
International Journal of Computer Applications (0975 – 8887)

Volume 104 – No 17, October 2014

24

SRATE: A Fast and Memory Efficient Request Rate

Estimation by State-Rank based Scheme

Umega Kaul
LNCT ,Bhopal (M.P),India

Suneel Phulere
LNCT, Bhopal(M.P),India

Vineet Richariya
LNCT,Bhopal (M.P),India

ABSTRACT
In Cloud Computing or Content Distributed Cloud (CDN)

workload happens between a local web server and proxy servers.

The typical method is DNS redirecting and the workload

factoring decision is predefined manually over a set of most

popular objects. For such popular object detection in requests

tails, many schemes have proposed for fast request rate

estimation in traffic monitoring and fast counting for most

popular data item for which request arrived and above mentioned

jobs done. Accurate request rate estimation is necessary for

resource planning & management, measuring compliance to

SLAs and cloud security especially in Cloud Computing where

we are talking about Integrated, Heterogeneous or Hybrid Cloud

deployment model. With following ideals, we propose SRATE

(State-Rank bAsed Traffic Estimation) has sufficient short

estimation times with provable bounds on estimation error, low

memory usage and also easily implementable in hardware for

operation at high speeds. With developing such scheme, we

achieve up to three orders of magnitude speedup in estimation

time. The speedups are achieved with low memory usage by

using “State-Rank (0,1,ϕ)” instead of runs or coincidences. This

new scheme has many benefits at high oppressive workload

including quicker detection of unhandled oppressive data items

or spikes with incipient denial of service attacks. As result, we

show that the proposed scheme is faster and more accurate than

other schemes. We also prove bounds on the scheme’s accuracy,

request size or estimation time, average request rate estimation,

memory needs, average request sending rate and also show that it

performs well by efficient simulation techniques.

1. INTRODUCTION
In this paper, we address the problem of accurate measurement

of traffic in a Cloud Computing Cloud. Measurement of traffic is

an important component for resource planning & management,

workload factoring, detecting DoS attacks, and in traffic

engineering [2], [3], [6]. The traffic in the cloud can typically be

classified into request and measurements are required on a per-

request basis for particular service requirement. The definition of

request can be very flexible. Examples are specific application to

application traffic characterized by ‘State-Rank’, all traffic

destined toward destination cloud. The standard approach used

for measuring traffic is to sample the traffic arriving at the server,

keep counts of the traffic arrivals on a per-request basis and then

use this Counter & State-Rank to estimate the traffic. The main

problem with this approach is scalability. If the number of

requests is large, then keeping per-request counts consumes

considerable memory as well as processing power. Now for

active tracery, we used the Yahoo! Video. Yahoo! Video (India)

[1] is 3rd ranked online video website just after YouTube and

MetaCafe in terms of total number of video views, uploading &

downloading during January 2011, it delivered totally 30.2

millions of video streams to 17.56 million of unique Indian

viewers [18]. It is 72% of the online population of India who take

services of video streaming.

In fact, measurements have shown that there are a large number

of requests in the cloud, a significant fraction of the traffic are

carried by only a small number of requests. These oppressive

objects, which may only be a few hundreds of request, can

constitute as much as 85-90 % of the traffic at a server.

Therefore, detecting and measuring these oppressive objects are

an important aspect of traffic measurement. Further, measuring

sudden increase in activity towards a given destination can be a

sign of a denial of service attack. Therefore, monitoring traffic is

a very important component in cloud server. Another application

area where per-request measurements are needed is for active

queue management [8] for providing fairness in clouds. The main

idea is to isolate large request to reduce their impact on the rest

of the request in the cloud. This is especially important if the

large requests are misbehaving short round-trip delays. However,

to track these small numbers of misbehaving sources, we have to

wade through tens of thousands (if not hundreds of thousands) of

small sources likely we should not have to track millions of ants

to track a few elephants.

