition.   

 

 

 

4.1.b Inner Non Equijoin : A Non equijoin is a join 

with a join condition without containing an equality operator. 

A  non-equijoin combines records that have equivalent values 

for the specified columns. Depending on the implicit 

algorithmic plan the optimizer chooses the execution plan for 

this join [3].  

 

To give an example to this join, here it is used with   

EMP and SALGRADE tables. This join does not require any 

common column or master child relationship among the 

tables. The joining condition prohibits the usage of EQUAL 

operator. The following SQL query retrieves the employee 

number, employee name, salary and grade from the tables 

EMP and SALGRADE. 

 

Example : SQL>select empno,ename,sal,grade 

   From emp, salgrade 

   Where sal>=losal  and sal <= hisal; 

 

Relational Algebra notation :  

 

Result  π <empno,ename,sal,grade>(
emp

  < sal => 

losal AND sal <= hisal >)
salgrade 

 

or it can also be represented as  

 

R1 π <empno,ename,sal,grade>
emp, salgrade

 

R2 
emp

  < sal >= losal AND sal <= hisal>
salgrade 

 

The resultant result is given by  

 

                      R  R1(R2) 

After execution, the query will get only 14 matching records. 

i.e. records which satisfies the join condition.   

 

 

This can also be executed by using one more operator  

“BETWEEN” 

 

Example : SQL>select empno,ename,sal,grade 

   From emp, salgrade 

   Where sal between losal  and hisal; 

  

Note : be careful in using BETWEEN operator, i.e. the first 

parameter value should be less than second parameter.   

 

4.1.c Inner Self Join :  A self-join is a join of a table to 

itself.  Since a join requires minimum of two tables, here, we 

refer the same table twice in the FROM clause and is followed 

by table aliases that qualify column names in the join 

condition. To perform a self-join, oracle combines and 

retrieves records of the table that satisfy the join condition [3]. 

To give an example to this join, here it is used with EMP table 

only. In this table, the column EMPNO is primary key and 

MGR is foreign key which references primary key of the same 

table. This join is the concept works under the UNARY 

relationship. The following SQL query retrieves the employee 

name in one column and their respective managers in the 

other column. Here, the same EMP table will be referenced 

twice with alias name. 

Example : SQL>select E.ename as Employee, M.ename as                

                 Manager 

   From emp E, emp M 

   Where M.empno=E.mgr; 

 

Relational Algebra notation :  

Result  π <E.ename as Employee, M.ename as 

Manager>(
E.emp

  < M.empno = E.mgr >)
M.emp 

or it can also be represented as  

R1 π <E.ename as Employee, M.ename as 

Manager>
E.emp,M.emp

 

R2 
E.emp

  < M.empno = E.mgr>
M.emp 

The resultant result is given by  

                      R  R1(R2) 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 104 – No.4, October 2014 

22 

After execution, the query will get only 13 matching records. 

i.e. records which satisfies the join condition.  Why only 13 

records ?  why not  14 as in the case of previous two cases. 

Here one of the employees with the name ‘KING’ do not have 

manager. That’s why, it is only 13 records here. 

 

 

4.2 OUTER JOIN : As mentioned earlier, this join is 

an extension of inner join. It is mainly looking for matching 

records and remaining records from either of the tables or 

both the tables [2].  There are three types in this outer join. 

They are  

a) Left outer join 

 b) Right outer join  

c) Full outer join   

 

4.2.a) Left Outer Join : As the name itself indicates that, 

this query mainly looking for matching records and remaining 

records from left table [7]. How do we know that which is left 

table ? and which is right table ?. It will be decided by looking 

the following join condition. 

 

             Table-A.Column_Id = Table-B.Column_Id(+) 

 

Here, the table which is located at the left hand side of 

equality operator is considered as Left table and the table 

specified at the right hand side of equality operator is 

considered as Right table. In the above case, Table-A is left 

table and Table-B is right table. There is a provision to use 

any table in any of the side. 

 

To give an example to this join, here it is used with  

EMP table as left table and DEPT table as right table. The 

following SQL query retrieves the records containing the 

employee number, employee name, designation, and 

department name in which he is working.   

