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ABSTRACT 
This work provides mathematical formulas and algorithm in 

order to calculate the derivatives that being necessary to 

perform Steepest Descent models to make T1 and T2 FLSs 

much more accessible to FLS modelers. It provides derivative 

computations that are applied on different kind of MFs, and 

some computations which are then clarified for specific MFs. 

We have learned how to model T1 FLSs when a set of 

training data is available and provided an application to derive 

the Steepest Descent models that depend on trigonometric 

function (SDTFM). This work, also focused on an interval 

type-2 non-singleton type-2 FLS (IT2 NS-T2 FLS) in order to 

determine how to assign all the parameters of the antecedent 

and consequent MFs using the set of  𝑛 input-output and build 

mathematical formulas to calculate the derivatives 

 𝜕cosh(𝛼) 𝜕𝜃  depend on general formula of SDTFM. 

Additionally, we showed how to complete the calculations for 

input measurement and antecedent Gaussian primary MFs 

with uncertain standard deviations and means. 

General Terms 
Fuzzy modeling, fuzzy logic system, uncertainty 

Keywords 

Type-2 fuzzy sets, interval type-2 membership functions, 

type-2 fuzzy logic system, steepest descent models, interval 
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1. INTRODUCTION 
In many mathematical and engineering problems, the 

computation of certain solutions depends on the availability of 

exact values for the variables of model equations. Because the 

existing information usually is incomplete, inaccurate, fuzzy 

or linguistic, then the accurate values cannot be obtained. 

Therefore, it is necessary to introduce uncertain variables for 

modeling the available information [1], [22]. Both T1 FLS 

and T2 FLS include fuzzifier, rule-base, fuzzy inference 

engine, and output processor [2]. The output processor in T2 

FLS includes type-reducer and defuzzifier while the output 

processor in T1 FLS includes a crisp number from the 

defuzzifier, [28], [4-8]. If–then rules, but its antecedent 

describes a T2 or consequent sets are now T2, [13], [18], [25]. 

T2 FLSs can be used when the cases are so uncertain to 

determine exact membership degrees such as when training 

data is corrupted by noise [3], [16], [17]. The most popular 

one to date, uses back propagation models (steepest descent 

models) for tuning all model parameters, which require the 

computation of first derivatives of an objective function with 

respect to each model parameter for making T2 FLSs much 

more accessible to FLS designers [23]. When all T2 FSs are 

modeled as interval sets, and then we obtain an IT2 FLS. We 

have focused on an interval type-2 non-singleton type-2 FLS 

(IT2 NS-T2 FLSs) [9], [26]. The T1 FLS is described using a 

fuzzy basis function extension that is useful for computing the 

output of that FLS, and used during its model for computing 

derivatives of an objective function with respect to MF 

parameters, [19]. By “model”, we specify the parameters that 

describe the interval T2 FLS [10], [11]. A T2 FLS model 

method builds how to determine all the parameters of the 

antecedent and consequent MFs using the training pairs [30], 

[4-8].  

In the first part of work, we will focus on rule-based FLSs 

when no uncertainties are present [21], [27]. This is similar to 

first studying deterministic systems before studying random 

systems [12]. Then we will learn about extension of rule-

based FLSs, ones that can directly model uncertainties [29]. 

The major purpose of this work is to learn how to model non-

singleton type-1 fuzzy logic systems (NS-T1 FLSs) when a 

set of training data is available. Recount how many model 

parameters there can be in a specific model and describe the 

relation of that number to the number of possible rules in the 

NS-T1 FLS [20]. Explain how to calculate the derivatives that 

are needed for the backpropagation, such as Steepest Descent 

model that depend on trigonometric function (SDTFM), for 

updating the MF parameters. The training data is used to tune 

the input measurement, antecedent, and consequent MF 

parameters. Here mathematical formulas are built to calculate 

the derivatives 𝜕 cosh 𝑗 𝜕𝜃 .  

The structure of this work provides an introduction in this 

Section. In Section 2, we will learn how to model T1 FLSs 

when a set of training data is available [3], [2]; Section 3 

provides an application to derive the SDTFM, [19], [15]. 

Generalized bell-shaped MF is chosen for the antecedent and 

the consequent [24]. Section 4, focused on an IT2 NS-T2 FLS 

in order to determine how to assign all the parameters of the 

antecedent and consequent MFs using the set of  𝑛 input-

output and build mathematical formulas to calculate the 

derivatives  𝜕cosh(𝛼) 𝜕𝜃  depend on general formula of 

SDTFM [13]. Also, provides general formulas for the left and 

right end-points of the type reduced set [26]. Section 5 

provides computation of  𝜕 cosh 𝛼 𝜕𝜃𝑖 ,𝑘
𝑙  for antecedent and 

consequent parameters for derivatives of 𝜕 cosh 𝛼  with 

respect to antecedent MF parameters and provided an 

algorithm of the derivatives for antecedent parameters to 

calculate  𝜕 cosh 𝛼 𝜕𝜃𝑖 ,𝑘
𝑙  [19], [13]. Section 6 provides an 

application in order to calculate 𝜕𝜇𝑂 𝑖
𝑙 𝑥𝑖 ,𝑠

𝑙  𝜕𝜃𝑖 ,𝑘
𝑙 , and 

 𝜕𝜇𝑂 𝑖
𝑙  𝑥𝑖 ,𝑠

𝑙
 𝜕𝜃𝑖 ,𝑘

𝑙  for antecedent Gaussian primary MFs with 

uncertain means, and input measurement Gaussian primary 
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MFs with uncertain standard deviations [30]. Finally, Section 

7, conclusions are presented, and handles the derivatives of 

the left end-point of the type-reduced set. 

