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ABSTRACT  

A theoretical investigation of the influence of radiation on 

natural convection flow of an electrically conducting visco-

elastic fluid in a vertical channel partially filled by a porous 

medium with high porosity has been presented. It is assumed 

that the conducting fluid is gray, emitting-absorbing radiation, 

and non-scattering medium. The visco-elastic fluid is 

characterized by Walters liquid (Model B´). The infinite 

vertical porous plates of the channel are subjected to constant 

injection and suction velocity respectively. The entire system 

rotates about the axis normal to the plates with a uniform 

angular velocity. The perturbation scheme has been used to 

solve the governing equations of the fluid motion. The 

approximate solutions for velocity and temperature fields 

have been derived and the effects of the Prandtl number, 

Grashof number, radiation-conduction parameter (Stark 

number), rotation parameter, magnetic field and permeability 

of the porous medium on the velocity field, temperature field 

and Nusselt number have been discussed and illustrated 

graphically in possible cases. The practical use of this 

problem can be seen in heating of buildings, cooling 

electronic components and drying several types of agriculture 

products grain and food. 

General Terms 

Visco-elastic. 

Keywords 
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1. INTRODUCTION 
The study of flow through a porous medium could be very 

practicable in many applications in movement of water and oil 

inside the earth, flow of river through porous banks, chemical 

engineering for filtration and purification process, petroleum 

technology to study the movement of natural gas and in the 

fields of agriculture engineering to study the underground 

water resources. 

Convective flow in channels driven by temperature 

differences of bounding walls have been analyzed and 

reported by many researchers because of its immense 

applications in many engineering branches. In vertical slots, 

free convection flows have been discussed by Aung et al. [1], 

Burch et al. [2], Buhler [3], Weidman and Medina [4]. Sanyal 

and Adhikari [5] have studied effects of radiation on MHD 

vertical channel flow. Chauhan and Jain [6] have measured 

three dimensional MHD steady flow of a viscous 

incompressible fluid over a highly porous layer. Normal mode 

analysis of the fully developed free convection flow in a 

vertical slot with open to capped ends has investigated by 

Magyari [7]. The effect of uniform suction/ blowing on heat 

transfer of magnetohydrodynamic Hiemenz flow through 

porous media has explained by Yih [8].  Al-Nimr and 

Khadrawi [9] have analyzed transient free convection fluid 

flow in domains partially filled with porous media. Alkam et 

al. [10] have studied on forced convection in channels 

partially filled with porous substrates. Convection regime 

flow in a vertical slot: Continuum of solutions from capped to 

open ends has been investigated by Weidman [11]. Kim et al. 

[12] has considered effect of wall conduction on free 

convection between asymmetrically heated vertical plates, 

uniform wall heat flux. Effect of an electromagnetic field on 

natural convection in an inclined porous layer have examined 

by Bian et al. [13]. Chang and Chang [14] have reflected on 

mixed convection in a vertical parallel plate channel partially 

filled with porous media of high permeability. Fully 

developed free convection in open-ended vertical channels 

partially filled with porous material has been discussed by Al-

Nimr and Haddad [15]. Chauhan et al. have analyzed [16] 

Radiation effects on natural convection MHD flow in rotating 

vertical porous channel partially filled with a porous medium. 

Non-Newtonian fluid flow plays important roles in several 

industrial manufacturing processes. An example of such non-

Newtonian fluids includes drilling mud, polymer solutions or 

melts, certain oils and greases and many other emulsions. 

Some of the typical applications of non-Newtonian fluid flow 

are noticed in the drilling of oil and gas wells, polymer sheet, 

extrusion from a dye, glass fiber and paper production, 

drawing of plastic films, waste fluids etc. The applications of 

the mechanisms of non-Newtonian fluid flows in modern 

technology and industries have attracted the researchers in a 

large scale. Authors like Abel et al. [17], Sonth et al. [18], 

Abel et al. [19], Choudhury et al. [20], [21], [22], [23] and 

[24] have analyzed some problems of physical interest in this 

field. 

The purpose of the present study is to analyze the effects of 

natural convection flow in a vertical rotating channel partially 

filled with porous medium. 

