Semi-Star-Alpha-Open Sets and Associated Functions

A. Robert
Department of Mathematics
Aditanar College of Arts and Science
Tiruchendur,
India

ABSTRACT: The aim of this paper is to introduce various functions associated with semi* α -open sets. Here semi* α -continuous, semi* α -irresolute, contra-semi* α -continuous and contra-semi* α -irresolute functions are defined. Characterizations for these functions are given. Further their fundamental properties are investigated. Many other functions associated with semi* α -open sets and their contra versions are introduced and their properties are studied. In addition strongly semi* α -irresolute functions, contra-strongly semi* α -irresolute functions, semi* α -totally continuous, totally semi* α -continuous functions and semi* α -homeomorphisms are introduced and their properties are investigated.

General Terms: General topology

Keywords: semi*α-continuous, semi*α-irresolute, semi*α-open, semi*α-closed, pre-semi*α-open function, pre-semi*α-closed function

1. INTRODUCTION

In 1963, Levine [1] introduced the concept of semi-continuity in topological spaces. Dontchev [2] introduced contra-continuous functions. Crossely and Hildebrand [3] defined pre-semi-open functions. Noiri defined and studied semi-closed functions. In 1997, Contra-open and Contra-closed functions were introduced by Baker. Dontchev and Noiri [4] introduced and studied contra-semi-continuous functions in topological spaces. Caldas [5] defined Contra-pre-semi-closed functions and investigated their properties. S.Pasunkili Pandian [6] defined semi*-pre-continuous and semi*-pre-irresolute functions and their contra versions and investigated their properties. Quite recently, the authors [7, 8, 9] introduced some new concepts, namely semi*α-open sets, semi*α-closed sets, the semi*α-closure, semi*α-derived set and semi*α-frontier of a subset.

In this paper various functions associated with semi* α -open sets are introduced and their properties are investigated.

2. PRELIMINARIES

Throughout this paper *X*, *Y* and *Z* will always denote topological spaces on which no separation axioms are assumed.

Definition 2.1[10]: A subset *A* of a topological space (X, τ) is called (i) generalized closed (briefly g-closed) if $Cl(A) \subseteq U$ whenever $A \subseteq U$ and *U* is open .

(ii) generalized open (briefly g-open) if $X \setminus A$ is g-closed in X.

Definition 2.2: Let A be a subset of X. Then (i) generalized closure [11] of A is defined as the intersection of all g-closed sets containing A and is denoted by $Cl^*(A)$.

S. Pious Missier
P.G. Department of Mathematics
V.O.Chidambaram College
Thoothukudi
India

(ii) generalized interior of *A* is defined as the union of all gopen subsets of *A* and is denoted by *Int**(*A*).

Definition 2.3: A subset *A* of a topological space (X, τ) is (i)semi-open [1] (resp. α-open[12], semi α-open[13], semi-preopen[14], semi*open, semi*α-open[7], semi*-preopen[6]) if $A \subseteq Cl(Int(A))$ (resp. $A \subseteq Int(Cl(Int(A)), A \subseteq Cl(Int(Cl(Int(A))), A \subseteq Cl(Int(Cl(Int(A))), A \subseteq Cl(Int(Cl(Int(A))), A \subseteq Cl*(Int(A)), a \subseteq Cl*(Int(Cl(A)), a \subseteq Cl(Int(Cl(A))) \subseteq A, a \subseteq Cl(Int(Cl(A))) \subseteq A, a \subseteq Cl(Int(Cl(A)), a \subseteq Cl(Int(Cl(A)), a \subseteq Cl(Int*(Cl(A)), a \subseteq Cl$

Definition 2.4: Let A be a subset of X. Then (i)The semi* α -interior [7] of A is defined as the union of all semi* α -open subsets of A and is denoted by $s*\alpha Int(A)$.

(ii) The semi* α -closure [8] of A is defined as the intersection of all semi* α -closed sets containing A and is denoted by $s*\alpha Cl(A)$.

Definition 2.5: A function $f: X \rightarrow Y$ is said to be semi-continuous [1] (resp. contra-semi-continuous [4], semi*-continuous, contra-semi*-continuous, semi α -continuous [15]) if $f^1(V)$ is semi-open(resp. semi-closed, semi*-open, semi*-closed, semi α -open) in X for every open set V in Y.

Definition 2.6: A function $f: X \longrightarrow Y$ is said to be α -continuous (resp. semi-pre-continuous [14], semi*-pre-continuous [6]) if $f^1(V)$ is α -open(resp. semi-preopen, semi*-preopen) in X for every open set V in Y.

Definition 2.7: A topological space X is said to be (i) $T_{1/2}$ if every g-closed set in X is closed.[10] (ii) locally indiscrete if every open set is closed.

Theorem 2.8: [7] (i) Every α -open set is semi* α -open.

(ii) Every open set is semi* α -open.

(iii)Every semi*-open set is semi*α-open.

(iv)Every semi* α -open set is semi α -open.

(v)Every semi*α-open set is semi*-preopen.

(vi)Every semi*α-open set is semi-preopen.

(vii)Every semi*α-open set is semi-open.

Remark 2.9:[8] Similar results for semi* α -closed sets are also true.

Theorem 2.10: [7] (i) Arbitrary union of semi* α -open sets is also semi* α -open.

(ii) If *A* is semi* α -open in *X* and *B* is open in *X*, then $A \cap B$ is semi* α -open in *X*.

(iii) A subset A of a space X is semi* α -open if and only if $s*\alpha Int(A)=A$.

Theorem 2.11: [7] For a subset *A* of a space X the following are equivalent:

(i) A is semi*α-open in X

(ii) $A \subset Cl^*(\alpha Int(A))$.

(iii) $Cl^*(\alpha Int(A)) = Cl^*(A)$.

Theorem 2.12: [8] For a subset A of a space X the following are equivalent:

(i)A is semi*α-closed in X.

(ii) $Int*(\alpha Cl(A)) \subseteq A$.

