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ABSTRACT 
In Cloud Computing or Content Distributed Cloud (CDN) 

workload happens between a local web server and proxy servers. 

The typical method is DNS redirecting and the workload 

factoring decision is predefined manually over a set of most 

popular objects. For such popular object detection in requests 

tails, many schemes have proposed for fast request rate 

estimation in traffic monitoring and fast counting for most 

popular data item for which request arrived and above mentioned 

jobs done. Accurate request rate estimation is necessary for 

resource planning & management, measuring compliance to 

SLAs and cloud security especially in Cloud Computing where 

we are talking about Integrated, Heterogeneous or Hybrid Cloud 

deployment model. With following ideals, we propose SRATE 

(State-Rank bAsed Traffic Estimation) has sufficient short 

estimation times with provable bounds on estimation error, low 

memory usage and also easily implementable in hardware for 

operation at high speeds. With developing such scheme, we 

achieve up to three orders of magnitude speedup in estimation 

time. The speedups are achieved with low memory usage by 

using “State-Rank (0,1,ϕ)” instead of runs or coincidences. This 

new scheme has many benefits at high oppressive workload 

including quicker detection of unhandled oppressive data items 

or spikes with incipient denial of service attacks. As result, we 

show that the proposed scheme is faster and more accurate than 

other schemes. We also prove bounds on the scheme’s accuracy, 

request size or estimation time, average request rate estimation, 

memory needs, average request sending rate and also show that it 

performs well by efficient simulation techniques. 

1. INTRODUCTION 
In this paper, we address the problem of accurate measurement 

of traffic in a Cloud Computing Cloud. Measurement of traffic is 

an important component for resource planning & management, 

workload factoring, detecting DoS attacks, and in traffic 

engineering [2], [3], [6]. The traffic in the cloud can typically be 

classified into request and measurements are required on a per-

request basis for particular service requirement. The definition of 

request can be very flexible. Examples are specific application to 

application traffic characterized by ‘State-Rank’, all traffic 

destined toward destination cloud. The standard approach used 

for measuring traffic is to sample the traffic arriving at the server, 

keep counts of the traffic arrivals on a per-request basis and then 

use this Counter & State-Rank to estimate the traffic. The main 

problem with this approach is scalability. If the number of 

requests is large, then keeping per-request counts consumes 

considerable memory as well as processing power. Now for 

active tracery, we used the Yahoo! Video. Yahoo! Video (India) 

[1] is 3rd ranked online video website just after YouTube and 

MetaCafe in terms of total number of video views, uploading & 

downloading during January 2011, it delivered totally 30.2 

millions of video streams to 17.56 million of unique Indian 

viewers [18]. It is 72% of the online population of India who take 

services of video streaming. 

In fact, measurements have shown that there are a large number 

of requests in the cloud, a significant fraction of the traffic are 

carried by only a small number of requests. These oppressive 

objects, which may only be a few hundreds of request, can 

constitute as much as 85-90 % of the traffic at a server. 

Therefore, detecting and measuring these oppressive objects are 

an important aspect of traffic measurement. Further, measuring 

sudden increase in activity towards a given destination can be a 

sign of a denial of service attack. Therefore, monitoring traffic is 

a very important component in cloud server. Another application 

area where per-request measurements are needed is for active 

queue management [8] for providing fairness in clouds. The main 

idea is to isolate large request to reduce their impact on the rest 

of the request in the cloud. This is especially important if the 

large requests are misbehaving short round-trip delays. However, 

to track these small numbers of misbehaving sources, we have to 

wade through tens of thousands (if not hundreds of thousands) of 

small sources likely we should not have to track millions of ants 

to track a few elephants.  