2. MODEL TYPE-1 FUZZY LOGIC 

SYSTEMS 
The main purpose of this Section is to learn how to model T1 

FLSs when a set of training data is available. By “model”, we 

mean specify the parameters that describe the FLS. We collect 

all of the equations that are needed to implement NS-T1 

FLSs, [16], [17]. These equations require the modeler to make 

many choices. The general equations for inference system as 

follows [29], [19]: 

𝜇𝑂𝑖
𝑙 𝑥𝑖 ,𝑠

𝑙  = sup
𝑥𝑖∈𝑋𝑖

𝜇𝑋𝑖
 𝑥𝑖 ⋆ 𝜇𝐴𝑖

𝑙 𝑥𝑖 ,                                           (1) 

where, 

𝑥𝑖 ,𝑠
𝑙 = arg  sup

𝑥𝑖∈𝑋𝑖

𝜇𝑋𝑖
 𝑥𝑖 ⋆ 𝜇𝐴𝑖

𝑙 𝑥𝑖                                             (2) 

𝜇𝐷𝑙 𝑦 = 𝜇𝐵𝑙 𝑦 ⋆ 𝑇𝑖=1
𝑛 𝜇𝑂𝑖

𝑙 𝑥𝑖,𝑠
𝑙                                                 (3) 

The input–output equation, 𝑦 x , for the FLS is given by: 

𝑓𝑛𝑠  x =
 𝑦

𝑙
 min
𝑖=1,…,𝑛

𝜇𝐴𝑖
𝑙 (𝑥𝑖)

𝑀
𝑙=1

 min
𝑖=1,…,𝑛

𝜇𝐴𝑖
𝑙 (𝑥𝑖)

𝑀
𝑙=1

=  𝑦
𝑙
 𝜑𝑙 x 

𝑀

𝑙=1
             (4) 

There are many ways to optimize a function [18], but we will 

describe a very popular way that uses the value of the function 

being optimized and its first derivative. Methods that use this 

information are called steepest descent (SDM). Here suppose 

that the function being minimized depends on the 

parameter 𝜃, and the function is denoted  𝐽 𝜃  that is called an 

objective function [1], [22]. We have a mathematical formula 

for  𝐽 𝜃 , and we do not know the shape of  𝐽 𝜃 , but available 

only a set of training data   𝑥(𝑗 ), 𝑦(𝑗 ) ,    𝑗 = 1, … , 𝑛 , 

here 𝐽 =  𝐽 𝐷, 𝜃 . Let 𝐷𝑇 is used by the SDM  because that 

model is based on minimizing  𝐷𝑇 = 𝐽 𝐷𝑇 , 𝜃 . The general 

structure of a SDM for minimizing objective function is as 

[19], [20]: 

𝜃𝑗 +1 = 𝜃𝑗 − 𝛾𝜃    derivatives of  𝐽(𝐷𝑇 , 𝜃) 𝜃𝑗
  ,                      (5) 

where 𝛾𝜃  is a learning parameter, and 𝑗 = 0,1, ….. In this 

tuning procedure, a trigonometric function is used, as: 

𝐽 𝐷𝑇 , 𝜃 = cosh 𝐷𝑇 , 𝜃𝑗  ,                                                            (6) 

where 

cosh 𝐷𝑇 , 𝜃 = 

                

  
 𝑦 𝐷𝑇 , 𝜃 − 𝑦(𝑗 )(𝐷𝑇) 2

2
 

−1

+  
 𝑦(𝐷𝑇 , 𝜃) − 𝑦(𝑗 )(𝐷𝑇) 2

2
  

2
 

    =
1

 𝑦 𝐷𝑇 , 𝜃 − 𝑦(𝑗 )(𝐷𝑇) 2
+

 𝑦 𝐷𝑇 , 𝜃 − 𝑦(𝑗 )(𝐷𝑇) 
2

4
      (7) 

𝑦 𝐷𝑇 , 𝜃 = 𝑓 𝐷𝑇 , 𝜃                                                                      (8) 

From (8), note that 𝑓 𝐷𝑇 , 𝜃  is the output of a T1 FLS. It is 

easy to calculate the derivatives of  𝐽 𝐷𝑇 , 𝜃  that are needed in 

(5), using (6)–(8), 

𝜕 𝐽 𝐷𝑇 , 𝜃 

𝜕𝜃
=

𝜕 𝑐𝑜𝑠(𝐷𝑇 , 𝜃)

𝜕𝜃
 

      =  
1

2
 𝑦 𝐷𝑇 , 𝜃 − 𝑦(𝑗 )(𝐷𝑇) −

2

 𝑦 𝐷𝑇 , 𝜃 − 𝑦(𝑗 )(𝐷𝑇) 3
 
𝜕 𝑦(𝐷𝑇 , 𝜃)

𝜕𝜃
 

      =  

1

2
 𝑦 𝐷𝑇 , 𝜃 − 𝑦 𝑗   𝐷𝑇  −

2

 𝑦 𝐷𝑇 , 𝜃 − 𝑦(𝑗 )(𝐷𝑇) 3

 
𝜕 𝑓(𝐷𝑇 , 𝜃)

𝜕𝜃
                                  (9) 

For follow up, the specified FLS choices mentioned above 

must be made. Those choices will let us assign analytical 

formulas for 𝜕 𝑓(𝐷𝑇 , 𝜃) 𝜕𝜃 . We continue to complete these 

computations for a specific set of choices through an 

application in the next Section [24], [18]. 

3. APPLICATION  
This Section will derive the Steepest Descent model that 

depends on trigonometric function (SDTFM). Note that the 

following generalized bell-shaped MF is chosen for the 

antecedent and the consequent [30], 

𝜇 𝑥 =
1

1 +  
𝑥 − 𝑚

𝜎
 

2𝑠  ,                                                           (10) 

in which 𝑚, 𝜎 are used to adjust to vary the center and width 

of the membership function, and 𝑠 denotes the slop at the 

cross points. The final implementation of input–output 

equation for the FLS requires choices to be made about the 

MFs, where generalized bell-shaped antecedent and input 

MFs respectively are given as the following:  

𝜇𝐴𝑖
𝑙 𝑥𝑖 =

1

1 +  
𝑥𝑖 − 𝑚𝐴𝑖

𝑙

𝜎𝐴𝑖
𝑙

 

2𝑠
𝐴𝑖

𝑙
,   𝑙 = 1, … , 𝑀                      (11) 

𝜇𝑋𝑖
 𝑥𝑖 =

1

1 +  
𝑥𝑖 − 𝑚𝑋𝑖

𝜎𝑋𝑖

 
2𝑠𝑋𝑖

,    𝑖 = 1, … , 𝑛. ,                     (12) 

𝜇𝑂𝑖
𝑙 𝑥𝑖 ,𝑠

𝑙  =
1

1 +  
𝑚𝑋𝑖

− 𝑚𝐴𝑖
𝑙

𝜎𝑋𝑖
+ 𝜎𝐴𝑖

𝑙
 

2 𝑠𝑋𝑖
+𝑠

𝐴𝑖
𝑙 

.                               (13) 

Equations (4) and (13) perform a non-singleton T1 FLS, the 

parameter  𝜃 = 𝑦 𝑙 , 𝑚𝑋𝑖
, 𝑚𝐴𝑖

𝑙  , 𝜎𝑋𝑖
, 𝜎𝐴𝑖

𝑙  , 𝑠𝑋𝑖
 or 𝑠𝐴𝑖

𝑙  . 