(iii) $Int^*(\alpha Cl(A))=Int^*(A)$.

Theorem 2.13: [8] (i) A subset *A* of a space X is semi* α -closed if and only if $s*\alpha Cl(A)=A$.

(ii)Let $A \subseteq X$ and let $x \in X$. Then $x \in s^* \alpha Cl(A)$ if and only if every semi* α -open set in X containing x intersects A.

Definition 2.14: [9] If *A* is a subset of *X*, the semi* α -Frontier of *A* is defined by $s*\alpha Fr(A)=s*\alpha Cl(A)\backslash s*\alpha Int(A)$.

Theorem 2.15:[9] If *A* is a subset of *X*, then $s*\alpha Fr(A) = s*\alpha Cl(A) \cap s*\alpha Cl(X \setminus A)$.

Definition 2.16:[15] A function $f: X \longrightarrow Y$ is said to be (i) semi α^* -continuous (resp. semi α^* -continuous) if $f^1(V)$ is semi α -open(resp. open) set in X for every semi α -open set V in Y. (ii) totally semi-continuous [16] if $f^1(V)$ is semi regular in X for every open set V in Y.

(iii) semi-totally continuous [17] if $f^1(V)$ is clopen in X for every semi-open set V in Y.

3. SEMI*a-CONTINUOUS FUNCTIONS

In this section we define the semi* α -continuous and contra-semi* α -continuous functions and investigate their fundamental properties.

Definition 3.1: A function $f: X \rightarrow Y$ is said to be semi* α -continuous at $x \in X$ if for each open set V of Y containing f(x), there is a semi* α -open set U in X such that $x \in U$ and $f(U) \subseteq V$.

Definition 3.2: A function $f: X \rightarrow Y$ is said to be semi* α -continuous if $f^{-1}(V)$ is semi* α -open in X for every open set V in Y.

Theorem 3.3: Let $f: X \rightarrow Y$ be a function. Then the following statements are equivalent:

(i) f is semi* α -continuous.

(ii) f is semi* α -continuous at each point $x \in X$.

(iii) $f^{-1}(F)$ is semi* α -closed in X for every closed set F in Y. (iv) $f(s*\alpha Cl(A)) \subseteq Cl(f(A))$ for every subset A of X.

 $(v)s*aCl(f^{-1}(B))\subseteq f^{-1}(Cl(B))$ for every subset B of Y.

 $(vi)f^{-1}(Int(B)) \subseteq s *\alpha Int(f^{-1}(B))$ for every subset *B* of *Y*.

(vii) $Int^*(\alpha Cl(f^{-1}(F)))=Int^*(f^{-1}(F))$ for every closed set F in Y. (viii) $Cl^*(\alpha Int(f^{-1}(V)))=Cl^*(f^{-1}(V))$ for every open set V in Y.

Proof: (i) \Rightarrow (ii): Let $f: X \rightarrow Y$ be semi* α -continuous. Let $x \in X$ and V be an open set in Y containing f(x). Then $x \in f^{-1}(V) \text{ Since } f \text{ is comitate continuous. } U = f^{-1}(V) \text{ is a comitate continuous.}$

 $x \in f^{-1}(V)$. Since f is semi* α -continuous, $U = f^{-1}(V)$ is a semi* α -open set in X containing x such that $f(U) \subseteq V$.

(ii) \Rightarrow (i): Let $f: X \rightarrow Y$ be semi* α -continuous at each point of X. Let V be an open set in Y. Let $x \in f^{-1}(V)$. Then V is an open set in Y containing f(x). By (ii), there is a semi* α -open set U_x in X containing x such that $f(x) \in f(U_x) \subseteq V$. Therefore $U_x \subseteq f^{-1}(V)$. Hence $f^{-1}(V) = \bigcup \{U_x : x \in f^{-1}(V)\}$. By Theorem 2.10(i), $f^{-1}(V)$ is semi* α -open in X.

(i) \Rightarrow (iii): Let F be a closed set in Y. Then $V=Y\setminus F$ is open in Y. Then $f^{-1}(Y)$ is semi* α -open in X. Therefore $f^{-1}(F)=f^{-1}(Y\setminus V)=X\setminus f^{-1}(V)$ is semi* α -closed.

(iii) \Rightarrow (i): Let V be an open set in Y. Then F=Y\V is semi* α -closed. By (iii), $f^{-1}(F)$ is semi* α -closed. Hence $f^{-1}(V)=f^{-1}(Y\setminus F)=X\setminus f^{-1}(F)$ is semi* α -open in X.

(iii) \Rightarrow (iv): Let $A \subseteq X$. Let F be a closed set containing f(A). Then by (iii), $f^{-1}(F)$ is a semi* α -closed set containing A. This implies that $s*\alpha Cl(A) \subseteq f^{-1}(F)$ and hence $f(s*\alpha Cl(A)) \subseteq F$.

(iv) \Rightarrow (v): Let $B \subseteq Y$ and let $A = f^{-1}(B)$. By assumption, $f(s*\alpha Cl(A)) \subseteq Cl(f(A)) \subseteq Cl(B)$. This implies that $s*\alpha Cl(A) \subseteq f^{-1}(Cl(B))$.

(v) \Rightarrow (iii): Let F be closed in Y. Then Cl(B) = B. Therefore (v) implies $s*\alpha Cl(f^{-1}(B)) \subseteq f^{-1}(B)$. Hence $s*\alpha Cl(f^{-1}(B)) = f^{-1}(B)$. By Theorem 2.13(i), $f^{-1}(B)$ is semi* α -closed.

 $(\mathbf{v})\Leftrightarrow (\mathbf{vi})$: The equivalence of (\mathbf{v}) and (\mathbf{vi}) can be proved by taking the complements.

(vii)⇔(iii): Follows from Theorem 2.12.

(viii)⇔(i): Follows from Theorem 2.11.

Theorem 3.4: (i) Every α -continuous function is semi* α -continuous.