So we exploit the fact that there are a few oppressive objects to 

reduce the amount of memory required to measure heavy 

sources. The basic idea is to sample data items with some 

probability and if the request to which the data item belongs is 

not already in memory, and then the request is added to the 

memory, and from that point on, all data items arriving to this 

request are counted and attested as State-Rank. Since every data 

item is counted, the sampled request are kept in a CSRT (hash 

table) and at every data item arrival, its Data-ID has to be 

attested into this CSRT in order to increment and attests the  

appropriate counter  and State-Rank respectively if it is already 

in the table. However, since the size of the memory is reduced, 

they show that this scheme is easier to implement. They also give 

a more processing intensive multistage filter scheme to track 

large request. As we will show in this paper, this is a powerful 

technique of elastic nature for estimating traffic rates especially 

when the number of request is large. We can extend our approach 

according to required goodness of Request Estimation Scheme 

 “It should extremely estimate request rate to specified 

accuracy as well as proved their correctness above theoretical 

prediction”. This implies that for a specified accuracy. The 

shorter sampling time is better for every scheme. Extreme 

estimation is critical for fast detection of anomalous events. 

 “The scheme should be suitable for run time 

processing of traffic streams of requested data items”. This 

implies that the scheme performed should be simple or 

preferably amenable to cover each step of implementations. 

 “The scheme should be memory efficient practically”. 

System may have millions of data items and it should not be 

necessary to maintain system according to state for large fraction 

of the data item for a few estimation results. 

The rest of the paper is organized as follows: A related prior 

work defined is in Section-II. Section-III outlines SRATE 

scheme and describes the implementation Architecture. Section-

IV presents the analysis of SRATE. The experimental results of 

SRATE along with extensive simulation are described in 

Section-V. Lastly, Section-VI concludes the paper. 
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2. RELATED WORKS 
There has been much recent research on request measurement. 

The work of [10] presented a sampling method that first selects 

the oppressive objects, i.e., requests with rate above a certain 

threshold (say, 1% of the entire traffic), and then counts all data 

items belonging to these oppressive objects. For this scheme, 

deriving the number of samples needed to achieve specified 

estimation accuracy does not appear to be easy.  

A white paper [11] proposed RATE, a flow estimation 

mechanism based on counting two-runs (flow id matches for two 

consecutive samples from the traffic stream). For a given 

accuracy level, RATE requires worst-case sampling time slightly 

longer than (1.38 times) the naive counting scheme. However, it 

uses significantly less memory (square root of number of 

samples). A drawback is that for the same sampling time, RATE 

has much worse accuracy than naive counting for flows with low 

rates. ACCEL-RATE [4] was proposed as an enhancement to the 

original RATE scheme. In ACCEL-RATE, each arrival packet is 

hashed into multiple buckets based on its flow id, so that packets 

of the same flow are more “concentrated" within each bucket. As 

a result, a larger number of two-run samples can be generated for 

each flow. It is shown that under uniform hashing the sampling 

time, in comparison to RATE, can be reduced to 7:3 k where k is 

the number of buckets. This is achieved with about 2/7 times 

more memory needs than RATE. Note that, however, such 

sampling time reduction only holds when hashing is uniform, 

which implies the rate of the largest request, should be 

significantly less than 1 k. Hence ACCEL-RATE is best suited 

for cases where the maximum flow rate is small, and a loose 

upper bound is known a priori. In general, all the proposed 

mechanisms tend to trade reduced estimation accuracy and/or 

increased sampling time for lower memory cost. For a given 

sampling time, naïve counting scheme can still produce the most 

accurate results regardless of flow rate but at the expense of 

much higher memory requirements. Other side, CATE [7] 

extends RATE with using the width of the coincidence interval 

of the naive counting scheme as the benchmark to determine the 

effectiveness of the sampling schemes developed. FastTop-K 

[15] is the first paper which contributes request patterns instead 

of flow mechanism with fully inspiration of CATE. Follow same 

ideals of FastTop-K, here we use ‘State-Rank’ terminology to 

access rate-estimation as well as efficient rate-concentration with 

memory usage also. 