The certain parts of the computations of  𝜕 𝐽(𝜃) 𝜕𝜃 , 

where  𝐽 𝜃 = 𝑐𝑜𝑠 𝑗 =
1

 𝑓𝑛𝑠  𝑥 (𝑗 ) −𝑦 (𝑗 ) 2 +
 𝑓𝑛𝑠  𝑥 (𝑗 ) −𝑦 (𝑗 ) 

2

4
, are 

as the following: 

𝜕 𝐽 𝜃 

𝜕𝜃
=

𝜕 

𝜕𝜃
 

1

 𝑓𝑛𝑠  𝑥 𝑗   − 𝑦 𝑗   2
+

 𝑓𝑛𝑠 𝑥 𝑗   − 𝑦 𝑗   
2

4
  

                =  

1

2
 𝑓𝑛𝑠  𝑥

 𝑗   − 𝑦 𝑗   

−
2

 𝑓𝑛𝑠  𝑥
(𝑗 ) − 𝑦(𝑗 ) 3

 
𝜕 

𝜕𝜃
𝑓𝑛𝑠 x(𝑗)                                (14) 
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where, 

𝑓𝑛𝑠 𝑥
 𝑗   =  𝑦 𝑙  𝜑𝑙 𝑥

 𝑗   
𝑀

𝑙=1
=  𝑦 𝑙  

𝑚𝑖𝑛
𝑖=1,…,𝑛

 𝜇
𝑂𝑖

𝑙 𝑥𝑖,𝑠
𝑙  

 𝑚𝑖𝑛
𝑖=1,…,𝑛

 𝜇𝑂𝑖
𝑙 𝑥𝑖 ,𝑠

𝑙  𝑀
𝑙=1

𝑀

𝑙=1
 

        =  𝑦 𝑙  

𝑚𝑖𝑛 𝑖=1,…,𝑛

 
 
 

 
 

1

 

 
 

1+ 

𝑚 𝑋𝑖
−𝑚

𝐴𝑖
𝑙

𝜎𝑋 𝑖
+𝜎

𝐴𝑖
𝑙
 

2 𝑠𝑋 𝑖
+𝑠

𝐴𝑖
𝑙 

 

 
 

 

 
 
 

 
 

 𝑚𝑖𝑛 𝑖=1,…,𝑛

 
 
 

 
 

1

 

 
 

1+ 

𝑚 𝑋𝑖
−𝑚

𝐴𝑖
𝑙

𝜎𝑋 𝑖
+𝜎

𝐴𝑖
𝑙
 

2 𝑠𝑋𝑖
+𝑠

𝐴𝑖
𝑙  

 

 
 

 

 
 
 

 
 

𝑀
𝑙=1

𝑀
𝑙=1    (15) 

Derivative of the output of non-singleton T1 FLS that given 

by (15) with respect to each one of the parameter  𝜃 as the 

follows: 

1. When 𝜃 = 𝑦 𝑙  

𝜕 

𝜕𝑦 𝑙 𝑓𝑛𝑠 𝑥(𝑗 ) = 𝜑𝑙 x(𝑗 ) ,                                                          (16) 

so that 

𝑦 𝑙
𝑗 +1

= 𝑦 𝑙
𝑗
− 𝛾𝑦 𝑙   

𝜕  

𝜕𝑦 𝑙
  𝐽(𝑦 𝑙)  ,       

             = 𝑦 𝑙
𝑗
− 𝛾𝑦 𝑙    

1

2
 𝑓𝑛𝑠 x 𝑗   − 𝑦 𝑗   

−
2

 𝑓𝑛𝑠  x 𝑗   −𝑦  𝑗   
3

 𝜑𝑙 x 𝑗       (17) 

2. When 𝜃 = 𝑚𝑋𝑖
, 

𝑓𝑛𝑠 𝑥 𝑗   =
 𝑦 𝑙𝑤𝑙𝑀

𝑙=1

 𝑤𝑙𝑀
𝑙=1

 

      =

 𝑦 𝑙

 

 
 

𝑚𝑖𝑛 𝑖=1,…,𝑛

 
 
 

 
 

1

 

 
 

1+ 

𝑚 𝑋𝑖
−𝑚

𝐴𝑖
𝑙

𝜎𝑋 𝑖
+𝜎

𝐴𝑖
𝑙
 

2 𝑠𝑋 𝑖
+𝑠

𝐴𝑖
𝑙 

 

 
 

 

 
 
 

 
 

 

 
 𝑀

𝑙=1

 𝑚𝑖𝑛 𝑖=1,…,𝑛

 
 
 

 
 

1

 

 
 

1+ 

𝑚 𝑋𝑖
−𝑚

𝐴𝑖
𝑙

𝜎𝑋 𝑖
+𝜎

𝐴𝑖
𝑙
 

2 𝑠𝑋 𝑖
+𝑠

𝐴𝑖
𝑙 

 

 
 

 

 
 
 

 
 

𝑀
𝑙=1

           (18) 

Therefore, 

𝜕  𝑓𝑛𝑠  

𝜕𝑚𝑋𝑖
 
=

𝜕  𝑓𝑛𝑠

𝜕𝑤 𝑙 .
𝜕𝑤 𝑙  

𝜕𝑚𝑋𝑖

  

𝜕  𝑓𝑛𝑠

𝜕𝑤 𝑙 =
  𝑤 𝑙𝑀

𝑙=1  .
𝜕    𝑦 𝑙𝑤𝑙𝑀

𝑙=1  

𝜕𝑤𝑙 −  𝑦 𝑙𝑤 𝑙𝑀
𝑙=1  .