(ii) Every continuous function is semi*α-continuous.

(iii) Every constant function is semi*α-continuous.

(iv) Every semi* α -continuous function is semi α -continuous.

(v) Every semi*α-continuous function is semi*precontinuous.

(vi) Every semi*α-continuous function is semi-precontinuous. (vii) Every semi*-continuous function is semi*α-continuous.

(viii) Every semi*-continuous function is semi-continuous.

Proof: Follows from Theorem 2.8 and the fact that every constant function is continuous.

Remark 3.5: In general the converse of each of the statements in Theorem 3.4 is not true.

Theorem 3.6: If the topology of the space Y is given by a basis B, then a function $f: X \longrightarrow Y$ is semi* α -continuous if and only if the inverse image of every basic open set in Y under f is semi* α -open in X.

Proof: Suppose $f:X \rightarrow Y$ is semi* α -continuous. Then inverse image of every open set in Y is semi* α -open in X. In particular, inverse image of every basic open set in Y is semi* α -open in X. Conversely, let V be an open set in Y. Then $V=\bigcup B_i$ where $B_i \in B$. Now $f^{-1}(V)=f^{-1}(\bigcup B_i)=\bigcup f^{-1}(B_i)$. By hypothesis, $f^{-1}(B_i)$ is semi* α -open for each i. By Theorem 2.10(i), $f^{-1}(V)=\bigcup f^{-1}(B_i)$ is semi* α -open. Hence f is semi* α -continuous.

Theorem 3.7: A function $f:X \rightarrow Y$ is not semi* α -continuous at point $x \in X$ if and only if x belongs to the semi* α -frontier of the inverse image of some open set in Y containing f(x).

Proof: Suppose f is not semi* α -continuous at x. Then by Definition 3.1, there is an open set V in Y containing f(x) such that f(U) is not a subset of V for every semi* α -open set U in X containing x. Hence $U \cap (X \setminus f^{-1}(V)) \neq \emptyset$ for every semi* α -open set U containing x. By Theorem 2.13(ii), we get $x \in s^* \alpha Cl(X \setminus f^{-1}(V))$. Also $x \in f^{-1}(V) \subseteq s^* \alpha Cl(f^{-1}(V))$. Hence $x \in s^* \alpha Cl(f^{-1}(V))$.

¹(*V*))∩*s**α*Cl*(*X*/*f*¹(*V*)). By Theorem 2.15, $x \in s^* \alpha Fr(f^{-1}(V))$. On the other hand, let *f* be semi*α-continuous at $x \in X$. Let *V* be any open set in *Y* containing f(x). Then there exists a semi*α-open set *U* in *X* containing *x* such that $f(U) \subseteq V$. That is, *U* is a semi*α-open set in *X* containing *x* such that $U \subseteq f^{-1}(V)$. Hence $x \in s^* \alpha Int(f^{-1}(V))$. Therefore by Definition 2.14, $x \notin s^* \alpha Fr(f^{-1}(V))$.

Theorem 3.8: Let $f: X \rightarrow \Pi X_{\alpha}$ be semi* α -continuous where ΠX_{α} is given the product topology and $f(x) = (f_{\alpha}(x))$. Then each coordinate function $f_{\alpha}: X \rightarrow X_{\alpha}$ is semi* α -continuous.

Proof: Let V be an open set in X_a . Then $f_a^{-1}(V) = (\pi_a \circ f)^{-1}(V) = f^{-1}(\pi_a^{-1}(V))$, where $\pi_a : \Pi X_a \longrightarrow X_a$ is the projection map. Since is π_a continuous, $\pi_a^{-1}(V)$ is open in ΠX_a . By the semi* α -continuity of f, $f_a^{-1}(V) = f^{-1}(\pi_a^{-1}(V))$ is semi* α -open in X. Therefore f_a is semi* α -continuous.

Theorem 3.9: Let $f: X \rightarrow \Pi X_{\alpha}$ be defined by $f(x) = (f_{\alpha}(x))$ and ΠX_{α} be given the product topology. Suppose $S*\alpha O(X)$ is closed under finite intersection. Then f is semi* α -continuous if each coordinate function $f_{\alpha}: X \rightarrow X_{\alpha}$ is semi* α -continuous,

Proof: Let V be a basic open set in Π X_{α} . Then $V=\cap \pi_{\alpha}^{-1}(V_{\alpha})$ where each V_{α} is open in X_{α} , the intersection being taken over finitely many α 's. Now $f^{-1}(V)=f^{-1}(\cap \pi_{\alpha}^{-1}(V_{\alpha}))=\cap (f^{-1}(\pi_{\alpha}^{-1}(V_{\alpha})))=\cap (\pi_{\alpha}\circ f)^{-1}(V)=\cap f_{\alpha}^{-1}(V)$ is semi* α -open, by hypothesis. Hence by Theorem 3.6, f is semi* α -continuous.

Theorem 3.10: Let $f: X \rightarrow Y$ be continuous and $g: X \rightarrow Z$ be semi* α -continuous. Let $h: X \rightarrow Y \times Z$ be defined by h(x) = (f(x), g(x)) and $Y \times Z$ be given the product topology. Then h is semi* α -continuous.

Proof: By virtue of Theorem 3.6, it is sufficient to show that inverse image under h of every basic open set in $Y \times Z$ is semi* α -open in X. Let $U \times V$ be a basic open set in $Y \times Z$. Then $h^{-1}(U \times V) = f^{-1}(U) \cap g^{-1}(V)$. By continuity of f, $f^{-1}(U)$ is open in X and by semi* α -continuity of g, $g^{-1}(V)$ is semi* α -open in X. By invoking Theorem 2.10(ii), we get $h^{-1}(U \times V) = f^{-1}(U) \cap g^{-1}(V)$ is semi* α -open.

Remark 3.11: The above theorem is true even if f is semi* α -continuous and g is continuous.