3.  STATE-RANK BASED TRAFFIC 

ESTIMATION 
In this paper, we propose a new traffic estimation mechanism 

called SRATE: State-Rank bAsed Traffic Estimation. The new 

scheme works by keeping registers for k previous arrivals and 

comparing the new arrival with each of them with attesting 

‘State-Rank’ according to system state these are ‘Regular and 

Critical’.  Matching between the new arrived request and one of 

the previous arrived requests in registers are updated their Count 

and State-Rank with follow system state.  Now, we process 

algorithm, likely other estimation mechanism, SRATE maintains 

two tables-  

 

 Stateless Predecessor Table (SPT) maintains the first request 

which have no identical states since pick in CSRT to the 

system. It is FIFO based primary table & filled directly or by 

filtering as form of system buffer.  

 Count & State-Rank Table (CSRT) where each arrived request 

into the system, through matching if the incoming request   of 

data item  , which already in CSRT then increase their count 

by 1 and update state-rank according to system state otherwise 

apply filtering approach. If match is done in FIFO then Nidus 

counts the request in CSRT according to algorithm. 

As shown in fig.1, Given a request R, the algorithm outputs are 

“Regular State processing” if r will go to the Regular State with 

state-rank ‘0’ otherwise “Critical State Processing” if it has state-

rank ‘1’ otherwise disposed from this approach. It works as 

following: 

 If the system is in Regular State, the CSRT (Count & State-

Rank Table) is always set as Empty when first request R is 

arrived. 

 If R matches any data item of CSRT (for asking same data) 

increase the counter of data item by ‘1’ in counter column and 

update state-rank ‘0’. 

 If system is setting as Regular State after going Critical State 

then on basis of MWL (Maximal Workload Left) [19], request 

is processed by Local Web Server. 

 Otherwise, randomly draw M requests from FIFO queue 

named as SPT (Stateless Predecessor Table) & compare them 

with R, if R matches any of the M request (for asking same 

data), pick that data item & put in CSRT with initialization of 

counter as ‘1’ and state-rank ‘0’ & update CSRT. 

 If any request doesn’t arrived again then system automatically 

dispose request from SPT, because there is no mean of that 

request to keep continue in SPT. 

 In Critical State, reset all counters to ‘0’ and set state-rank ‘1’ 

and calculating the request rate of each data item participated 

in CSRT. For each data item in CSRT, the request rate is its 

counter value divided by total requests arrives since entering 

the system in Critical State. Also, calculate estimated request 

rate correspond of each data item according to Section-V. 

 If requests of data item cross or overhead the “Empirical 

Threshold Indicator” as well as follows “CN-46 (Controversial 

NonEntityship-46)” means workload so high not managed by 

system then request will be signified with state rank ‘’ since 

disposing it automatically. Otherwise redirect to proxy server 

on basis of LWL (Least Workload Left) [19] as prerequisite 
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Fig.1. Descriptions of SRATE Nidus View approach 
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Workload Factoring scheme with increment count by ‘1’ and 

State-Rank ‘1’. 

 At starting, if any data item requested at Critical State then it 

follow same procedure as when it is entered in Regular State. 

 If data item of request R doesn’t belong to CSRT then add R 

into SPT FIFO queue for request logs & returns. 

4. ANALYSIS 
In this section, we present the performance analysis results of the 

SRATE for the workload factoring . 

A. Notation and Accuracy Requirement 
We assume that each request belongs one of    data item. 

The rate of request   denoted by    and let           denote 

total request rate to server. Let    
  

 
 denote the proportion of 

request rate or actual request rate to the server that belongs to 

request     . We have to design an efficient scheme to 

estimate    for each     . Since it is easy to measure  , instead 

of directly estimating    , we solve the equivalent problem of 

getting an estimate     of    for each    . Then we use        to 

estimate    . We can view    as the probability that an arriving 

requests belong to data item   . We assume that     is static or 

stationary over the time in which the estimation is done. We also 

assume that the probability that an arriving request belongs to a 

given data item is independent of all other requests. We can 

sample randomly in order to reduce this dependence. We now 

give the accuracy requirement for SRATE will determine an 

estimated     such that- 

 

        
 

 
    

 

 
           

        
  

 
    

  

 
           

 
With probability greater than  . In other words, we are willing to 

tolerate an error of   with probability less than   for all      

and an error of     with probability less than   for all     . 