𝜕  𝑤𝑙𝑀
𝑙=1   

𝜕𝑤𝑙

  𝑤 𝑙𝑀
𝑙=1  

2   

         =
𝑦 𝑙  𝑤 𝑙𝑀

𝑙=1  −  𝑦 𝑙𝑤 𝑙𝑀
𝑙=1  

  𝑤 𝑙𝑀
𝑙=1  

2 =
𝑦 𝑙−𝑓𝑛𝑠  𝑥 (𝑗 ) 

 𝑤 𝑙𝑀
𝑙=1

                           (19) 

And 

𝜕𝑤 𝑙  

𝜕𝑚𝑋𝑖

=
𝜕  

𝜕𝑚𝑋𝑖

 𝑚𝑖𝑛𝑖=1,…,𝑛  1  1 +  
𝑚𝑋𝑖

−𝑚
𝐴𝑖

𝑙

𝜎𝑋𝑖
+𝜎

𝐴𝑖
𝑙
 

2 𝑠𝑋𝑖
+𝑠

𝐴𝑖
𝑙 

     

         = 𝑚𝑖𝑛𝑖=1,…,𝑛  1  1 +  
𝑚𝑋𝑖

−𝑚
𝐴𝑖

𝑙

𝜎𝑋𝑖
+𝜎

𝐴𝑖
𝑙
 

2 𝑠𝑋𝑖
+𝑠

𝐴𝑖
𝑙 

   ∗   

              

−2 𝑠𝑋𝑖
+𝑠

𝐴𝑖
𝑙 .

 𝑚 𝑋𝑖
−𝑚

𝐴𝑖
𝑙 

2 𝑠𝑋 𝑖
+𝑠

𝐴𝑖
𝑙  −1

 𝜎𝑋 𝑖
+𝜎

𝐴𝑖
𝑙 

2 𝑠𝑋 𝑖
+𝑠

𝐴𝑖
𝑙 

 

 
 

1+ 

𝑚 𝑋𝑖
−𝑚

𝐴𝑖
𝑙

𝜎𝑋 𝑖
+𝜎

𝐴𝑖
𝑙
 

2 𝑠𝑋𝑖
+𝑠

𝐴𝑖
𝑙 

 

 
 

 

        =

−2 𝑠𝑋𝑖
+𝑠

𝐴𝑖
𝑙 .

 𝑚 𝑋𝑖
−𝑚

𝐴𝑖
𝑙  

2 𝑠𝑋𝑖
+𝑠

𝐴𝑖
𝑙 −1

 𝜎𝑋 𝑖
+𝜎

𝐴𝑖
𝑙  

2 𝑠𝑋 𝑖
+𝑠

𝐴𝑖
𝑙  

 

 
 

1+ 

𝑚 𝑋𝑖
−𝑚

𝐴𝑖
𝑙

𝜎𝑋 𝑖
+𝜎

𝐴𝑖
𝑙
 

2 𝑠𝑋 𝑖
+𝑠

𝐴𝑖
𝑙 

 

 
 

. 𝑤𝑙 ,                          (20) 

thus, 

𝜕𝑓𝑛𝑠

𝜕𝑚𝑋𝑖

=  
𝑦 𝑙−𝑓𝑛𝑠  𝑥  𝑗   

 𝑤 𝑙𝑀
𝑙=1

 .

−2 𝑠𝑋𝑖
+𝑠

𝐴𝑖
𝑙 .

 

 
 
  𝑚 𝑋𝑖

−𝑚
𝐴𝑖

𝑙 

2 𝑠𝑋 𝑖
+𝑠

𝐴𝑖
𝑙 −1

 𝜎𝑋 𝑖
+𝜎

𝐴𝑖
𝑙 

2 𝑠𝑋 𝑖
+𝑠

𝐴𝑖
𝑙 

 

 
 
 

 

 
 

1+ 

𝑚 𝑋𝑖
−𝑚

𝐴𝑖
𝑙

𝜎𝑋 𝑖
+𝜎

𝐴𝑖
𝑙
 

2 𝑠𝑋𝑖
+𝑠

𝐴𝑖
𝑙 

 

 
 

. 𝑤𝑙  (21) 

Consequently, 

 𝑚𝑋𝑖
 
𝑗 +1

=  𝑚𝑋𝑖
 

 𝑗
− 𝛾𝑚   

1

2
 𝑓𝑛𝑠 x 𝑗   − 𝑦 𝑗   

−
2

 𝑓𝑛𝑠  x 𝑗   −𝑦  𝑗   
3

 .
𝜕𝑓𝑛𝑠

𝜕𝑚𝑋𝑖

  

  𝑚𝑋𝑖
 
𝑗 +1

=  𝑚𝑋𝑖
 

 𝑗
− 𝛾𝑚 ∗ 

 

 

 
 
 
 
 
 
 
 
  

1

2
 𝑓𝑛𝑠 x 𝑗   − 𝑦 𝑗   

−
2

 𝑓𝑛𝑠  x 𝑗   −𝑦  𝑗   
3

  𝑦 𝑙
𝑗
− 𝑓𝑛𝑠 𝑥 𝑗    

∗

−2 𝑠𝑋𝑖
+𝑠

𝐴𝑖
𝑙 .

 𝑚 𝑋𝑖
−𝑚

𝐴𝑖
𝑙 

2 𝑠𝑋 𝑖
+𝑠

𝐴𝑖
𝑙  −1

 𝜎𝑋 𝑖
+𝜎

𝐴𝑖
𝑙 

2 𝑠𝑋 𝑖
+𝑠

𝐴𝑖
𝑙 

 

 
 

1+ 

𝑚 𝑋𝑖
−𝑚

𝐴𝑖
𝑙

𝜎𝑋 𝑖
+𝜎

𝐴𝑖
𝑙
 

2 𝑠𝑋𝑖
+𝑠

𝐴𝑖
𝑙 

 

 
 

.  
𝑤 𝑙

𝑗

 𝑤 𝑙
𝑗

𝑀
𝑙=1

 

 

 
 
 
 
 
 
 
 
 

                  (22) 

From (15) and (18), we note that, 

𝑤𝑙
𝑗

 𝑤𝑙
𝑗

𝑀
𝑙=1

= 𝜑𝑙 𝑥
 𝑗   .                                                                  (23) 

Replacing equation (23) into the one just before it, then we 

reach the SDTFM for updating  𝑚𝑗
𝑙  as the following: 

  𝑚𝑋𝑖
 

 𝑗 +1
=  𝑚𝑋𝑖

 
 𝑗

− 𝛾𝑚 ∗ 
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1

2
 𝑓𝑛𝑠 𝑥 𝑗   − 𝑦 𝑗   

−
2

 𝑓𝑛𝑠  𝑥  𝑗   −𝑦  𝑗   
3

  𝑦 𝑙
𝑗
− 𝑓𝑛𝑠  𝑥 𝑗    

∗

−2 𝑠𝑋𝑖
+𝑠

𝐴𝑖
𝑙 .