So we exploit the fact that there are a few oppressive objects to

reduce the amount of memory required to measure heavy

sources. The basic idea is to sample data items with some

probability and if the request to which the data item belongs is

not already in memory, and then the request is added to the

memory, and from that point on, all data items arriving to this

request are counted and attested as State-Rank. Since every data

item is counted, the sampled request are kept in a CSRT (hash

table) and at every data item arrival, its Data-ID has to be

attested into this CSRT in order to increment and attests the

appropriate counter and State-Rank respectively if it is already

in the table. However, since the size of the memory is reduced,

they show that this scheme is easier to implement. They also give

a more processing intensive multistage filter scheme to track

large request. As we will show in this paper, this is a powerful

technique of elastic nature for estimating traffic rates especially

when the number of request is large. We can extend our approach

according to required goodness of Request Estimation Scheme

 “It should extremely estimate request rate to specified

accuracy as well as proved their correctness above theoretical

prediction”. This implies that for a specified accuracy. The

shorter sampling time is better for every scheme. Extreme

estimation is critical for fast detection of anomalous events.

 “The scheme should be suitable for run time

processing of traffic streams of requested data items”. This

implies that the scheme performed should be simple or

preferably amenable to cover each step of implementations.

 “The scheme should be memory efficient practically”.

System may have millions of data items and it should not be

necessary to maintain system according to state for large fraction

of the data item for a few estimation results.

The rest of the paper is organized as follows: A related prior

work defined is in Section-II. Section-III outlines SRATE

scheme and describes the implementation Architecture. Section-

IV presents the analysis of SRATE. The experimental results of

SRATE along with extensive simulation are described in

Section-V. Lastly, Section-VI concludes the paper.

International Journal of Computer Applications (0975 – 8887)

Volume 104 – No 17, October 2014

25

2. RELATED WORKS
There has been much recent research on request measurement.

The work of [10] presented a sampling method that first selects

the oppressive objects, i.e., requests with rate above a certain

threshold (say, 1% of the entire traffic), and then counts all data

items belonging to these oppressive objects. For this scheme,

deriving the number of samples needed to achieve specified

estimation accuracy does not appear to be easy.

A white paper [11] proposed RATE, a flow estimation

mechanism based on counting two-runs (flow id matches for two

consecutive samples from the traffic stream). For a given

accuracy level, RATE requires worst-case sampling time slightly

longer than (1.38 times) the naive counting scheme. However, it

uses significantly less memory (square root of number of

samples). A drawback is that for the same sampling time, RATE

has much worse accuracy than naive counting for flows with low

rates. ACCEL-RATE [4] was proposed as an enhancement to the

original RATE scheme. In ACCEL-RATE, each arrival packet is

hashed into multiple buckets based on its flow id, so that packets

of the same flow are more “concentrated" within each bucket. As

a result, a larger number of two-run samples can be generated for

each flow. It is shown that under uniform hashing the sampling

time, in comparison to RATE, can be reduced to 7:3 k where k is

the number of buckets. This is achieved with about 2/7 times

more memory needs than RATE. Note that, however, such

sampling time reduction only holds when hashing is uniform,

which implies the rate of the largest request, should be

significantly less than 1 k. Hence ACCEL-RATE is best suited

for cases where the maximum flow rate is small, and a loose

upper bound is known a priori. In general, all the proposed

mechanisms tend to trade reduced estimation accuracy and/or

increased sampling time for lower memory cost. For a given

sampling time, naïve counting scheme can still produce the most

accurate results regardless of flow rate but at the expense of

much higher memory requirements. Other side, CATE [7]

extends RATE with using the width of the coincidence interval

of the naive counting scheme as the benchmark to determine the

effectiveness of the sampling schemes developed. FastTop-K

[15] is the first paper which contributes request patterns instead

of flow mechanism with fully inspiration of CATE. Follow same

ideals of FastTop-K, here we use ‘State-Rank’ terminology to

access rate-estimation as well as efficient rate-concentration with

memory usage also.