We consider that the proportion for most data item lies below 

some threshold proportion   and we want the estimation to be 

accurate in the range [0, ]. Formally, we are given threshold 

proportion       and parameter    . A case, if there are 

data items with proportion greater than   , we still want the 

estimation to have a guaranteed performance but we are willing 

to sacrifice the quality of guarantee somewhat. The SRATE will 

estimate    with relative estimation error range of  
 

 
    . We 

use    to denote the   percentile for unit normal distribution, 

such as if          then         . 

 

B. Main Result As per follow processes of [7] with [9]. 
 
Lemma-1: Given the modified accuracy requirement, let N be the 

number of request samples required by SRATE. If the accuracy 

requirement for large data item can be relaxed to- 

 

   
 
 

 
   

 

  
 

 
   

    (1) 

Then setting,   
 

 
 
 

 
    

 

Proof: Follow Theorem-1 of  [7]. 

 

C. Correlations 

The analysis of SRATE is significantly more complicated 

than RATE, CATE and Fast Top-K. This is because that the 

different comparison in SRATE is not independent. Therefore we 

need to account for the covariance between different 

comparisons in order to accurately compute the variance of 

estimation of proportions. In this section we concentrate on data 

item and assume that the Stateless Predecessor Table (SPT) 

maintains all k-requests to the server. Therefore when there are 

total N requests to the server. We would have made    

comparisons. We make less than k comparisons for the first k 

request arrival since k is small compared to N; we ignore this in 

the rest of the analysis. We assume that requests to server are 

approached as iid [16] where the probability that request belongs 

to data item   is given by   . We label the request arrival 1 to N 

based on request arrival’s sequence. Let- 

         
              
           

   

 
Let        denote the number of requests for data item   after 

N requests. Therefore- 

 

                
   
          (2) 

 
Before study the correlation structure of the comparisons, we 

state the following elementary result first- 

 

Lemma-2: Let         be defined above. Then- 

 

             
  

               
      

   

 
Proof: this result follows directly from the assumption that 

request are independent and probability that an arrival belongs to 

data item   is   . But in SRATE, the comparisons are not always 

independent of each other. Let use the comparison         and 

        where                as an example. Note that 

               
  due to independency of requests. But 

                           
        because the 

condition is already implies that request    . In general for any 

pair of comparison         and         are independent if and 

only if all the indices are distinct. If any two of the indices are 

identical, then the comparisons are dependent. For example, 

        and        are dependent. The next result gives the 

correlation between the random variables         and        .

                 

Lemma-3: Consider         and         for     

         and    . Then- 

 

                       
      

   (3) 

 

Proof: Let                        
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Where the third equality follow from the fact that            

          . At last step follows from the fact that           and 

        are both one if and only if request arrivals       all 

belongs to the data item   and    , which happen probability 

  
 . In fact it is easy to show that the covariance is   

      
   

for any two comparisons that are correlated. We can now derive 

the Mean and Variance for the request of data item  . 

 

D. Expectation and Variance of        

 

Lemma-4: Let         denote the number of requests for data 

item   after N request arrivals to the server. Then- 
 

              
  

                
      

     
         

    
  

Proof: Note that- 

 

                     
   
           

              
     

 (4)         

 
To simplify the notation we assume that we index the 

comparisons using a single index   where       is set to one if 

comparison m result in a requests for data item  . The variance 

can be computed as follows- 

 

                                     

               
   

 

Now, 

           

      
      

                                
  
      

       
       

         
   

 

Now, 

                               

                 
                 

            
   

   

             
                 

               

 

Now, Variance becomes- 

 

                 
             

        
   

            
        

     

                 
      

     
         

    
  

 (5)         

 

Notice that     
      

   is the variance of        when all 

request samples are independent from each other, therefore the 

correlations among request samples in SRATE increase the 

variance of        by factor of 
         

    
. Since we know the 

mean and variance of the number of requests are matched. We 

now use the “Central Limit Theorem” to obtain a normal 

approximation for the number of request match than use the 

result to estimate the proportion. The next theorem gives the 

expression for estimator of the proportion along with its variance. 