 𝑚 𝑋𝑖
−𝑚

𝐴𝑖
𝑙 

2 𝑠𝑋 𝑖
+𝑠

𝐴𝑖
𝑙  −1

 𝜎𝑋 𝑖
+𝜎

𝐴𝑖
𝑙 

2 𝑠𝑋 𝑖
+𝑠

𝐴𝑖
𝑙 

 

 

 
 

1+ 

𝑚 𝑋𝑖
−𝑚

𝐴𝑖
𝑙

𝜎𝑋 𝑖
+𝜎

𝐴𝑖
𝑙
 

2 𝑠𝑋𝑖
+𝑠

𝐴𝑖
𝑙 

 

 
 

. 𝜑𝑙 𝑥
 𝑗   

 

 
 
 
 
 
 
 
 
 

                   (24) 

Similarly, when 𝜃 = 𝑚𝐴𝑖
𝑙 , we obtain, 

 𝑚𝐴𝑖
𝑙 

 𝑗 +1
=  𝑚𝐴𝑖

𝑙 
 𝑗

− 𝛾𝑚 ∗ 

 

 

 
 
 
 
 
 
 
 
  

1

2
 𝑓𝑛𝑠 𝑥 𝑗   − 𝑦 𝑗   

−
2

 𝑓𝑛𝑠  𝑥  𝑗   −𝑦  𝑗   
3

  𝑦 𝑙
𝑗

− 𝑓𝑛𝑠  𝑥 𝑗    

∗

2 𝑠𝑋𝑖
+𝑠

𝐴𝑖
𝑙 .

 𝑚 𝑋𝑖
−𝑚

𝐴𝑖
𝑙 

2 𝑠𝑋 𝑖
+𝑠

𝐴𝑖
𝑙 −1

 𝜎𝑋 𝑖
+𝜎

𝐴𝑖
𝑙 

2 𝑠𝑋𝑖
+𝑠

𝐴𝑖
𝑙 

 

 
 

1+ 

𝑚 𝑋𝑖
−𝑚

𝐴𝑖
𝑙

𝜎𝑋 𝑖
+𝜎

𝐴𝑖
𝑙
 

2 𝑠𝑋𝑖
+𝑠

𝐴𝑖
𝑙 

 

 
 

. 𝜑𝑙 𝑥
 𝑗   

 

 
 
 
 
 
 
 
 
 

                     (25) 

3. When 𝜃 = 𝜎𝑋𝑖
, 

The derivation of 𝜕 𝑓𝑛𝑠 𝜕 𝜎𝑋𝑖
  is just like the derivation 

of 𝜕 𝑓𝑛𝑠 𝜕 𝑚𝑋𝑖
 , therefore, we calculate, 

𝜕  𝑓𝑛𝑠  

𝜕𝜎𝑋𝑖
 

=
𝜕  𝑓𝑛𝑠  

𝜕𝑤 𝑙 .
𝜕  𝑤 𝑙  

𝜕𝜎𝑋𝑖
 
 ,                                                               (26) 

where 𝜕 𝑓𝑛𝑠 𝜕 𝑤𝑙  has been computed through (19). So, we 

need only the new computation of  𝜕 𝑤𝑙 𝜕 𝜎𝑋𝑖
 . 

𝜕  𝑤 𝑙  

𝜕𝜎𝑋𝑖
 
=

𝜕  

𝜕𝜎𝑋𝑖

 𝑚𝑖𝑛∀ 𝑖  1  1 +  
𝑚𝑋𝑖

−𝑚
𝐴𝑖

𝑙

𝜎𝑋𝑖
+𝜎

𝐴𝑖
𝑙
 

2 𝑠𝑋𝑖
+𝑠

𝐴𝑖
𝑙 

           

          = 𝑚𝑖𝑛𝑖=1,…,𝑛  1  1 +  
𝑚𝑋𝑖

−𝑚
𝐴𝑖

𝑙

𝜎𝑋𝑖
+𝜎

𝐴𝑖
𝑙
 

2 𝑠𝑋𝑖
+𝑠

𝐴𝑖
𝑙 

   ∗ 

 

 
 
 
 
 
 
 2 𝑠𝑋 𝑖

+𝑠
𝐴𝑖

𝑙 .

 𝑚 𝑋𝑖
−𝑚

𝐴𝑖
𝑙 

2 𝑠𝑋𝑖
+𝑠

𝐴𝑖
𝑙  

 𝜎𝑋 𝑖
+𝜎

𝐴𝑖
𝑙 

2 𝑠𝑋𝑖
+𝑠

𝐴𝑖
𝑙 +1

 

  
 

1+ 

𝑚 𝑋𝑖
−𝑚

𝐴𝑖
𝑙

𝜎𝑋𝑖
+𝜎

𝐴𝑖
𝑙
 

2 𝑠𝑋 𝑖
+𝑠

𝐴𝑖
𝑙  

 

  
 

=

2 𝑠𝑋 𝑖
+𝑠

𝐴𝑖
𝑙 .

 𝑚 𝑋𝑖
−𝑚

𝐴𝑖
𝑙 

2 𝑠𝑋𝑖
+𝑠

𝐴𝑖
𝑙 

 𝜎𝑋 𝑖
+𝜎

𝐴𝑖
𝑙 

2 𝑠𝑋𝑖
+𝑠

𝐴𝑖
𝑙 +1

 

  
 

1+ 

𝑚 𝑋𝑖
−𝑚

𝐴𝑖
𝑙

𝜎𝑋𝑖
+𝜎

𝐴𝑖
𝑙
 

2 𝑠𝑋𝑖
+𝑠

𝐴𝑖
𝑙  

 

  
 

 

 
 
 
 
 
 
 

. 𝑤 𝑙 (27) 

Thus, 

𝜕 𝑓𝑛𝑠

𝜕 𝜎𝑗
𝑙

=  
𝑦 𝑙 − 𝑓𝑛𝑠 𝑥 𝑗   

 𝑤𝑙𝑀
𝑙=1

 ∗ 

      

2 𝑠𝑋𝑖
+𝑠

𝐴𝑖
𝑙 .  𝑚𝑋𝑖

−𝑚
𝐴𝑖

𝑙 
2 𝑠𝑋𝑖

+𝑠
𝐴𝑖

𝑙 

 𝜎𝑋𝑖
+𝜎

𝐴𝑖
𝑙 

2 𝑠𝑋 𝑖
+𝑠

𝐴𝑖
𝑙 +1

  

 

 
 

1+ 

𝑚 𝑋𝑖
−𝑚

𝐴𝑖
𝑙

𝜎𝑋 𝑖
+𝜎

𝐴𝑖
𝑙
 

2 𝑠𝑋𝑖
+𝑠

𝐴𝑖
𝑙 

 

 
 

. 𝑤𝑙                     

Therefore, 

𝜎𝑋𝑖  𝑗 +1
= 𝜎𝑋𝑖  𝑗

− 𝛾𝜎   

 

 
 
 
 
 
 
 
 
  

1

2
 𝑓𝑛𝑠 𝑥 𝑗   − 𝑦 𝑗   

−
2

 𝑓𝑛𝑠  𝑥  𝑗   −𝑦  𝑗   
3

  𝑦 𝑙
𝑗
− 𝑓𝑛𝑠 𝑥 𝑗    

∗

2 𝑠𝑋𝑖
+𝑠

𝐴𝑖
𝑙 .