3. STATE-RANK BASED TRAFFIC

ESTIMATION
In this paper, we propose a new traffic estimation mechanism

called SRATE: State-Rank bAsed Traffic Estimation. The new

scheme works by keeping registers for k previous arrivals and

comparing the new arrival with each of them with attesting

‘State-Rank’ according to system state these are ‘Regular and

Critical’. Matching between the new arrived request and one of

the previous arrived requests in registers are updated their Count

and State-Rank with follow system state. Now, we process

algorithm, likely other estimation mechanism, SRATE maintains

two tables-

 Stateless Predecessor Table (SPT) maintains the first request

which have no identical states since pick in CSRT to the

system. It is FIFO based primary table & filled directly or by

filtering as form of system buffer.

 Count & State-Rank Table (CSRT) where each arrived request

into the system, through matching if the incoming request of

data item , which already in CSRT then increase their count

by 1 and update state-rank according to system state otherwise

apply filtering approach. If match is done in FIFO then Nidus

counts the request in CSRT according to algorithm.

As shown in fig.1, Given a request R, the algorithm outputs are

“Regular State processing” if r will go to the Regular State with

state-rank ‘0’ otherwise “Critical State Processing” if it has state-

rank ‘1’ otherwise disposed from this approach. It works as

following:

 If the system is in Regular State, the CSRT (Count & State-

Rank Table) is always set as Empty when first request R is

arrived.

 If R matches any data item of CSRT (for asking same data)

increase the counter of data item by ‘1’ in counter column and

update state-rank ‘0’.

 If system is setting as Regular State after going Critical State

then on basis of MWL (Maximal Workload Left) [19], request

is processed by Local Web Server.

 Otherwise, randomly draw M requests from FIFO queue

named as SPT (Stateless Predecessor Table) & compare them

with R, if R matches any of the M request (for asking same

data), pick that data item & put in CSRT with initialization of

counter as ‘1’ and state-rank ‘0’ & update CSRT.

 If any request doesn’t arrived again then system automatically

dispose request from SPT, because there is no mean of that

request to keep continue in SPT.

 In Critical State, reset all counters to ‘0’ and set state-rank ‘1’

and calculating the request rate of each data item participated

in CSRT. For each data item in CSRT, the request rate is its

counter value divided by total requests arrives since entering

the system in Critical State. Also, calculate estimated request

rate correspond of each data item according to Section-V.

 If requests of data item cross or overhead the “Empirical

Threshold Indicator” as well as follows “CN-46 (Controversial

NonEntityship-46)” means workload so high not managed by

system then request will be signified with state rank ‘’ since

disposing it automatically. Otherwise redirect to proxy server

on basis of LWL (Least Workload Left) [19] as prerequisite

R R1 R2

+ R

Filtering

Matching

Stateless
Predecessor

Table

Counting

Request

Count and

State-Rank

Table

SRATE
Nidus
View

Data-ID Count S_R

Comparison
Counter

Fig.1. Descriptions of SRATE Nidus View approach

International Journal of Computer Applications (0975 – 8887)

Volume 104 – No 17, October 2014

26

Workload Factoring scheme with increment count by ‘1’ and

State-Rank ‘1’.

 At starting, if any data item requested at Critical State then it

follow same procedure as when it is entered in Regular State.

 If data item of request R doesn’t belong to CSRT then add R

into SPT FIFO queue for request logs & returns.

4. ANALYSIS
In this section, we present the performance analysis results of the

SRATE for the workload factoring .

A. Notation and Accuracy Requirement
We assume that each request belongs one of data item.

The rate of request denoted by and let denote

total request rate to server. Let

 denote the proportion of

request rate or actual request rate to the server that belongs to

request . We have to design an efficient scheme to

estimate for each . Since it is easy to measure , instead

of directly estimating , we solve the equivalent problem of

getting an estimate of for each . Then we use to

estimate . We can view as the probability that an arriving

requests belong to data item . We assume that is static or

stationary over the time in which the estimation is done. We also

assume that the probability that an arriving request belongs to a

given data item is independent of all other requests. We can

sample randomly in order to reduce this dependence. We now

give the accuracy requirement for SRATE will determine an

estimated such that-

With probability greater than . In other words, we are willing to

tolerate an error of with probability less than for all

and an error of with probability less than for all .