The constitutive equation for Walters liquid (Model B´) is 

              
  ,          

       
                                                                                   

where     is the stress tensor,   is isotropic pressure,     is the 

metric tensor of a fixed co-ordinate system        is the 

velocity vector, the contravarient form of      is given by 
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It is the convected derivative of the deformation rate tensor 

    defined by  

                                                                                                                                                                                      

Here  
 
 is the limiting viscosity at the small rate of shear 

which is given by 

                 
 

 
           

 

 
                                                                                                                               

N( ) being the relaxation spectrum as introduced by Walters 

[25], [26]. This idealized model is a valid approximation of 

Walters liquid (Model B´) taking very short memories into 

account so that terms involving 

                 
 

 

                                                

have been neglected.                                                                                           

2. PROBLEM FORMULATION 

 

 

 

 

 

 

 

 

          Figure 1: Physical model of the problem 

We consider the unsteady MHD free convective flow in a 

vertical parallel porous plate channel partially filled with a 

porous material and partially with a clear electrically 

conducting fluid. The entire system rotates about the axis 

normal to the plates with uniform angular velocity Ω. The 

channel is of width d and the thickness of the porous medium 

is h. A Cartesian coordinate system is assumed and z-axis is 

taken normal to the plates while x and y axes, respectively are 

in the upward and perpendicular directions on the plate z=0. 

Two vertical plates are situated at z=0 and z=d. The origin is 

taken at the plate, z=0 and the channel is oriented vertically 

upward along x-axis. Plates are infinite in extent in x and y 

directions. These plates are subjected to a constant injection 

velocity (ωₒ) at one plate (z=0) and the same constant suction 

velocity (ωₒ) at the other plate (z=d). A uniform magnetic 

field Bₒ is applied along an axis normal to the plates (z-axis) 

and the entire system rotates about this axis. It is assumed that 

the magnetic Reynolds number is very small, so that induced 

magnetic field is neglected (Cowling [27]). 

We denote the velocity components          in porous medium 

region and          in clear fluid region, in the x, y, z 

directions respectively.    denotes temperature in the porous 

region,    denotes temperature in the clear fluid region, and    

denotes time. Since the channel plates are infinite in extent, 

velocity and temperature components depend only on    and 

  , and further, the continuity equation gives          

(constant). 

The fluid considered here is assumed to be gray, emitting-

absorbing radiation but a non-scattering medium. It is also 

assumed that there is radiation only from the fluid. Further it 

is assumed that the thermal radiation is present in the form of 

a unidirectional flux, transverse to the vertical plates and to 

describe the thermal radiative heat transfer, the Rosseland 

approximation is used in the energy equation. Further, the 

fluid and the porous structure are assumed to be in local 

thermal equilibrium and all the fluid properties are assumed to 

be constant except that the influence of the density variation 

with temperature is considered only in the body force term. 

Using Rosseland approximation, the radiative heat transfer 

takes the form following Siegel and Howell [28], respectively 

in clear fluid and porous region as follows: 

    
   

   

    

   
                       

   

   

    

   
                         

where,    is Stefan-Boltzmann constant and    is mean 

absorption coefficient for thermal radiation. 

Following Raptis [29], the temperature functions in (6) can be 

expressed as a linear function of temperature. Expanding     

and     in a Taylor series about    (constant temperature of 

the right wall) and neglecting higher-order terms, we obtain 

        
       

                             
       

              

By introducing the following non-dimensional quantities, 

  
  

 
   

 

 
   

  

  
   

   

 
   

   

  
  

   
    

 
   

  

  
   

  

  
   

  

  
   

  

  
   

     
     

 

in equations (6) and (7), the dimensionless governing 

equations in the porous medium region I (     ) and the 

clear fluid region II (     ) for the MHD convective 

flow of a radiative fluid in the rotating system are respectively 

given as follows:  

For porous region I: 

  

  
  

  

  
      

   

   
   

   

     
  

   

   
 

         
 

 
                              

  

  
  

  

  
      

   

   
   

   

     
  

   

   
  

 

 

                                                                

  

  
  

  

  
  

    

    
 
   

   
                                                        

For porous region II: 
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where,  

   
   

 
    

   

 
   

   

     
    

   
 

 
  
       

          
 

   
 

Here                 denote kinematic viscosity, coefficient 

of volume expansion, electrical conductivity, thermal 

conductivity, specific heat at constant pressure, acceleration 

due to gravity and dimensional scalar constant respectively. 