 𝑚 𝑋𝑖
−𝑚

𝐴𝑖
𝑙  

2 𝑠𝑋𝑖
+𝑠

𝐴𝑖
𝑙  

 𝜎𝑋𝑖
+𝜎

𝐴𝑖
𝑙  

2 𝑠𝑋 𝑖
+𝑠

𝐴𝑖
𝑙 +1

 

 
 

1+ 

𝑚 𝑋𝑖
−𝑚

𝐴𝑖
𝑙

𝜎𝑋 𝑖
+𝜎

𝐴𝑖
𝑙
 

2 𝑠𝑋 𝑖
+𝑠

𝐴𝑖
𝑙  

 

 
 

. 𝜑𝑙 𝑥
 𝑗   

 

 
 
 
 
 
 
 
 
 

.                     (28) 

Similarly, when 𝜃 = 𝜎𝐴𝑖
𝑙 , we obtain, 

𝜎𝐴𝑖
𝑙
 𝑗 +1

= 𝜎𝐴𝑖
𝑙
 𝑗

− 𝛾𝜎 ∗ 

 

 

 
 
 
 
 
 
 
 
  

1

2
 𝑓𝑛𝑠 𝑥 𝑗   − 𝑦 𝑗   

−
2

 𝑓𝑛𝑠  𝑥  𝑗   −𝑦  𝑗   
3

  𝑦 𝑙
𝑗
− 𝑓𝑛𝑠  𝑥 𝑗    

.

2 𝑠𝑋𝑖
+𝑠

𝐴𝑖
𝑙 .

 𝑚 𝑋𝑖
−𝑚

𝐴𝑖
𝑙  

2 𝑠𝑋𝑖
+𝑠

𝐴𝑖
𝑙  

 𝜎𝑋𝑖
+𝜎

𝐴𝑖
𝑙  

2 𝑠𝑋 𝑖
+𝑠

𝐴𝑖
𝑙 +1

 

 
 

1+ 

𝑚 𝑋𝑖
−𝑚

𝐴𝑖
𝑙

𝜎𝑋 𝑖
+𝜎

𝐴𝑖
𝑙
 

2 𝑠𝑋 𝑖
+𝑠

𝐴𝑖
𝑙  

 

 
 

. 𝜑𝑙 𝑥
 𝑗   

 

 
 
 
 
 
 
 
 
 

.                    (29) 

4. When 𝜃 = 𝑠𝑋𝑖
, 

The derivation of  𝜕 𝑓𝑛𝑠 𝜕 𝑠𝑋𝑖
  is just like the derivation of 

𝜕 𝑓𝑛𝑠 𝜕 𝜎𝑋𝑖
 , and we then calculate 

𝜕  𝑓𝑛𝑠  

𝜕𝑠𝑋𝑖
 

=
𝜕  𝑓𝑛𝑠  

𝜕𝑤 𝑙 .
𝜕  𝑤 𝑙  

𝜕𝑠𝑋 𝑖
 
  ,                                                              (30) 

where 𝜕 𝑓𝑛𝑠 𝜕 𝑤𝑙  has been computed through (19). We only 

need the new computation of  𝜕 𝑤𝑙 𝜕 𝑠𝑋𝑖
 . 

𝜕  𝑤 𝑙  

𝜕𝑠𝑋𝑖
 
=

𝜕  

𝜕𝑠𝑋𝑖

 𝑚𝑖𝑛𝑖=1,…,𝑛  1  1 +  
𝑚𝑋𝑖

−𝑚
𝐴𝑖

𝑙

𝜎𝑋𝑖
+𝜎

𝐴𝑖
𝑙
 

2 𝑠𝑋𝑖
+𝑠

𝐴𝑖
𝑙 

           

         = 𝑚𝑖𝑛𝑖=1,…,𝑛  1  1 +  
𝑚𝑋𝑖

−𝑚
𝐴𝑖

𝑙

𝜎𝑋𝑖
+𝜎

𝐴𝑖
𝑙
 

2 𝑠𝑋𝑖
+𝑠

𝐴𝑖
𝑙 

   ∗     

                                      

2

 

 
 

 

𝑚 𝑋𝑖
−𝑚

𝐴𝑖
𝑙

𝜎𝑋 𝑖
+𝜎

𝐴𝑖
𝑙
 

2 𝑠𝑋𝑖
+𝑠

𝐴𝑖
𝑙 

 

 
 

 .log  

𝑚 𝑋𝑖
−𝑚

𝐴𝑖
𝑙

𝜎𝑋 𝑖
+𝜎

𝐴𝑖
𝑙
  

 

 
 

1+ 

𝑚 𝑋𝑖
−𝑚

𝐴𝑖
𝑙

𝜎𝑋 𝑖
+𝜎

𝐴𝑖
𝑙
 

2 𝑠𝑋𝑖
+𝑠

𝐴𝑖
𝑙 

 

 
 

 

          =

2

 

 
 

 

𝑚 𝑋𝑖
−𝑚

𝐴𝑖
𝑙

𝜎𝑋 𝑖
+𝜎

𝐴𝑖
𝑙
 

2 𝑠𝑋 𝑖
+𝑠

𝐴𝑖
𝑙  

 

 
 

 .log  

𝑚 𝑋𝑖
−𝑚

𝐴𝑖
𝑙

𝜎𝑋 𝑖
+𝜎

𝐴𝑖
𝑙
 

 

 
 

1+ 

𝑚 𝑋𝑖
−𝑚

𝐴𝑖
𝑙

𝜎𝑋 𝑖
+𝜎

𝐴𝑖
𝑙
 

2 𝑠𝑋 𝑖
+𝑠

𝐴𝑖
𝑙  

 

 
 

. 𝑤𝑙                  (31) 

Thus, 
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𝜕  𝑓𝑛𝑠

𝜕𝑠𝑋𝑖

=  
𝑦 𝑙−𝑓𝑛𝑠  𝑥 (𝑗 ) 

 𝑤 𝑙𝑀
𝑙=1

 .