We consider that the proportion for most data item lies below

some threshold proportion and we want the estimation to be

accurate in the range [0,]. Formally, we are given threshold

proportion and parameter . A case, if there are

data items with proportion greater than , we still want the

estimation to have a guaranteed performance but we are willing

to sacrifice the quality of guarantee somewhat. The SRATE will

estimate with relative estimation error range of

 . We

use to denote the percentile for unit normal distribution,

such as if then .

B. Main Result As per follow processes of [7] with [9].

Lemma-1: Given the modified accuracy requirement, let N be the

number of request samples required by SRATE. If the accuracy

requirement for large data item can be relaxed to-

 (1)

Then setting,

Proof: Follow Theorem-1 of [7].

C. Correlations

The analysis of SRATE is significantly more complicated

than RATE, CATE and Fast Top-K. This is because that the

different comparison in SRATE is not independent. Therefore we

need to account for the covariance between different

comparisons in order to accurately compute the variance of

estimation of proportions. In this section we concentrate on data

item and assume that the Stateless Predecessor Table (SPT)

maintains all k-requests to the server. Therefore when there are

total N requests to the server. We would have made

comparisons. We make less than k comparisons for the first k

request arrival since k is small compared to N; we ignore this in

the rest of the analysis. We assume that requests to server are

approached as iid [16] where the probability that request belongs

to data item is given by . We label the request arrival 1 to N

based on request arrival’s sequence. Let-

Let denote the number of requests for data item after

N requests. Therefore-

 (2)

Before study the correlation structure of the comparisons, we

state the following elementary result first-

Lemma-2: Let be defined above. Then-

Proof: this result follows directly from the assumption that

request are independent and probability that an arrival belongs to

data item is . But in SRATE, the comparisons are not always

independent of each other. Let use the comparison and

 where as an example. Note that

 due to independency of requests. But

 because the

condition is already implies that request . In general for any

pair of comparison and are independent if and

only if all the indices are distinct. If any two of the indices are

identical, then the comparisons are dependent. For example,

 and are dependent. The next result gives the

correlation between the random variables and .

Lemma-3: Consider and for

 and . Then-

 (3)

Proof: Let

International Journal of Computer Applications (0975 – 8887)

Volume 104 – No 17, October 2014

27

Where the third equality follow from the fact that

 . At last step follows from the fact that and

 are both one if and only if request arrivals all

belongs to the data item and , which happen probability

 . In fact it is easy to show that the covariance is

for any two comparisons that are correlated. We can now derive

the Mean and Variance for the request of data item .

D. Expectation and Variance of

Lemma-4: Let denote the number of requests for data

item after N request arrivals to the server. Then-

Proof: Note that-

 (4)

To simplify the notation we assume that we index the

comparisons using a single index where is set to one if

comparison m result in a requests for data item . The variance

can be computed as follows-

Now,

Now,

Now, Variance becomes-

 (5)

Notice that

 is the variance of when all

request samples are independent from each other, therefore the

correlations among request samples in SRATE increase the

variance of by factor of

. Since we know the

mean and variance of the number of requests are matched. We

now use the “Central Limit Theorem” to obtain a normal

approximation for the number of request match than use the

result to estimate the proportion. The next theorem gives the

expression for estimator of the proportion along with its variance.

Lemma-5: Let represents the number of requests for

data item after N request arrivals for SRATE with

comparisons for each arrival. Then-

Where,

Proof: Though the comparisons are not independent, the

comparisons are a stationary dependent sequence with finite

exception and variance. The following the central limit theorem

for dependent sequence. We can show that for large N-

Where,

Therefore the point estimates for of is-

Then variance of estimation of -

 (6)

We know this expression for variance of the estimator and derive

upper bounds on its value. This bound is derived in two regions.

The first upper bound on the variance hold in the entire
range and is a function of . The second bound on the variance is

a constant independent of and holds when the proportion is

below the threshold.