Theorem 3.12: Let $f: X \rightarrow Y$ be semi* α -continuous and $g: Y \rightarrow Z$ be continuous.

Then $g \circ f : X \longrightarrow Z$ is semi* α -continuous.

Proof: Let *V* be an open set in *Z*. Since *g* is continuous, $g^{-1}(V)$ is open in *Y*. By semi* α -continuity of f, $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is semi* α -continuous.

Remark 3.13: Composition of two semi* α -continuous functions need not be semi* α -continuous.

Definition 3.14:A function $f: X \rightarrow Y$ is called contra-semi* α -continuous if $f^1(V)$ is semi* α - closed in X for every open set V in Y.

Theorem 3.15: For a function $f: X \rightarrow Y$, the following are equivalent:

- (i) f is contra-semi* α -continuous.
- (ii) For each $x \in X$ and each closed set F in Y containing f(x), there exists a semi* α -open set U in X containing x such that $f(U) \subseteq F$.

(iii) The inverse image of each closed set in Y is semi* α -open in X.

(iv) $Cl^*(\alpha Int(f^{-1}(F)))=Cl^*(f^{-1}(F))$ for every closed set F in Y. (v) $Int^*(\alpha Cl(f^1(V)))=Int^*(f^1(V))$ for every open set V in Y.

Proof: (i) \Rightarrow (ii): Let $f: X \rightarrow Y$ be contra-semi* α -continuous. Let $x \in X$ and F be a closed set in Y containing f(x). Then $V = Y \setminus F$ is an open set in Y not containing f(x). Since f is contrasemi* α -continuous, $f^{-1}(V)$ is a semi* α -closed set in X not containing x. That is, $f^{-1}(V) = X \setminus f^{-1}(F)$ is a semi* α -closed set in X not containing x. Therefore

 $U=f^1(F)$ is a semi* α -open set in X containing x such that $f(U) \subseteq F$.

(ii) \Rightarrow (iii): Let F be a closed set in Y. Let $x \in f^{-1}(F)$, then $f(x) \in F$. By (ii), there is a semi* α -open set U_x in X containing x such that $f(x) \in f(U_x) \subseteq F$. That is, $x \in U_x \subseteq F$.

 $f^{-1}(F)$. Therefore $f^{-1}(F) = \bigcup \{U_x : x \in f^{-1}(F)\}$. By Theorem 2.10(i), $f^{-1}(F)$ is semi* α -open in X. (iii) \Rightarrow (iv): Let F be a closed set in Y. By (iii), $f^{-1}(F)$ is a semi* α -open set in X. By Theorem 2.11, $Cl^*(\alpha Int(f^{-1}(F))) = Cl^*(f^{-1}(F))$.

(iv) \Rightarrow (v): If *V* is any open set in *Y*, then $Y \setminus V$ is closed in *Y*. By (iv), we have $Cl^*(\alpha Int(f^{-1}(Y \setminus V))) = Cl^*(f^{-1}(Y \setminus V))$. Taking the complements, we get $Int^*(\alpha Cl(f^{-1}(V))) = Int^*(f^{-1}(V))$.

(v) \Rightarrow (i): Let V be any open set in Y. Then by assumption, $Int^*(\alpha Cl(f^{-1}(V)))=Int^*(f^{-1}(V))$. By Theorem 2.12, $f^{-1}(V)$ is semi* α -closed.

Theorem 3.16: Every contra- α -continuous function is contrasemi* α -continuous.

Proof: Follows from Remark 2.9.

Remark 3.17: It can be seen that the converse of the above theorem is not true.

Theorem 3.18: Every contra-semi* α -continuous function is contra-semi α -continuous.

Proof: Let $f: X \rightarrow Y$ be contra-semi* α -continuous. Let V be an open set in Y. Since f is contra-semi* α -continuous, $f^{-1}(V)$ is semi* α -closed in X. By Remark 2.9, $f^{-1}(V)$ is semi* α -closed in X. Hence f is contra-semi- α -continuous.

Remark 3.19: It can be easily seen that the converse of the above theorem is not true.

Composition of two contra-semi* α -continuous functions need not be contra-semi* α -continuous.

4. SEMI*α-IRRESOLUTE FUNCTIONS

In this section we define the semi* α -irresolute and contra-semi* α -irresolute functions and investigate their fundamental properties.

Definition 4.1: A function $f: X \rightarrow Y$ is said to be semi* α -irresolute at $x \in X$ if for each semi* α -open set V of Y containing f(x), there is a semi* α -open set U of X such that $x \in U$ and $f(U) \subseteq V$.

Definition 4.2: A function $f: X \longrightarrow Y$ is said to be semi* α -irresolute if $f^{-1}(V)$ is semi* α -open in X for every semi* α -open set V in Y.

Definition 4.3: A function $f: X \longrightarrow Y$ is said to be contrasemi* α -irresolute if $f^{-1}(V)$ is semi* α -closed in X for every semi* α -open set V in Y.

Definition 4.4: A function $f: X \longrightarrow Y$ is said to be strongly semi* α -irresolute if $f^{-1}(V)$ is open in X for every semi* α -open set V in Y.

Definition 4.5: A function $f: X \rightarrow Y$ is said to be contrastrongly semi* α -irresolute if $f^{-1}(V)$ is closed in X for every semi* α -open set V in Y.

Theorem 4.6: Every semi* α -irresolute function is semi* α -continuous.

Proof: Let $f: X \rightarrow Y$ be semi* α -irresolute. Let V be open in Y. Then by Theorem 2.8(ii), V is semi* α -open. Since f is semi* α -irresolute, f V is semi* α -open in X. Thus f is semi* α -continuous.

Theorem 4.7: Every constant function is semi* α -irresolute.

Proof: Let $f: X \rightarrow Y$ be a constant function defined by $f(x)=y_0$ for all x in X, where y_0 is a fixed point in Y. Let V be a semi* α -open set in Y. Then $f^{-1}(V)=X$ or ϕ according as $y_0 \in V$ or $y_0 \notin V$. Thus $f^{-1}(V)$ is semi* α -open in X. Hence f is semi* α -irresolute.