2

 

  
 

 

𝑚 𝑋𝑖
−𝑚

𝐴𝑖
𝑙

𝜎𝑋 𝑖
+𝜎

𝐴𝑖
𝑙

 

2 𝑠𝑋 𝑖
+𝑠

𝐴𝑖
𝑙 

 

  
 

 .𝑙𝑜𝑔 

𝑚 𝑋𝑖
−𝑚

𝐴𝑖
𝑙

𝜎𝑋 𝑖
+𝜎

𝐴𝑖
𝑙
 

 

  
 

1+ 

𝑚 𝑋𝑖
−𝑚

𝐴𝑖
𝑙

𝜎𝑋 𝑖
+𝜎

𝐴𝑖
𝑙

 

2 𝑠𝑋 𝑖
+𝑠

𝐴𝑖
𝑙 

 

  
 

. 𝑤𝑙 ,(32) 

Therefore, 

𝑠𝑋𝑖  𝑗+1
= 𝑠𝑋𝑖  𝑗

− 𝛾𝜎 ∗ 

 

 
 
 
 
 
 
 
  

1

2
 𝑓𝑛𝑠 𝑥

 𝑗   − 𝑦 𝑗   

−
2

 𝑓𝑛𝑠  𝑥 𝑗  −𝑦  𝑗   
3

  𝑦 𝑙
𝑗
− 𝑓𝑛𝑠 𝑥

 𝑗    ∗

2

 

  
 

 

𝑚 𝑋𝑖
−𝑚

𝐴𝑖
𝑙

𝜎𝑋𝑖
+𝜎

𝐴𝑖
𝑙
 

2 𝑠𝑋 𝑖
+𝑠

𝐴𝑖
𝑙  

 

  
 

 .𝑙𝑜𝑔 

𝑚 𝑋𝑖
−𝑚

𝐴𝑖
𝑙

𝜎𝑋 𝑖
+𝜎

𝐴𝑖
𝑙
 

 

  
 

1+ 

𝑚 𝑋𝑖
−𝑚

𝐴𝑖
𝑙

𝜎𝑋𝑖
+𝜎

𝐴𝑖
𝑙
 

2 𝑠𝑋 𝑖
+𝑠

𝐴𝑖
𝑙  

 

  
 

. 𝜑𝑙 𝑥
 𝑗   

 

 
 
 
 
 
 
 
 

                        (33) 

Similarly, when 𝜃 = 𝑠𝐴𝑖
𝑙 , we obtain, 

 𝑠𝐴𝑖
𝑙 

 𝑗+1
= 𝑠𝐴𝑖

𝑙
 𝑗

− 𝛾𝜎 ∗  

 

 
 
 
 
 
 
 

 
1

2
 𝑓𝑛𝑠 𝑥

 𝑗   − 𝑦 𝑗   −
2

 𝑓𝑛𝑠  𝑥 𝑗  −𝑦  𝑗  
3  𝑦 𝑙

𝑗
− 𝑓𝑛𝑠 𝑥

 𝑗    

∗

2

 

  
 

 

𝑚 𝑋𝑖
−𝑚

𝐴𝑖
𝑙

𝜎𝑋𝑖
+𝜎

𝐴𝑖
𝑙
 

2 𝑠𝑋 𝑖
+𝑠

𝐴𝑖
𝑙  

 

  
 

 .𝑙𝑜𝑔 

𝑚 𝑋𝑖
−𝑚

𝐴𝑖
𝑙

𝜎𝑋 𝑖
+𝜎

𝐴𝑖
𝑙
 

 

  
 

1+ 

𝑚 𝑋𝑖
−𝑚

𝐴𝑖
𝑙

𝜎𝑋𝑖
+𝜎

𝐴𝑖
𝑙
 

2 𝑠𝑋𝑖
+𝑠

𝐴𝑖
𝑙  

 

  
 

. 𝜑𝑙 𝑥
 𝑗   

 

 
 
 
 
 
 
 

         (34) 

4. MODEL INTERVAL TYPE-2 NON-

SINGLETON TYPE-2 FUZZY LOGIC 

SYSTEM 
This Section will model an interval type-2 non-singleton type-

2 fuzzy logic system (IT2 NS-T2 FLS). We are given a set of 

data training pairs,   𝑥(1), 𝑦(1) ,  𝑥(2), 𝑦(2) , … ,  𝑥(𝑛), 𝑦(𝑛)  , 

where 𝑥 is an input vector and  𝑦  is the scalar output of an 

IT2 FLS. There are many types of IT2 FLS; but we focused 

on an IT2 NS-T2 FLS [29]. The rule antecedents and conse-

quent of FLS described by IT2 FSs and the inputs that activate 

the FLS are IT2 FSs [10], [11]. The MFs is denoted by 

𝜇𝑋 𝑖
 𝑥𝑖  for all input 𝑥𝑖 , with lower MFs 𝜇𝑋 𝑖

 𝑥𝑖  and upper 

MFs 𝜇𝑋 𝑖
 𝑥𝑖 , and the aim is to specify the type-2 FLS by 

using the training data. This model determines how to assign 

all the parameters of the antecedent and consequent MFs 

using the set of  𝑛 input-output. Suppose a general structure 

that tuned all MF parameters given by the formula: 

𝜃𝑗 +1 = 𝜃𝑗 − 𝛾𝜃   
𝜕 cosh(𝛼)

𝜕𝜃
 
𝑗

 ,                                                  (35) 

where 𝜃 is a model for any parameter of the FLS, 

𝛾𝜃   
𝜕  cosh (𝛼)

𝜕𝜃
 
𝑛

denotes that after taking the derivative with 

respect to a specified. We have to replace all 

remaining  𝜃 values by  𝜃𝑗 , and cosh α =  e− α + e α  2 =

  e α  
−1

+ e α  2 , in which 

𝑒 𝛼 =  𝑓𝑛𝑠 𝑥 𝛼  − 𝑦 𝛼  
2

2 ,     𝛼 = 1, … , 𝑛, 

Then, 

𝑐𝑜𝑠 𝛼 =

   𝑓𝑛𝑠 𝑥 𝛼  − 𝑦 𝛼  
2

2  
−1

+   𝑓𝑛𝑠 𝑥
 𝛼  − 𝑦 𝛼  

2
2   2  

                  =
1

 𝑓𝑛𝑠  𝑥
 𝛼  − 𝑦 𝛼  2

+
 𝑓𝑛𝑠 𝑥

 𝛼  − 𝑦 𝛼  
2

4
                   (36) 