Lemma-6: Let

 then-

Proof: Set the derivative of the variance with respect to to

zero gives us the first upper bound. When

 ,

This variance takes on a maximum value of

 when . The

above bounds on the variance can now be used to compute the

sample size and estimation accuracy of SRATE. Note the setting

 in variance of estimation, gives-

International Journal of Computer Applications (0975 – 8887)

Volume 104 – No 17, October 2014

28

E. Minimum Sample Size
 , let be the desired estimation accuracy and

the desired percentile. For any data item with

 , since based on Lemma 6 its variance takes on a maximum

value of

 , the minimum request sample size N in order to

satisfy the accuracy requirement is given by-

 (7)

F. Speedup
Lemma-7: Given the accuracy requirement described in section-

IV and N be the number of request sample required for SRATE-

Let us define the request rate amplification factor for the rate

change of data item before and after the Matching as-

 (8)

For example if a data item takes 0.1% of the total requests and

takes 0.2% of the total request matched with CSRT data items,

the rate amplification factor for for this data item. Then we

can have the speedup results of the SRATE algorithm with rate

amplification factor X.

Lemma-8: Given the accuracy requirement described in Section-

IV. be the number of request samples required for

SRATE-CSRT and be the number of request

samples required for SRATE-SPT(Filtering).

 (9)

 (10)

As well as be the number of request

samples required for Disposing. Therefore we have speedup

of the detection (Matching, Filtering, and Disposing) process

even with “ ” on rate amplification factor due to

historical information filtering.

G. Request Concentration & cumulative distribution
We define request concentration, denoted , as the ratio of

request belong to this data item to the total number of requests

observed for a fixed time interval. If we consider the set of all

data items observed within a time interval, then the distribution

of request concentration can be characterized by either a

frequency distribution function or a cumulative distribution

function. For a given request concentration , the value of
is defined as the ratio of the number of requests with request

concentration equal to , to the total number of requests

observed. The request concentration cumulative distribution

 is defined as the ratio of the number of requests that have

request concentration less than or equal to , to the total number

of request. That is,

 (11)

It should be noted that the request concentration

distribution are independent. Request concentration describes the

nature of the distribution of data items in different requests

observed at a particular observation point.

H. Average Request Sending Rate

There are only two possible ways for a request to have a high

request concentration: either it lasts a long time, or it sends at a

fast rate. We suspect it is the combination of both factors that

determines request concentration. We calculate the average

request concentration and the average duration of requests for the

top N percent of the requests (suppose N ranging from 0 to 100).

We plot the distribution of average request concentration, in

request trails, and average duration of requests against the

cumulative distribution of requests, and show the graphs in Fig.6.

We observe that requests with high concentration of request trails

tend to last long as well. Suppose server wants to apply some

QoS mechanisms to a limited set of requests, and the ideal

choices of such requests are those that have the largest request

concentration by the time the requests terminate. At any instant

in time, however, server has no knowledge of how long an

existing request is going to last. The only heuristic server can use

is a request’s past sending rate. If, for example, a high past

sending rate is likely to predict that a request is going to be a

highly concentrated request by the time the request terminates,

then it is a safe bet for server to start specially treating those

particular requests. Therefore, we study the correlation between

the concentration of requests and their average sending rate. The

average sending rate of any particular request is calculated using

a low pass filter with a weight of 0.5, i.e.

I. Memory Requirement

Now we focus on the memory requirement for SRATE

that’s nearly same as CATE. We calculate the worst case

expected memory requirement due to dependencies of

comparisons. Given the request sample size , we now want to

determine the expected amount of memory required in worst

case. In other words, we want to find an allocation of that

maximizes the expected number of data item in CSRT-

Lemma-9: Given the specified accuracy requirement described in

Lemma 1, the maximum expected memory [11], [7] is-

Proof: from theorem 8 and 9 of [11] the objective function

is maximized when

Therefore a fixed value of , the maximum expected list length

through objective function is-

International Journal of Computer Applications (0975 – 8887)

Volume 104 – No 17, October 2014

29

We now want to determine the value of for which this function

is maximized. Assuming that is continous, and differentiating

this expression with respect to . We get-

If we set

 we can rewrite the expression with solving for

 we get . Therefore,

Setting this value of in objective function, the maximum

expected memory requirement is given by-

Corollary-1 at Local Web Server: given the width of the

confidence interval and the error probability , the expected

memory-

 (12)

This expression is particularly for local web server. But

after performing analytical simulation & trace memory usage we

found that the memory size at proxy server has been increased

which at least equivalent to

 named as Memory-

Prediction-Error ‘ ’.