K´ is the dimensional permeability of the porous medium, K 

is the dimensionless permeability of the porous medium, T0 is 

a reference temperature and Td is constant temperature of the 

right wall. 

 The relevant boundary conditions in non-

dimensional form are given by 

at                                             

at                                                                       

                                
  

  
 
  

  
           

  

  
 
  

  
                 

  

  
 
  

  
 

at                                                                           

Here,     (a positive constant), and n is a dimensionless 

scalar constant. 

3. METHOD OF SOLUTION 

We solve equations (10) and (13) for temperature distribution 

in porous and clear fluid region. Let us assume 

                    
                                                          

                    
                                                        

Substituting (15) and (16) in equations (10) and (13) with 

corresponding boundary conditions for the temperature 

distribution, and comparing the coefficients of     , we obtain 

    
   

  
     

    
 
   
  

                                                             

    
   

  
     

    
 
   
  

  
     

    
                                   

    
   

  
     

    
 
   
  

                                                             

    
   

  
     

    
 
   
  

  
     

    
                                   

Subject to the boundary conditions: 

at                                                        

at                                                                              

                                         
   
  

 
   
  

          
   
  

 
   
  

                  

at                                                                             

Solving (17) to (21), we obtain 

   
        

     
                                                                             

   
               

       
                                                               

   
        

     
                                                                             

   
               

       
                                                               

3.1. Velocity Distribution 

Let                and                                                      

Using above and relevant boundary conditions, equations (8), 

(9) and (11), (12) reduce to  

   

  
  

   

  
       

 
    

   
   

    

     
  

    

   
 

          
 

 
                          

  

  
  

  

  
      

 
   

   
   

   

     
  

   

   
 

                                              

 the transformed boundary conditions are: 

at                                                                          

at                                                                        

                                               
   

  
 
  

  
 

at                                                                                       

No analytical solution can be expected from the equation (27) 

and (28), so a regular perturbation scheme has been developed 

by expanding U, V, u and v as: 
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so that 

                                     
  

                
                                                                        

                                      
  

              
                                                                        

Substituting (31) in (27)-(29) and comparing the coefficients 

of     , we obtain 

     
   

  
    
  

   
     
   

                                

    
   

  
   
  

   
    
   

                               

     
   

  
    
  

    
     
   

  
     
   

            

                                                                                                        

    
   

  
   
  

    
    
   

  
    
   

           

                                                                                                       

and the corresponding boundary conditions are 

at                                                                                 

at                                                                              

                                             
    
  

 
   
  

                          
    
  

 
   
  

  

at                                                                               

Using multi-parameter perturbation technique and taking   

1 (as for small shear rate    is very small) [Nowinski and 

Ismail(1965)], we assume 

                                     

                                                                          

Substituting (37) in the equations (32)-(35) and equating the 

coefficients of the same degree terms and neglecting terms of 

     , the following differential equations are obtained:  

      
   

  
     
  

                                               

     
   

  
    
  

                                               

      
   

  
     
  

                                                       

     
   

  
    
  

                                                

      
   

  
     
  

         
      
   

                                            

     
   

  
    
  

        
     
   

                                            

      
   

  
     
  

         
      
   

   
      
   

                       

     
   

  
    
  

        
     
   

   
     
   

                       

subject to boundary conditions 

at                                                                    

at                                                             

  
     
  

 
    
  

      
     
  

 
    
  

     
     
  

 
    
  

    
     
  

 
    
  

 

at                                                          

 

4. RESULTS AND DISCUSSION 

The non-dimensional skin friction    at the plate  =0 is given 

by 

   
  

  
   

   

    
  

   

   
  

The non-dimensional skin friction   at the plate  =1 is given 

by 

   
  

  
   

   

    
  

   

   
  

The non-dimensional heat flux     at the plate  =0 in terms 

of Nusselt number is given by 

     
  

  
 
   

  
  

     
       

   
      

  

       
  

The non-dimensional heat flux     at the plate  =1 in terms 

of Nusselt number is given by 

     
  

  
 
   

  
   

  

     
             

     
       

  

where constants are obtained but not given here for the sake 

of brevity. 