Theorem 4.8: Let $f: X \rightarrow Y$ be a function. Then the following are equivalent:

- (i) f is semi* α -irresolute.
- (ii) f is semi* α -irresolute at each point of X.
- (iii) $f^{-1}(F)$ is semi* α -closed in X for every semi* α -closed set F in Y.
- (iv) $f(s*\alpha Cl(A))\subseteq s*\alpha Cl(f(A))$ for every subset A of X.
- $(v)s*\alpha Cl(f^1(B))\subseteq f^1(s*\alpha Cl(B))$ for every subset B of Y.
- $(vi)f^{-1}(s*\alpha Int(B)) \subseteq s*\alpha Int(f^{-1}(B))$ for every subset B of Y.
- (vii) $Int^*(\alpha Cl(f^{-1}(F)))=Int^*(f^{-1}(F))$ for every semi* α -closed set F in Y.
- (viii) $Cl^*(\alpha Int(f^{-1}(V)))=Cl^*(f^{-1}(V))$ for every semi* α -open set V in Y.

Proof: (i) \Rightarrow (ii): Let $f: X \rightarrow Y$ be semi* α -irresolute. Let $x \in X$ and V be a semi* α -open set in Y containing f(x). Then

 $x \in f^{-1}(V)$. Since f is semi* α -irresolute, $U = f^{-1}(V)$ is a semi* α -open set in X containing x such that $f(U) \subseteq V$.

(ii) \Rightarrow (i): Let $f: X \rightarrow Y$ be semi* α -irresolute at each point of X. Let V be a semi* α -open set in Y. Let $x \in f^{-1}(V)$. Then V is a semi* α -open set in Y containing f(x). By (ii), there is a semi* α -open set U_x in X containing x such that $f(x) \in f(U_x) \subseteq V$. Therefore $U_x \subseteq f^{-1}(V)$. Hence $f^{-1}(V) = \bigcup \{U_x : x \in f^{-1}(V)\}$. By Theorem 2.10(i), $f^{-1}(V)$ is semi* α -open in X.

(i) \Rightarrow (iii): Let F be a semi* α -closed set in Y. Then $V=Y\setminus F$ is semi* α -open in Y. Then $f^{-1}(V)$ is semi* α -open in X. Therefore $f^{-1}(F)=f^{-1}(Y\setminus V)=X\setminus f^{-1}(V)$ is semi* α -closed.

(iii) \Rightarrow (i): Let V be a semi* α -open set in Y. Then F=Y\V is semi* α -closed. By (iii), $f^{-1}(F)$ is semi* α -closed. Hence $f^{-1}(V) = f^{-1}(Y \mid F) = X f^{-1}(F)$ is semi* α -open in X.

(iii) \Rightarrow (iv): Let $A \subseteq X$. Let F be a semi* α -closed set containing f(A). Then by (iii), $f^{-1}(F)$ is a semi* α -closed set containing A. This implies that $s*\alpha Cl(A) \subseteq f^1(F)$ and hence $f(s*\alpha Cl(A)) \subseteq F$. Therefore $f(s*\alpha Cl(A)) \subseteq Cl(f(A))$.

(iv) \Rightarrow (v): Let $B \subseteq Y$ and let $A = f^{-1}(B)$. By assumption, $f(s*\alpha Cl(A)) \subseteq s*\alpha Cl(f(A)) \subseteq s*\alpha Cl(B)$. This implies that $s*\alpha Cl(A) \subseteq f^{-1}(s*\alpha Cl(B))$. Hence

 $s*\alpha Cl(f^{-1}(B))\subseteq f^{-1}(s*\alpha Cl(B)).$

(v) \Rightarrow (iii): Let F be semi* α -closed in Y. Then $s*\alpha Cl(F) = F$. Therefore (v) implies $s*\alpha Cl(f^{-1}(F)) \subseteq f^{-1}(F)$. Hence $s*\alpha Cl(f^{-1}(F)) = f^{-1}(F)$. By Theorem 2.13(i), $f^{-1}(F)$ is semi* α -closed.

 $(\mathbf{v})\Leftrightarrow (\mathbf{vi})$: The equivalence of (\mathbf{v}) and (\mathbf{vi}) can be proved by taking the complements.

(vii)⇔(iii): Follows from Theorem 2.12.

(viii)⇔(i):Follows from Theorem 2.11.

Theorem 4.9: Let $f: X \rightarrow Y$ be a function. Then f is not semi* α -irresolute at a point x in X if and only if x belongs to the semi* α -frontier of the inverse image of some semi* α -open set in Y containing f(x).

Proof: Suppose f is not semi* α -irresolute at x. Then by Definition 4.1, there is a semi* α -open set V in Y containing f(x) such that f(U) is not a subset of V for every semi* α -open set U in X containing x. Hence $U \cap (X \setminus f^{-1}(V)) \neq \emptyset$ for every semi* α -open set U containing x. Thus

 $x \in s^* \alpha Cl(X f^1(V))$. Since $x \in f^1(V) \subseteq s^* \alpha Cl(f^{-1}(V))$, we have $x \in s^* \alpha Cl(f^{-1}(V)) \cap s^* \alpha Cl(X f^{-1}(V))$. Hence by Theorem 2.15, $x \in s^* \alpha Fr(f^{-1}(V))$. On the other hand, let f be semi* α -irresolute at x. Let V be a semi* α -open set in Y containing f(x). Then there is a semi* α -open set U in X containing X such that $f(x) \in f(U) \subseteq V$. Therefore $U \subseteq f^{-1}(V)$. Hence

 $x \in s*\alpha Int(f^{-1}(V))$. Therefore by Definition 2.14, $x \notin s*\alpha Fr(f^{-1}(V))$ for every open set V containing f(x).