  

Lemma-5: Let        represents the number of requests for 

data item   after N request arrivals for SRATE with   

comparisons for each arrival. Then- 

 

     
      

  
           

   

Where,    
  

     
     

         

    
 

 
 

 
Proof: Though the comparisons are not independent, the 

comparisons are a stationary    dependent sequence with finite 

exception and variance. The following the central limit theorem 

for dependent sequence. We can show that for large N- 

 

     
      

  
   

         
   

Where,    
    

      
     

         

    
  

 

Therefore the point estimates for     of    is- 

 

     
      

  
 

 
Then variance of estimation of   - 

 

   
  

      
     

          

     
 

 
 

 (6)         

 
We know this expression for variance of the estimator and derive 

upper bounds on its value. This bound is derived in two regions. 

The first upper bound on the variance hold in the entire       
range and is a function of  . The second bound on the variance is 

a constant independent of   and holds when the proportion is 

below the threshold. 

 

Lemma-6: Let   
  

      
     

          

     
 

 
 then- 

 

  
  

  

    
 

  
              

 

    
 

 
Proof: Set the derivative of the variance with respect to    to 

zero gives us the first upper bound. When    
 

    
 , 

 

  
  

        
 

 
 

 

This variance takes on a maximum value of  
 

 
 when     . The 

above bounds on the variance can now be used to compute the 

sample size and estimation accuracy of SRATE. Note the setting 

    in variance of estimation, gives- 
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E. Minimum Sample Size 
          , let   be the desired estimation accuracy and    

the desired   percentile. For any data item   with          

 , since based on Lemma 6 its variance takes on a maximum 

value of  
 

 
 , the minimum request sample size N in order to 

satisfy the accuracy requirement is given by-  

 

  
   

 

      (7) 

F. Speedup 
Lemma-7: Given the accuracy requirement described in section-

IV and N be the number of request sample required for SRATE- 

               
   

 

   
 

 
Let us define the request rate amplification factor   for the rate 

change of data item before and after the Matching as- 

 

  
      

       
  (8) 

 

For example if a data item takes  0.1% of the total requests and 

takes 0.2% of the total request matched with CSRT data items, 

the rate amplification factor for     for this data item. Then we 

can have the speedup results of the SRATE algorithm with rate 

amplification factor X. 

 

Lemma-8: Given the accuracy requirement described in Section-

IV.                be the number of request samples required for 

SRATE-CSRT and                 be the number of request 

samples required for SRATE-SPT(Filtering). 

  

               
              

   (9) 

 

               
                          

   (10) 

 

As well as               be the number of request 

samples required for Disposing. Therefore we have    speedup 

of the detection (Matching, Filtering, and Disposing) process 

even with “        ” on rate amplification factor due to 

historical information filtering. 

 

G. Request Concentration & cumulative distribution 
We define request concentration, denoted  , as the ratio of 

request belong to this data item to the total number of requests 

observed for a fixed time interval. If we consider the set of all 

data items observed within a time interval, then the distribution 

of request concentration can be characterized by either a 

frequency distribution function or a cumulative distribution 

function. For a given request concentration  , the value of      
is defined as the ratio of the number of requests with request 

concentration equal to  , to the total number of requests 

observed. The request concentration cumulative distribution 

     is defined as the ratio of the number of requests that have 

request concentration less than or equal to  , to the total number 

of request. That is,  

 

               (11) 

 

It should be noted that the request concentration 

distribution are independent. Request concentration describes the 

nature of the distribution of data items in different requests 

observed at a particular observation point. 

 
H. Average Request Sending Rate 

There are only two possible ways for a request to have a high 

request concentration: either it lasts a long time, or it sends at a 

fast rate. We suspect it is the combination of both factors that 

determines request concentration. We calculate the average 

request concentration and the average duration of requests for the 

top N percent of the requests (suppose N ranging from 0 to 100). 