The main objective of this study is to bring out the effects of 

visco-elastic parameter on the governing flow as the effects of 

other parameters have been discussed in detatil by Chauhan 

and Rastogi (2010). The visco-elastic effect is exhibited 

through the non-dimensional parameter  . The corresponding 

results for Newtonian fluid are obtained by setting      This 

study analyzes the configuration in vertical parallel plate 

channel where a porous substrate is perfectly attached to the 

left vertical plate. Results are presented graphically and 

discussed. Motivation of this work lies behind its use in 

practical situation such as metallurgy where the process of 

solidification is characterized by the presence of a liquid, a 

mushy zone and a solid zone, cooling of electronic 
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components etc. The fluid velocity and the shearing stress at 

the plate are illustrated graphically for various values of 

thermal Grashof number Gr, Prandtl number Pr, magnetic 

parameter M, Stark number N, radiation parameter Re, 

injection suction parameter λ, permeability parameter K 

involved in the solution. The values of the parameters 

                                   
                  are kept fixed throughout the 

discussion. 

Figures 2 to 15 demonstrate the pattern of fluid velocity  

against the displacement y for the various values of visco-

elastic parameter. Figure 2-6 illustrate the effect of various 

parameters such as fluid velocity in x-direction.  

 

Figure 2. Fluid velocity in x-direction U, u vs η. 

 

Figure 3. Fluid velocity in y-direction V, v vs η. 

The effects of Grashof number on fluid velocity in x-direction 

and y-direction are obtained from figures 2 and 3 respectively. 

Grashof number signifies the relative effect of the thermal 

buoyancy force to the viscous hydrodynamic force in the 

boundary layer. In our study, we have considered the positive 

values of Grashof number. Gr > 0, interprets that flow past an 

externally cooled plate. The figure 2 states that the rising 

value of Grashof number enhances the viscosity of both 

Newtonian and non-Newtonian fluids, which in turn drop off 

the speeds of both the fluids in x- direction. But in y-direction 

speed of the fluid first diminishes slightly and then boost up to 

a considerable amount.   

 

Figure 4. Fluid velocity in x-direction U, u vs η. 

 

Figure 5. Fluid velocity in y-direction V, v vs η. 

Influence of Prandtl number on the primary and secondary 

flows has been illustrated in Figures 4 and 5, keeping all other 

parameters fixed. It explains the relative effectiveness of 

momentum diffusion and thermal diffusion in the fluid flow. 

It is observed that the rising value of Prandtl number 

diminishes the primary flow in the porous substrate attached 

to the left hot wall and its nearby region whereas magnitude 

accelerates near the other wall. Again for secondary flow fluid 

velocity enhances and then comes down.  

 

Figure 6. Fluid velocity in x-direction U, u vs η. 

 

Figure 7. Fluid velocity in y-direction V, v vs η. 
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The influence of thermal radiation can be explained  through 

the Stark number N, which is defined as relative contribution 

of the conduction heat transfer  to the thermal radiation 

transfer. It is seen in Figures 6 and 7 that by increasing values 

of N the primary and secondary flow decreases near the left 

wall in the porous medium. Also flow pattern remains same 

for both Newtonian and non-Newtonian fluid.  

 

Figure 8. Fluid velocity in x-direction U, u vs η. 

 

Figure 9. Fluid velocity in y-direction V, v vs η. 

Figures 8 and 9 illustrate the behaviour of fluid flow for 

various values of Hartmann number. Hartmann number 

depicts the strength of transverse magnetic field. The 

application of transverse magnetic field produces Lorentz 

force and the Lorentz force has a retarding effect on the 

velocity. As a consequence, the thickness of the fluid will be 

enlarged and the speed will go down. This diminishing trend 

in speed is observed in visco-elastic fluid characterized by 

Walters liquid (Model B/). 

 

Figure 10. Fluid velocity in x-direction U, u vs η. 

 

Figure 11. Fluid velocity in y-direction V, v vs η. 