Theorem 4.10: Every contra-semi* α -irresolute function is contra-semi* α -continuous.

Proof: Let $f: X \longrightarrow Y$ be a contra-semi* α -irresolute function. Let V be an open set in Y. Then by Theorem 2.8(ii), V is semi* α -open in Y. Since f is contra-semi* α -irresolute,

 $f^{-1}(V)$ is semi* α -closed in X. Hence f is contra-semi* α -continuous.

Theorem 4.11: For a function $f: X \longrightarrow Y$, the following are equivalent:

- (i) f is contra-semi* α -irresolute.
- (ii) The inverse image of each semi* α -closed set in Y is semi* α -open in X.
- (iii) For each $x \in X$ and each semi* α -closed set F in Y with $f(x) \in F$, there exists a semi* α -open set U in X such that $x \in U$ and $f(U) \subseteq F$.
- (iv) $Cl^*(\alpha Int(f^{-1}(F)))=Cl^*(f^{-1}(F))$ for every semi* α -closed set F in Y.

(v) $Int^*(\alpha Cl(f^{-1}(V)))=Int^*(f^{-1}(V))$ for every semi* α -open set V in Y.

Proof:(i) \Rightarrow (ii): Let F be a semi* α -closed set in Y. Then $Y \setminus F$ is semi* α -open in Y. Since f is contra-semi* α -irresolute, f

 $X \setminus f^{-1}(F)$ is semi* α -closed in X.

(ii) \Rightarrow (iii): Let F be a semi* α -closed set in Y containing f(x). Then $U = f^{-1}(F)$ is a semi* α -open set containing x such that $f(U) \subseteq F$.

(iii) \Rightarrow (iv): Let F be a semi* α -closed set in Y and $x \in f^{-1}(F)$, then $f(x) \in F$. By assumption, there is a semi* α -open set U_x in X containing x such that $f(x) \in f(U_x) \subseteq F$ which implies that $x \in U_x \subseteq f^{-1}(F)$. This follows that $f^{-1}(F) = 0$

 $\bigcup \{U_x : x \in f^{-1}(F)\}\$. By Theorem 2.10(i), $f^{-1}(F)$ is semi* α -open in X. By Theorem 2.11, $Cl^*(\alpha Int(f^{-1}(F))) = Cl^*(f^{-1}(F))$.

(iv) \Rightarrow (v): Let V be a semi* α -open set in Y. Then $Y \setminus V$ is semi* α -closed in Y. By assumption, $Cl^*(\alpha Int(f^{-1}(Y \setminus V))) = Cl^*(f^{-1}(Y \setminus V))$. Taking the complements we get,

 $Int^*(\alpha Cl(f^{-1}(V)))=Int^*(f^{-1}(V)).$

(v) \Rightarrow (i):Let V be any semi* α -open set in Y. Then by assumption, $Int^*(\alpha Cl(f^1(V)))=Int^*(f^{-1}(V))$. By Theorem 2.12, $f^{-1}(V)$ is semi* α -closed in X.

Theorem 4.12: (i) Every strongly semi*α-irresolute function is semi*α-irresolute and hence semi*α-continuous.

(ii) Every semi α**-continuous function is strongly semi*αirresolute.

Proof: Let $f: X \rightarrow Y$ be strongly semi* α -irresolute. Let V be semi* α -open in Y. Since f is strongly semi* α -irresolute, $f^{1}(V)$ is open in X. Then by Theorem 2.8(ii), $f^1(V)$ is semi* α -open. Therefore f is semi* α -irresolute. Hence by Theorem 4.6, f is semi*α-continuous.

Theorem 4.13: Every constant function is strongly semi*α-

Proof: Let $f: X \longrightarrow Y$ be a constant function defined by $f(x) = y_0$ for all x in X, where y_0 is a fixed point in Y. Let V be a semi* α -open set in Y. Then $f^{-1}(V)=X$ or ϕ according as $y_0 \in V$ or $y_0 \not\in V$. Thus $f^{-1}(V)$ is open in X. Hence f is strongly semi*α-irresolute.

Theorem 4.14: Let $f: X \longrightarrow Y$ be a function. Then the following are equivalent: (i) f is strongly semi*α-irresolute.

- (ii) $f^{-1}(F)$ is closed in *X* for every semi* α -closed set *F* in *Y*.
- (iii) $f(Cl(A)) \subseteq s *\alpha Cl(f(A))$ for every subset A of X.
- (iv) $Cl(f^{-1}(B)) \subseteq f^{-1}(s*\alpha Cl(B))$ for every subset B of Y. $(v)f^{-1}(s*\alpha Int(B)) \subseteq Int(f^{-1}(B))$ for every subset *B* of *Y*.

Proof: (i) \Rightarrow (ii): Let F be a semi* α -closed set in Y. Then $V=Y\setminus F$ is semi* α -open in Y. Then $f^{-1}(V)$ is open in X. Therefore $f^{-1}(F)=f^{-1}(Y\setminus V)=X\setminus f^{-1}(V)$ is closed.

(ii) \Rightarrow (i): Let V be a semi* α -open set in Y. Then $F=Y\setminus V$ is semi* α -closed. By (ii), $f^{-1}(F)$ is closed. Hence $f^{-1}(V)$ =

 $f^{-1}(Y \setminus F) = X \setminus f^{-1}(F)$ is open in X. Therefore f is strongly semi* α irresolute.

(ii) ⇒(iii): Let $A \subseteq X$. Let F be a semi* α -closed set containing f(A). Then by (ii),

 $f^{-1}(F)$ is a closed set containing A. This implies that $Cl(A) \subseteq f$ i (F) and hence $f(Cl(A)) \subseteq F$. Therefore $f(Cl(A)) \subseteq s*\alpha Cl(f(A))$.