 

Example : SQL>select empno, ename, job, dname            

                 from emp, dept 

   Where  emp.deptno=dept.deptno (+); 

 

Relational Algebra notation :  

Result  π <empno,ename,job,dname>(
emp

  < 

deptno=deptno >)
Dept 

 

or   it can also be represented as  

 

R1 π <empno,ename,job,dname>
emp, dept

 

R2 
emp

  < deptno=deptno>
dept 

The resultant result is given by  

                  

     R  R1(R2) 

 

After execution, the query will get 17 records. Out which,  14 

records are matching records and remaining 3 records are 

from only left table. i.e. the records with null values in the 

columns job and dname.  

 

 
 

The same query can also be written as follows.      

 

SQL > select empno,ename,job,dname 

           From emp left outer join dept 

           On emp.deptno=dept.deptno; 

 

4.2.b) Right Outer Join : This join query mainly 

looking for matching records and remaining records from 

right table [4]. 

 

To give an example to this join, here it is used with  

EMP table as left table and DEPT table as right table. The 

following SQL query retrieves the records containing the 

employee number, employee name, designation, and 

department name in which he is working.   

 

Example : SQL>select empno,ename,job,dname            

                 from emp, dept 

   Where  emp.deptno(+)=dept.deptno; 

 

Relational Algebra notation :  

 

Result  π <empno,ename,job,dname>(
emp

  < 

deptno=deptno >)
Dept 

 

OR      it can also be represented as  

 

R1 π <empno,ename,job,dname>
emp, dept

 

R2 
emp

  < deptno=deptno>
dept 

 

The resultant result is given by  

 

                      R  R1(R2) 

 

After execution, the query will get 18 records. Out which,  14 

records are matching records and remaining 4 records are 

from only right table. i.e. the records with null values in the 

columns empno, ename and job. 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 104 – No.4, October 2014 

23 

  

The same query can also be written as follows.     

  

SQL > select empno,ename,job,dname 

           From emp right outer join dept 

           On emp.deptno=dept.deptno; 

 

4.2.c) FULL Outer Join : This join query mainly 

looking for matching records and remaining records from both 

the tables [3]. 

 

To give an example to this join, here it is used with  EMP 

table as left table and DEPT table as right table. The following 

SQL query retrieves the employee number, employee name, 

designation, and department name in which he is working.   

 

Example : SQL>select empno,ename,job,dname            

                 from emp Full outer join dept 

   on  emp.deptno=dept.deptno; 

 

Relational Algebra notation :  

Result  π <empno,ename,job,dname>(
emp

  < 

deptno=deptno >)
Dept 

 

or it can also be represented as  

 

R1 π <empno,ename,job,dname>
emp, dept

 

R2 
emp

  < deptno=deptno>
dept 

 

The resultant result is given by  

                       

                            R  R1(R2) 

 

After execution, the query will get 21 records. Out which,  14 

records are matching records and remaining 3 records are 

from left table and remaining 4 records from right table. 

 
 

 

4.3 Joining more than two tables :  It is a 

generalized joining process in which number of tables are 

exceeding by two. Here, the minimum number of joining 

conditions required depends on the number of tables being 

joined [4]. To join N number of tables, at minimum, we need 

(N – 1) joining conditions.    

 

To give an example to this join, here it is used with 5 tables. 

Namely BRANCH, CLASS, SUBJECT, TEACHER and 

STUDENT. Their structures and records are as follows : 

 

Table- Branch 

 

 
 

This Branch table is a master table which keep tracks of all 

the branches in a college. Here, the column,  BranchId is a 

primary key.  

 

Table- Class 

 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 104 – No.4, October 2014 

24 

This Class table is a master table which keep tracks of all the 

classes in a college. Here, the column ClassId is a primary 

key.  

 

Table- Subject 

 

 
 

 

This Subject table is a master table which keep tracks of all 

the subjects taught in a college. Here, the column SubjectId is 

a primary key. 

 

 

Table- Teacher 

  

 
 

This Teacher table is a master table which keep tracks of all 

the Teachers in a college. Here, the column TeacherId is a 

primary key.  