Figures 10 and 11 represent the primary and secondary flow 

patterns with the increasing values of suction injection 

parameter λ. Temperature of the heated wall (left) at z=0 is a 

function of time, as given by in the boundary conditions and 

the cooled wall at z=d is maintained at a constant temperature. 

Further it was assumed that the temperature difference is 

sufficiently small so that the density changes of the fluid in 

the system will be small. When the injection suction 

parameter λ is positive, fluid is injected through the hot wall 

into the channel and sucked out through the cold wall. It is 

observed that in case of secondary flow velocity enhances 

with the increasing values of λ. 

 

Figure 12. Fluid velocity in x-direction U, u vs η. 

 

Figure 13. Fluid velocity in y-direction V, v vs η. 

For different values of the Grashof number Gr the pattern of 

fluid velocity for visco-elastic fluid is plotted in figures 12 

and 13. It is noticed that for hot plate (Gr<0) both primary and  

secondary velocity follows a downward trend and then move 

up. For cooled plate(Gr>0) fluid velocity increases in 

comparison with hot plate.  
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Figure 14. Fluid velocity in y-direction V, v vs η. 

Figure 14 depicts the secondary fluid velocity pattern for 

various values of Prandtl number. We can see that with the 

development of Prandtl number fluid velocity diminishes. The 

rising value of Prandtl number raises the thickness of the fluid 

and hence the fluid experiences a decelerating trend. This 

physical phenomenon is observed in visco-elastic fluid. 

The study of skin friction for the concerned flow is very 

important from practical point of view. Figures 15-20 depict 

the the effect of viscous drag on Newtonian and visco-elastic 

fluid flow phenomenon. 

 

Figure 15. Skin friction     vs  Gr. 

 

Figure 16. Skin friction     vs Gr. 

Figures 15 and 16 illustrate the variations of the skin friction 

at the hot wall    and at the cold wall    .It is found that at the 

hot wall skin friction decreases in magnitude but at the cold 

wall it enhances by increasing the thermal Grashof number 

Gr. 

 

Figure 17. Skin friction     vs N. 

 

Figure 18. Skin friction     vs N. 

Figures 17 and 18 exemplify the skin friction for various 

values of suction injection parameter N. It is observed that 

viscous drag enhances near the hot plate and diminishes near 

the cold plate. Both simple as well as non-Newtonian fluid 

follow the matching movement. 

 

Figure 19. Skin friction    vs Pr. 

 

Figure 20. Skin friction     vs Pr. 
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Figures 19 and 20 show the behaviour of skin friction against 

Prandtl number for Newtonian as well as non-Newtonian fluid 

flows. It is noticed that in the neighbourhood of small values 

of  Prandtl number, the shearing stress subdues near the hot 

plate    but  it shows a rising trend near the cold plate   . 

This phenomenon is observed in visco-elastic fluid as well as 

in simple Newtonian fluid. 

5. CONCLUSIONS 
The problem of unsteady, MHD elastico-viscous flow past a 

vertical parallel plate where a porous substrate is attached to 

the left vertical palate has been studied. The velocity and 

temperature fields are obtained analytically. Graphical results 

are presented and discussed for various physical parametric 

values. The main findings are as follows:  

 The primary fluid flow is decelerated and then 

accelerated slowly during the enhancement of visco-

elastic parameter. 

 The secondary fluid flow is accelerated and then 

retarded slowly during the enhancement of visco-

elastic parameter. 

 The fluid slowed down with the increasing values of 

visco elastic parameter in comparison with the 

Newtonian fluid in case of primary velocity but a 

reverse trend is observed for secondary fluid flow 

velocity. 

 The viscous drag formed by both Newtonian and non-

Newtonian fluid will experience a decreasing trend 

during the growth of solutal Grashof number Gr and 

Prandtl number Pr near the cooled plate   . 

 An accelerating trend in viscous drag is observed in 

case of flow past an heated plate for both Newtonian 

and non-Newtonian fluid for increasing values of 

Stark number N. 

 An accelerating trend in shearing stress is observed in 

case of flow past an cooled plate for both Newtonian 

and non-Newtonian fluid. 

 The rate of heat transfer will not differ significantly 

during the various values of visco-elastic parameter. 
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