Reason behind the naming error is that we can’t predict

about memory usage at proxy server as well as perform

estimation for actual memory used accurately.

Corollary-II at Proxy Server: given the width of the confidence

interval and the error probability , the expected memory-

 (13)

5. PERFORMANCE CRITERIA
We conduct two sets of experiments. We first use observation

tracery to estimation of all metrics, and then use ‘Tri-Way

Trajectory Simulation’ traces counting of request arrived, sample

size, memory usage, request concentration with average request

sending rate with efficient accuracy orders and effective

performance criteria than other schemes.

Fig.2. Desired Accuracy performed by SRATE

Dedicated runtime implementation of SRATE scheme is

developed on the basis of fast & complicated comparisons

between necessary information for updating its system state as

well as desired changes in state-rank to follow system state of

incoming requests, evaluated through “Tri-Way Trajectory

Simulations” as implemented part of ‘Dispatching Decision’ in

proposed Integrated Cloud Computing Model described in fig.1

of [17]. Following all of these, it gives state process prediction

for particular request may be ready to process or dispose under

limitation of threshold. On Yahoo! Video site, all the videos are

classified into 16 categories. Each video is assigned a unique ID

(integer number), and has the following information posted on its

webpage: title, number of views (so far), video duration, average

rating, number of ratings, added (uploaded) time, source (video

producer), content description, tags (keywords), and comments.

We trace the Yahoo! Video site for 2 months (from January 11 to

March 12, 2012), and the data was collected in every 30 minutes

to 1 hour. Due to large scale of Yahoo! Video site, we limited the

data collection to the first 10 pages of each category. Since each

page contains 10 video objects, each time the measurement

collects dynamic workload information for 1230 video files in

total. Throughout the whole collection period, we recorded 2,843

unique videos which durations range from 2 to 6350 seconds and

a total of 1,755,186 video views. This can be translated into a

daily video request rate of 29253.

Fig.3. Memory cost of SRATE for both system state

International Journal of Computer Applications (0975 – 8887)

Volume 104 – No 17, October 2014

30

So we decide the accuracy level with . In

other words, we want to estimate the proportion with

error probability less than . This corresponds to a

 .

Fig.4. Memory Cost under different K values

SRATE is the fastest; it can capture all requests after

about 6 million request arrivals. Fig.2 shows the number of

significant requests that each approach fails to capture under

various sampling time. Here K for SRATE is set to be 100. We

find that all approaches can easily capture the have large requests

with rate above 0:1. But their ability of capturing medium-sized

requests varies significantly. The number of requests that

SRATE captures remains almost constant, determined by buffer

size. Since most buffer were occupied by data items from large

requests, the scheme missed about 75% of all the medium-sized

requests.

Next, fig.3 & fig.4 shows the change in memory size

with increase in sampling time. From both Figures, we observe

SRATE has lowest memory size but worst estimation accuracy.

SRATE is the most accurate and fastest; it uses less memory than

other schemes. We also note that both SRATE use about the

same amount of memory by the time they capture all medium-

sized requests (not shown in the figure), which indicates that it

need similar memory size for the same estimation accuracy.

Fig.5. Cumulative Distribution of Request Concentration

From fig.5 for cumulative distribution of request concentration

then we use a 60-second-timer mechanism to examine request

states. Whenever a timer goes off, all non-expired requests are

checked, and their average rates are updated. The requests are

expired by a different mechanism: if no data items have arrived

in the last 32 seconds on this request, the request is automatically

timed out. We then keep track the top 10% of requests with the

highest sending rates, and calculate number of data items &

requests; they contributed as a percentage of entire traffic on a

minute by minute basis.

So, compare with other fast estimation approaches that-

Now compare in case of processing speed & number of K

comparisons-

6. CONCLUSIONS & FUTURE WORKS
In this paper we have developed request rate estimation scheme

called SRATE that uses counting, matching and state-ranking

between different arriving data items to estimate the request rate

and request concentration with memory usage. There is nearly

dissimilarity in statistics to calculate mean duration due to the

different video upload policies on the two sites: YouTube [11]
imposes the limit of 10 minutes on regular state, while Yahoo!