 

 

Table- Student 

 

 

This Student table is a child table which keep tracks of all the 

students in a college. Here, the column StudentId is a primary 

key and columns Branchid, ClassId, SubjectId, and TeacherId 

are foreign keys. i.e. student is the child table having 

relationship with remaining four tables. If we access the 

records from student table, the data leads to lot of ambiguities, 

confusions to the users. They may not know what is branchid, 

subjectid, classid or teacherid. To avoid this, we will be 

joining all the above tables to give meaningful data to the 

users. i.e. to display Branch name, Class name, subject name, 

teacher name to the users, but all these columns are available 

from master tables and their id columns are shared with child 

table. That’s why it needs to join these tables to give 

meaningful result.   

 

 
 

Relational Algebra notation : Here it is a combination of 

projection and Join. 

 

Result  π <StudentId, StudentName, BranchName, 

Classname, Subjectname, 

Teachername>(
Student

  <BranchId=BranchId >)
Branch

   

AND (
Student

  < ClassId=ClassId >)
Class 

AND (
Student

  < SubjectId=SubjectId >)
Subject 

AND (
Student

  < TeacherId=TeacherId >)
Teacher

 
 

or it can also be represented as  

 

R1 π < StudentId, StudentName,BranchName, 

Classname,Subjectname, 

Teachername >
student,Branch,Class,Subject,Teacher

 
 

R2 (
Student

  < BranchId=BranchId >)
Branch

    

AND (
Student

  < ClassId=ClassId >)
Class 

AND(
Student

  < SubjectId=SubjectId >)
Subject 

AND(
Student

  < TeacherId=TeacherId >)
Teacher

 
 

The resultant result is given by  

                     

  R  R1(R2) 

 

This is at minimum, to join n number of tables we need  n-1 

joining conditions. i.e. in the above case, to join 5 tables, it is 

used with 4 joining conditions. Student table is considered as 

a common table which is being used in all the joining 

conditions, because it is the child table to the remaining 

master tables. The maximum of number of joining conditions  



International Journal of Computer Applications (0975 – 8887) 

Volume 104 – No.4, October 2014 

25 

needed depends on our requirement. Say for example, If we 

need the details of the students belongs to only computer 

science branch, then we need n-1 joining conditions and 

condition which access the computer science branch students. 

This is as follows. 

 

 
 

Relational Algebra notation : Here it is a combination of 

Projection, Selection and Join. 

 

Result  π <StudentId, StudentName, BranchName, 

Classname, Subjectname, 

Teachername>(σ<Branchname=’CompSc’>)
Branch

 

AND (
Student

  < BranchId=BranchId >)
Branch

   

 AND (
Student

  < ClassId=ClassId >)
Class 

AND(
Student

  < SubjectId=SubjectId >)
Subject 

AND(
Student

  < TeacherId=TeacherId >)
Teacher 

) 
 

or it can also be represented as  

 

R1 π < StudentId, StudentName, BranchName, 

Classname, Subjectname,      Teachername 
>

student,Branch,Class,Subject,Teacher 
 

 

R2 σ<Branchname=’CompSc’>
Branch

 
 

R3 (
Student

  < BranchId=BranchId >)
Branch

     

AND (
Student

  < ClassId=ClassId >)
Class 

AND(
Student

  < SubjectId=SubjectId >)
Subject 

AND(
Student

  < TeacherId=TeacherId >)
Teacher

 
The resultant result is given by  

 

                      R  R1 (R2 (R3)) 

 

In addition to this if we need to access the student details 

belongs to I semester computer science students then it needs 

one more additional condition. 

 

 
 

Relational Algebra notation :  

 

Here it is a combination of projection, Selection  and Join. 