We plot the distribution of average request concentration, in 

request trails, and average duration of requests against the 

cumulative distribution of requests, and show the graphs in Fig.6. 

We observe that requests with high concentration of request trails 

tend to last long as well. Suppose server wants to apply some 

QoS mechanisms to a limited set of requests, and the ideal 

choices of such requests are those that have the largest request 

concentration by the time the requests terminate. At any instant 

in time, however, server has no knowledge of how long an 

existing request is going to last. The only heuristic server can use 

is a request’s past sending rate. If, for example, a high past 

sending rate is likely to predict that a request is going to be a 

highly concentrated request by the time the request terminates, 

then it is a safe bet for server to start specially treating those 

particular requests. Therefore, we study the correlation between 

the concentration of requests and their average sending rate. The 

average sending rate of any particular request is calculated using 

a low pass filter with a weight   of 0.5, i.e. 

 

                                   

  

I. Memory Requirement 

Now we focus on the memory requirement for SRATE 

that’s nearly same as CATE. We calculate the worst case 

expected memory requirement due to dependencies of 

comparisons. Given the request sample size  , we now want to 

determine the expected amount of memory required in worst 

case. In other words, we want to find an allocation of    that 

maximizes the expected number of data item in CSRT- 

 

Lemma-9: Given the specified accuracy requirement described in 

Lemma 1, the maximum expected memory [11], [7] is- 

                                    
  
 

  

 
 

 

                              
  
 

  

 
 

 

 
   

     

       
  
 

   
 

  

 
 

 
   

     

Proof: from theorem 8 and 9 of [11] the objective function 

is maximized when 

   
 

 
   

 
Therefore a fixed value of  , the maximum expected list length 

through objective function is- 
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We now want to determine the value of   for which this function 

is maximized. Assuming that   is continous, and differentiating 

this expression with respect to  . We get- 

 

       
  

  
  

   

  
      

 

If we set 
  

  
   we can rewrite the expression with solving for 

  we get        . Therefore, 

 

              
 

   
  

     

 

        
 

 

 
Setting this value of   in objective function, the maximum 

expected memory requirement is given by- 

 

               
 

    
  

  

        
 

  
 

  

 

                
 

 

 
Corollary-1 at Local Web Server: given the width of the 

confidence interval   and the error probability  , the expected 

memory- 

              
   

 

   
 

 

 

              
  

 
 
 

  
           (12) 

 
This expression is particularly for local web server. But 

after performing analytical simulation & trace memory usage we 

found that the memory size at proxy server has been increased 

which at least equivalent to 
 

 
   

     named as Memory-

Prediction-Error ‘ ’.  

Reason behind the naming error is that we can’t predict 

about memory usage at proxy server as well as perform 

estimation for actual memory used accurately. 

 
Corollary-II at Proxy Server: given the width of the confidence 

interval   and the error probability  , the expected memory- 

              
   

 

   
 

 

 
 

 
   

     

      
  
 

  

 
        

 

                 
 

 
   

     

 (13)       

 

5. PERFORMANCE CRITERIA 
We conduct two sets of experiments. We first use observation 

tracery to estimation of all metrics, and then use ‘Tri-Way 

Trajectory Simulation’ traces counting of request arrived, sample 

size, memory usage, request concentration with average request 

sending rate with efficient accuracy orders and effective 

performance criteria than other schemes. 

 

Fig.2. Desired Accuracy performed by SRATE 
 
Dedicated runtime implementation of SRATE scheme is 

developed on the basis of fast & complicated comparisons 

between necessary information for updating its system state as 

well as desired changes in state-rank to follow system state of 

incoming requests, evaluated through “Tri-Way Trajectory 

Simulations” as implemented part of ‘Dispatching Decision’ in 

proposed Integrated Cloud Computing Model described in fig.1 

of [17]. Following all of these, it gives state process prediction 

for particular request may be ready to process or dispose under 

limitation of threshold. On Yahoo! Video site, all the videos are 

classified into 16 categories. Each video is assigned a unique ID 

(integer number), and has the following information posted on its 

webpage: title, number of views (so far), video duration, average 

rating, number of ratings, added (uploaded) time, source (video 

producer), content description, tags (keywords), and comments. 