Video allows the video size up to 100MB (more than 40 minutes

at 300Kb/s bit rate) in regular state. Even we have shown through

both theoretical analysis and extensive simulations that SRATE

is fast and memory efficient. It estimates small request quickly

and accurately, and still gives good estimation accuracy for large

requests. Many proposed QoS mechanisms can take advantage of

this phenomenon to make the implementations scalable. A

discussion on the implication of this phenomenon on different

QoS mechanisms is offered. Dependence within data item

arrivals may affect the estimation accuracy. Although the buffer-

based approach can alleviate the problem, a better approach that

can further minimize the impact of dependence without

additional over-head may be more preferable. We attempt to

address this issue as part of future work on SRATE based

workload factoring to overcome the problem of workload in

cloud computing with enhancing new trend as Integrated Cloud

Computing.

7. REFERENCES
[1] “Yahoo! Video”. http://video.yahoo.com/.

[2] Duffield, N, Lund, C., and Thorup, M., “Charging from

Sampled Network Usage”, SIGCOMM internet Workshop

2001.

[3] Duffield, N, and Grossglauser, M., “Trajectory Sampling for

Direct Traffic Observation”, Proceedings of ACM

SIGCOMM 2000.

[4] Hao, F., Kodialam, M., and Lakshman, T. V., "ACCEL-

RATE: a faster mechanism for memory efficient per-flow

traffic estimation", proceedings of ACM SIGMETRICS

2004.

[5] Fang, W, and Peterson, L., “Inter-as Traffic Patterns and

their Implications”, Proceedings of IEEE GLOBECOM

1999.

International Journal of Computer Applications (0975 – 8887)

Volume 104 – No 17, October 2014

31

[6] Feldmann, A. et al., “Deriving Traffic Demands for

Operational IP Networks: Methodology and

Experience”,Proceedings of ACM SIGCOMM’ 2000.

[7] F. Hao, M. S. Kodialam, T. V. Lakshman, and H. Zhang.

“Fast, memory-efficient traffic estimation by coincidence

counting”. in INFOCOM, 2005, pp. 2080-2090.

[8] Feng, W. et al., “The Blue Queue Management Algorithms”,

IEEE/ACM Transactions on Networking, Vol.10, Number

4, 2002.

[9] Aldous, D., “Probability Approximations via the Poisson

Clumping Heuristic”, Springer-Verlag, 1987.

[10] Estan, C. , and Varghese, G., "New Directions in Traffic

Measurement and Accounting", Proceedings of ACM

SIGCOMM 2002.

[11] Kodialam, M., Lakshman, T. V., and Mohanty, S., "Runs

bAsed Traffic Estimator (RATE): A simple, Memory

Efficient Scheme for Per-Flow Rate Estimation", Pro-

ceedings of INFOCOM'2004.

[12] Ferguson, T. S., "A Course in Large Sample

Theory",Chapman and Hall, 1996.

[13] Estan, C., Savage, S., and Varghese, G., “Automatically

Inferring Patterns of Resource Consumption in Network

Traffic", Proceedings of ACM SIGCOMM 2003.

[14] H. Zhang, G. Jiang, K. Yoshihira, H. Chen, and A. Saxena.

“Intelligent workload factoring for a hybrid Cloud

Computing model”. NEC Labs America Technical Report

2009-L036, Feb 2009.

[15] “Wikipedia- IID”. http://www.wikipedia.com/.

[16] “ComScore Video Metrix report: U.S. Viewers Watched an

Average of 3Hours of Online Video in July”. Available:

http://www.comscore.com/press/release.asp?press=1678.

[17] Du_eld, N, Lund, C., and Thorup, M., “Charging from

Sampled Network Usage", SIGCOMM internet Work-shop

2001.

[18] A. Kumar, M. Sung, J. xu, and J. Wang, “Data streaming

algorithms for efficient and accurate estimation of flow

distribution”, in Proc. Of ACM SIGMETRICS, June 2004,

to appear.

IJCATM : www.ijcaonline.org