 

Result  π <StudentId, StudentName, BranchName, 

Classname, Subjectname, 

Teachername>(σ<Branchname=’CompSc’  

AND <ClassName=’I Sem’>)
Branch

  

AND (
Student

  < BranchId=BranchId >)
Branch

   

AND (
Student

  < ClassId=ClassId >)
Class 

AND (
Student

  < SubjectId=SubjectId >)
Subject 

AND (
Student

  < TeacherId=TeacherId >)
Teacher 

) 
 

or it can also be represented as  

 

R1 π < StudentId, StudentName, BranchName,   

       Classname, Subjectname,  

       Teachername >
student,Branch,Class,Subject,Teacher 

 
 

R2 σ<Branchname=’CompSc’  

AND  ClassName=’I Sem’ >
Branch

 
 

R3 (
Student

  <BranchId=BranchId >)
Branch

     

AND (
Student

  < ClassId=ClassId >)
Class 

AND (
Student

  < SubjectId=SubjectId >)
Subject 

AND (
Student

  < TeacherId=TeacherId >)
Teacher

 
 

The resultant result is given by  

 

                      R  R1 (R2 (R3)) 

 

Like these, if more number of tables to be joined with varied 

type of requirements, then complexity in making the joining 

conditions may also increases. But it needs basic knowledge 

on SQL queries with proper syntaxes and skills in arranging 

the conditions. Thorough working on different queries with 

varied requirements will make you more perfect in framing 

the SQL statements in more effective ways.   

5. CONCLUSION AND FUTURE WORK 
In this paper, the concept of different SQL joins has been 

explained by giving simple examples along with their 

respective relational algebraic notations. These notations are 

applied on simple database tables for easy understanding and 

also to accessing the data set from different tables in an 

easiest way. While doing so, the difficulty in learning some of 

the complex joins has been minimized. It is mainly focused on 

how to write relational algebraic notation by splitting into 

smaller result sets and then combine them to become resultant 

result. This is simply to understand in a step by step by 

approach in case of complex join conditions. But still lot of 

scope will be there to make lot of research in this regard to 

enhance the performance level of the join queries to the 

optimized extent.  

 

To explain these concepts effectively to the trainees, scholars 

and students, here it is taken with simple generalized tables 

which were given by Oracle Corporation with less number of 

records with user schema scott/tiger (username as “scott” and 

“tiger” as password). To work with these SQL join queries 

practically, it is suggesting to use oracle software with 

minimum version of 9i onwards. 

  



International Journal of Computer Applications (0975 – 8887) 

Volume 104 – No.4, October 2014 

26 

6. REFERENCES  
[1] Oracle® Database SQL Reference 

10g Release 1 (10.1), Documentation. 

[2] Fundamentals of Database Systems, Fifth Edition, by 

Ramez Elmasri, Shamkant B.Navathe, Pearson 

Publications, 2009. 

[3]  Database Management Systems, By –

Raghuramakrishnan, Gehrke, Third Edition, McGraw-

Hill Publications, 2003.  

[4] Pratt, Phillip J (2005), A Guide To SQL, Seventh Edition, 

Thomson Course Technology, ISBN 978-0-619-21674-0 

[5] Shah, Nilesh (2005) [2002], Database Systems Using 

Oracle – A Simplified Guide to SQL and PL/SQL Second 

Edition (International ed.), Pearson Education 

International, ISBN 0-13-191180-5 

[6] Yu, Clement T.; Meng, Weiyi (1998), Principles of 

Database Query Processing for Advanced Applications, 

Morgan Kaufmann, ISBN 978-1-55860-434-6, retrieved 

2009-03-03 

[7]  M. Tamer Özsu; Patrick Valduriez (2011). Principles of 

Distributed Database Systems (3rd ed.). Springer. p. 46. 

ISBN 978-1-4419-8833-1. 

[8]  C. J. Date (2011). SQL and Relational Theory: How to 

Write Accurate SQL Code. O'Reilly Media, Inc. pp. 133–

135. ISBN 978-1-4493-1974-8. 

 

IJCATM : www.ijcaonline.org 

http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/978-0-619-21674-0
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-13-191180-5
http://books.google.com/?id=aBHRDhrrehYC
http://books.google.com/?id=aBHRDhrrehYC
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/978-1-55860-434-6
http://books.google.com/books?id=TOBaLQMuNV4C&pg=PA46
http://books.google.com/books?id=TOBaLQMuNV4C&pg=PA46
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/978-1-4419-8833-1
http://books.google.com/books?id=WuZGD5tBfMwC&pg=PA133
http://books.google.com/books?id=WuZGD5tBfMwC&pg=PA133
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/978-1-4493-1974-8