(iii) \Rightarrow (iv): Let $B \subseteq Y$ and let $A = f^{-1}(B)$. By assumption, $(Cl(A))\subseteq s^*\alpha Cl(f(A))\subseteq s^*\alpha Cl(B)$. This implies that $Cl(A)\subseteq$ $f^{-1}(s*\alpha Cl(B)).$

(iv) \Rightarrow (ii): Let F be semi* α -closed in Y. Then by Theorem 2.13(i), $s*\alpha Cl(F) = F$. Therefore (iv) implies $Cl(f^{-1}(F)) \subseteq f^{-1}(F)$. Hence $Cl(f^{-1}(F)) = f^{-1}(F)$. Therefore $f^{-1}(F)$ is closed.

(iv) \Leftrightarrow (v): The equivalence of (iv) and (v) follows from taking the complements.

Theorem 4.15: For a function $f: X \rightarrow Y$, the following are equivalent:

- (i) f is contra-strongly semi* α -irresolute.
- (ii)The inverse image of each semi*α-closed set in Y is open
- (iii)For each $x \in X$ and each semi* α -closed set F in Y with $f(x) \in F$, there exists a open set U in X such that $x \in U$ and $f(U)\subseteq F$.

Proof:(i) \Rightarrow (ii): Let *F* be a semi* α -closed set in *Y*. Then $Y \setminus F$ is semi* α -open in Y. Since f is contra-strongly semi* α -irresolute, $f^{-1}(Y \setminus F) = X \setminus f^{-1}(F)$ is closed in X. Hence $f^{-1}(F)$ is open in X. This proves (ii).

(ii) \Rightarrow (i): Let U be a semi* α -open set in Y. Then $Y \setminus U$ is semi* α -closed in Y. By assumption, $f^{-1}(Y \setminus U) = X \setminus f^{-1}(U)$ is closed in X. Hence $f^{-1}(U)$ is open in X.

(ii) \Rightarrow (iii): Let F be a semi* α -closed set in Y containing f(x). Then $U=f^{-1}(F)$ is an open set containing x such that $f(U)\subseteq F$.

(iii) \Rightarrow (ii): Let F be a semi* α -closed set in Y and $x \in f^{-1}(F)$, then $f(x) \in F$. By assumption, there is an open set U_x in X containing x such that $f(x) \in f(U_x) \subseteq F$ which implies that $x \in U_x \subseteq f^{-1}$ $^{1}(F)$. Hence $f^{-1}(F)$ is open in X.

Theorem 4.16: (i) Composition of semi*α-irresolute functions is semi*α-irresolute.

(ii) Inverse of a bijective semi*α-irresolute function is also semi*α-irresolute.

Proof: Follows from definition and set theoretic results.

5. MORE FUNCTIONS ASSOCIATED WITH SEMI*α-OPEN SETS

Definition 5.1: A function $f: X \longrightarrow Y$ is said to be semi* α -open if f(U) is semi* α -open in Y for every open set U in X.

Definition 5.2: A function $f: X \rightarrow Y$ is said to be contrasemi* α -open if f(U) is semi* α -closed in Y for every open set U in X.

Definition 5.3: A function $f: X \rightarrow Y$ is said to be pre-semi* α open if f(U) is semi* α -open in Y for every semi* α -open set U in X.

Definition 5.4: A function $f: X \longrightarrow Y$ is said to be contra-presemi* α -open if f(U) is semi* α -closed in Y for every semi* α open set U in X.

Definition 5.5: A function $f: X \rightarrow Y$ is said to be semi* α closed if f(F) is semi* α -closed in Y for every closed set F in

Definition 5.6: A function $f: X \rightarrow Y$ is said to be contrasemi* α -closed if f(F) is semi* α -open in Y for every closed set

Definition 5.7: A function $f: X \rightarrow Y$ is said to be pre-semi* α closed if f(F) is semi* α -closed in Y for every semi* α -closed set F in X.

Definition 5.8: A function $f: X \longrightarrow Y$ is said to be contra-presemi* α -closed if f(F) is semi* α -open in Y for every semi* α closed set F in X.

Definition 5.9: A bijection $f: X \rightarrow Y$ is called a semi* α homeomorphism if f is both semi* α -irresolute and presemi* α -open. The set of all semi* α -homeomorphisms of (X, τ) into itself is denoted by s*αH(X, τ).

Definition 5.10: A function $f: X \rightarrow Y$ is said to be semi* α totally continuous if $f^{-1}(V)$ is clopen in X for every semi* α open set V in Y.

Definition 5.11: A function $f: X \rightarrow Y$ is said to be totally semi* α -continuous if $f^{-1}(V)$ is semi* α -regular in X for every open set V in Y.

Theorem 5.12: (i) Every pre-semi* α -open function is

- (ii) Every semi*α-open function is semi α-open.
- (iii) Every contra-pre-semi*α-open function is contra-semi*αopen.
- (iv) Every pre-semi*α-closed function is semi*α-closed.
- Every contra-pre-semi*α-closed function is contrasemi*α-closed.

Proof: Follows from definitions, Theorem 2.8 and Remark 2.9.

Theorem 5.13: Let $f: X \longrightarrow Y$ and be $g: Y \longrightarrow Z$ be functions. Then (i) gof is pre-semi*α-open if both f and g are presemi*α-open.

- (ii) gof is semi*α-open if f is semi*α-open and g is presemi*α-open.
- (iii) gof is pre-semi*α-closed if both f and g are pre-semi*αclosed.
- (iv) gof is semi*α-closed if both f is semi*α-closed and g is pre-semi*α-closed.

Proof: Follows from definitions.

Theorem 5.14: Let $f: X \longrightarrow Y$ be a function where X is an Alexandroff space and Y is any topological space. Then the following are equivalent:

- (i) f is semi* α -totally continuous.
- (ii) For each $x \in X$ and each semi* α -open
- set V in Y with $f(x) \in V$, there exists a clopen
- set U in X such that $x \in U$ and $f(U) \subseteq V$.