We trace the Yahoo! Video site for 2 months (from January 11 to 

March 12, 2012), and the data was collected in every 30 minutes 

to 1 hour. Due to large scale of Yahoo! Video site, we limited the 

data collection to the first 10 pages of each category. Since each 

page contains 10 video objects, each time the measurement 

collects dynamic workload information for 1230 video files in 

total. Throughout the whole collection period, we recorded 2,843 

unique videos which durations range from 2 to 6350 seconds and 

a total of 1,755,186 video views. This can be translated into a 

daily video request rate of 29253.  
 

Fig.3. Memory cost of SRATE for both system state 
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So we decide the accuracy level         with         . In 

other words, we want to estimate the proportion        with 

error probability less than       . This corresponds to a 

       . 

 

Fig.4. Memory Cost under different K values 
 

SRATE is the fastest; it can capture all requests after 

about 6 million request arrivals. Fig.2 shows the number of 

significant requests that each approach fails to capture under 

various sampling time. Here K for SRATE is set to be 100. We 

find that all approaches can easily capture the have large requests 

with rate above 0:1. But their ability of capturing medium-sized 

requests varies significantly. The number of requests that 

SRATE captures remains almost constant, determined by buffer 

size. Since most buffer were occupied by data items from large 

requests, the scheme missed about 75% of all the medium-sized 

requests. 

Next, fig.3 & fig.4 shows the change in memory size 

with increase in sampling time. From both Figures, we observe 

SRATE has lowest memory size but worst estimation accuracy. 

SRATE is the most accurate and fastest; it uses less memory than 

other schemes. We also note that both SRATE use about the 

same amount of memory by the time they capture all medium-

sized requests (not shown in the figure), which indicates that it 

need similar memory size for the same estimation accuracy. 
 

Fig.5. Cumulative Distribution of Request Concentration  
 

From fig.5 for cumulative distribution of request concentration 

then we use a 60-second-timer mechanism to examine request 

states. Whenever a timer goes off, all non-expired requests are 

checked, and their average rates are updated. The requests are 

expired by a different mechanism: if no data items have arrived 

in the last 32 seconds on this request, the request is automatically 

timed out. We then keep track the top 10% of requests with the 

highest sending rates, and calculate number of data items & 

requests; they contributed as a percentage of entire traffic on a 

minute by minute basis. 

 
So, compare with other fast estimation approaches that- 
 

                          
   

 

   
  

 

     
      

 
Now compare in case of processing speed & number of K 

comparisons- 

 

                           

 

6. CONCLUSIONS & FUTURE WORKS 
In this paper we have developed request rate estimation scheme 

called SRATE that uses counting, matching and state-ranking 

between different arriving data items to estimate the request rate 

and request concentration with memory usage. There is nearly 

dissimilarity in statistics to calculate mean duration due to the 

different video upload policies on the two sites: YouTube [11] 
imposes the limit of 10 minutes on regular state, while Yahoo! 

Video allows the video size up to 100MB (more than 40 minutes 

at 300Kb/s bit rate) in regular state. Even we have shown through 

both theoretical analysis and extensive simulations that SRATE 

is fast and memory efficient. It estimates small request quickly 

and accurately, and still gives good estimation accuracy for large 

requests. Many proposed QoS mechanisms can take advantage of 

this phenomenon to make the implementations scalable. A 

discussion on the implication of this phenomenon on different 

QoS mechanisms is offered. Dependence within data item 

arrivals may affect the estimation accuracy. Although the buffer-

based approach can alleviate the problem, a better approach that 

can further minimize the impact of dependence without 

additional over-head may be more preferable. We attempt to 

address this issue as part of future work on SRATE based 

workload factoring to overcome the problem of workload in 

cloud computing with enhancing new trend as Integrated Cloud 

Computing. 
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