Proof: (i) \Rightarrow (ii): Suppose $f: X \rightarrow Y$ is semi* α -totally continuous. Let $x \in X$ and let V be a semi* α -open set containing f(x). Then U=

 $f^{-1}(V)$ is a clopen set in X containing x and hence $f(U) \subseteq V$.

(ii)⇒(i): Let *V* be a semi* α -open set in *Y*. Let $x \in f^{-1}(V)$. Then V is a semi* α -open set containing f(x). By hypothesis there exist a clopen set U_x containing x such that $f(U_x)\subseteq V$ which implies that $U_x \subseteq f^{-1}(V)$. Therefore we have

 $f^{-1}(V) = \bigcup \{U_x : x \in f^{-1}(V)\}$. Since each U_x is open, $f^{-1}(V)$ is open. Since each U_x is a closed set in the Alexandroff space X, $f^{-1}(V)$ is closed in X. Hence $f^{-1}(V)$ is clopen in X.

Theorem 5.15: A function $f: X \rightarrow Y$ is semi* α -totally continuous if and only if

 $f^{1}(F)$ is clopen in X for every semi* α -closed set F in Y.

Proof: Follows from definition.

Theorem 5.16: A function $f: X \rightarrow Y$ is totally semi* α continuous if and only if f is both semi* α -continuous and contra-semi*α-continuous.

Proof: Follows from definitions.

Theorem 5.17: A function $f: X \longrightarrow Y$ is semi* α -totally continuous if and only if f is both strongly semi* α -irresolute and contra-strongly semi*α-irresolute.

Proof: Follows from definitions.

Theorem 5.18: Let $f: X \longrightarrow Y$ be semi* α -totally continuous and A is a subset of Y. Then the restriction $f_A: A \mapsto Y$ is semi* α totally continuous.

Proof: Let V be a semi* α -open set in Y. Then $f^{-1}(V)$ is clopen in *X* and hence

 $(f|_A)^{-1}(V) = A \cap f^{-1}(V)$ is clopen in A. Hence the theorem fol-

Theorem 5.19: Let $f: X \rightarrow Y$ be a bijection. Then the following are equivalent: (i) f is semi* α -irresolute.

(ii) f^{-1} is pre-semi* α -open. (iii) f^{-1} is pre-semi* α -closed.

Proof: Follows from definitions.

Theorem 5.20: A bijection $f: X \rightarrow Y$ is a semi* α homeomorphism if and only if f and f^{-1} are semi* α irresolute.

Proof: Follows from definitions.

Theorem 5.21: (i) The composition of two semi*αhomeomorphisms is a semi*α-homeomorphism

(ii) The inverse of a semi* α -homeomorphism is also a semi*α-homeomorphism.

Proof: (i) Let $f:X \longrightarrow Y$ and $g:Y \longrightarrow Z$ be semi* α homeomorphisms. By Theorem 4.16 and theorem 5.13(i), gof is a semi*α-homeomorphism.

(ii)Let $f:X \longrightarrow Y$ be a semi* α -homeomorphism. Then by Theorem 4.16(ii) and by Theorem 5.20, $f^{-1}:Y \rightarrow X$ is also semi* α homeomorphism.

Theorem 5.22: If (X, τ) is a topological space, then the set $s*\alpha H(X, \tau)$ of all semi* α -homeomorphisms of (X, τ) into itself

Proof: Since the identity mapping I on X is a semi*αhomeomorphism, $I \in s^*\alpha H(X, \tau)$ and hence $s^*\alpha H(X, \tau)$ is nonempty and the theorem follows from Theorem 5.21.

6. REFERENCES

- [1] Levine, N., Semi-open sets and Semi-continuity in topological spaces, Amer. Math. Monthly, 70(1) (1963), 36-
- [2] Dontchev, J., Contra-continuous functions and strongly s-closed spaces, Internat. J. Math. & Math. Sci. 19(2) (1996), 303-310.
- [3] Crossley, S.G and Hildebrand, S.K., Semi-topological properties, Fund. Math.74 (1972), 233-254.
- [4] Dontchev, J., and Noiri, T., Contra-Semi continuous functions, Mathematica Pannonica, 10(2) (1999), 159-168.
- Caldas M., Weak and Strong forms of irresolute maps, Internat. J. Math. & Math. Sci. 23(4) (2000) 253-259.
- Pasunkili Pandian,S., A Study on Semi Star-Preopen Sets in Topological Spaces, Ph.D Thesis, Manonmaniam Sundaranar University, Tirunelveli, India, 2013.
- [7] Robert, A. and Pious Missier, S., A New Class of sets weaker than α-open sets, International Journal of Mathematics and Soft Computing, 4(2) (2014), 197-206.
- [8] Robert, A and Pious Missier, S., Between α-closed sets and semi α-closed sets, International Journal of Modern Engineering Research, 4(6) 2014, 34-41.
- [9] Pious Missier, S and Robert, A., New Notions via Semi-Star-Alpha-Open Sets. (communicated)
- [10] Levine, N., Generalized Closed Sets in Topology, Rend. Circ. Mat. Palermo, 19(2) (1970), 89-96.
- [11] Dunham, W., A new closure operator for Non-T₁ topologies, Kyungpook Math. J. 22 (1) (1982), 55-60.
- [12] Njastad, O., Some Classes of Nearly Open sets, Pacific J. Math., 15 (3) (1965), 961-970.
- [13] Navalagi, G.B., Definition Bank in General Topology, Topology Atlas (2000).
- Semi-Preopen [14] Andrijevic,D., Sets, Mat. Vesnik, 38(1986), 24-32.
- [15] Othman, H. A., New types of α-continuous mapping, Master Degree Thesis, Al-Mustansiriya University, IRAQ (2004).
- [16] Nour.T.M., Totally semi-continuous functions, *Indian J.* Pure Appl. Math., 26(7) (1995), 675-678.
- [17] Benchalli. S.S.and Umadevi I Neeli., Semi-Totally Continous Functions in Topological spaces, International Mathematical Forum, 6 (10) (2011), 479-492.