The aim of this part is to build mathematical formulas for 

calculate the derivatives 𝜕cosh(𝛼) 𝜕𝜃 . The kinds of primary 

MFs can be described mathematically such as Gaussians, 

triangles, trapezoids, etc [30]. We have chosen height type-

reduction because there is a specific appearance of antecedent 

and consequent MF parameters for it. Since the centroid of an 

IT2 FS is an IT1 FS [9], [12], and as sets are completely 

described by their left-end point  𝑦𝑙  and right-end point 𝑦𝑙 ; 

then, calculating the centroid of an IT2 FS just requires 

calculating those two end-points [2]. All the different types of 

type-reduction, 𝑌𝑇−𝑅 𝑥 , can be expressed as, [13], [15], [17]: 

 𝑦𝑙  , 𝑦𝑟  =

=  …   …  1
 𝑦𝑖  𝑎𝑖  

𝑀

𝑖=1

  𝑎𝑖𝑀

𝑖=1

  
.

𝑎𝑀∈ 𝑎𝑀 ,𝑎
𝑀

 

.

𝑎1∈ 𝑎1 ,𝑎
1
 

.

𝑦𝑀 ∈ 𝑦𝑙
𝑀 ,𝑦𝑟

𝑀  

.

𝑦1∈ 𝑦𝑙
1 ,𝑦𝑟

1 

 (36) 

Here focused on the hight type-reduction; hence, 𝑦𝑙
𝑖 =  𝑦𝑙

𝑖 =

𝑦𝑖  be a single point in the consequent domain of the 𝑖𝑡  rule 

and treated as a consequent parameter, 𝑎𝑖and 𝑎
𝑖
 are lower 

and upper firing degrees of the 𝑖𝑡  rule that contains 

antecedent MF parameters, and 𝑀 is a rules number. We 

always compute  𝑦𝑙  and 𝑦𝑟  using the Karnik–Mendel iterative 

procedures, [13], [14]. Therefore, reorder the 𝑎𝑖  accordingly 

and call them 𝑏𝑖  and we can be represented  𝑦𝑙  𝑎𝑛𝑑 𝑦𝑟  as [28]: 

𝑦𝑙 =
 𝑦𝑙

𝑖  𝑏𝑙
𝑖𝑀

𝑖=1

  𝑏𝑙
𝑖𝑀

𝑖=1

=
 𝑦𝑙

𝑖   𝑏
𝑖

𝐿
𝑖=1 +  𝑦𝑙

𝑖   𝑏𝑖𝑀
𝑖=𝐿+1

   𝑏
𝑖

𝐿
𝑖=1 +    𝑏𝑖𝑀

𝑖=𝐿+1

 ,                  (37) 

And 

𝑦𝑟 =
 𝑦𝑟

𝑖  𝑏𝑟
𝑖𝑀

𝑖=1

  𝑏𝑟
𝑖𝑀

𝑖=1

=
 𝑦𝑟

𝑖   𝑏
𝑖

𝑅
𝑖=1 +  𝑦𝑟

𝑖   𝑏𝑖𝑀
𝑖=𝑅+1

   𝑏
𝑖

𝑅
𝑖=1 +    𝑏𝑖𝑀

𝑖=𝑅+1

  .                (38) 

Since 𝑏𝑙
𝑖 , 𝑦𝑙

𝑖 ,  𝑏𝑟
𝑖  and  𝑦𝑟

𝑖   have been unordered during step-1 

of the two iterative procedures of type-reduction, therefore, 

these formulas cannot be used as it is. We need to know 

exactly where specified antecedent and consequent MF 

parameters are located for computing the derivatives of 

 𝑦𝑙  𝑎𝑛𝑑 𝑦𝑟  with respect to parameters of MF. It is very 

difficult to satisfy when  𝑦𝑙  𝑎𝑛𝑑 𝑦𝑟  are not in rule-ordered 

format, therefore, we must first re-express (37) and (38) in 

rule-ordered format [11].  

Now, let 𝐴𝑙(x′) are denoted rule-ordered firing intervals, and 

we have described the rule-unordered firing intervals by 

𝐵𝑙 x′ , as the following [20]: 

𝐴𝑙 𝑥′ =   𝑎𝑙(𝑥′), 𝑎
𝑙
(𝑥′) =   𝑎𝑙 , 𝑎

𝑙
 , 

𝐵𝑙 𝑥 ′ =   𝑏𝑙 , 𝑏
𝑙
 . 
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Let  𝑦𝑙  𝑎𝑛𝑑 𝑦𝑟  denote rule-unordered values as the following 

[3]: 

𝑦𝑙 =  𝑦𝑙
1 , … , 𝑦𝑙

𝑀 
𝑇

 and  𝑦𝑟 =  𝑦𝑟
1 , … , 𝑦𝑟

𝑀 𝑇 , 

𝑦𝑙 =
 𝑦𝑙

𝑖   𝑏
𝑖𝐿

𝑖=1 + 𝑦𝑙
𝑖   𝑏 𝑖𝑀

𝑖=𝐿+1

   𝑏
𝑖𝐿

𝑖=1 +   𝑏 𝑖𝑀
𝑖=𝐿+1

 , 𝑦𝑟 =
 𝑦𝑟

𝑖   𝑏
𝑖𝑅

𝑖=1 + 𝑦𝑟
𝑖   𝑏 𝑖𝑀

𝑖=𝑅+1

   𝑏
𝑖𝑅

𝑖=1 +   𝑏𝑖𝑀
𝑖=𝑅+1

 ,      (39) 

and  𝑧𝑙  𝑎𝑛𝑑 𝑧𝑟  denote rule-ordered counterparts as: 

𝑧𝑙 =  𝑧𝑙
1 , … , 𝑧𝑙

𝑀 
𝑇

 and  𝑧𝑟 =  𝑧𝑟
1 , … , 𝑧𝑟

𝑀 𝑇  

𝑧𝑙 =
 𝑧𝑙

𝑖   𝑎
𝑖𝐿

𝑖=1 + 𝑧𝑙
𝑖   𝑎 𝑖𝑀

𝑖=𝐿+1

   𝑎
𝑖𝐿

𝑖=1 +   𝑎 𝑖𝑀
𝑖=𝐿+1

, 𝑧𝑟 =
 𝑧𝑟

𝑖   𝑎
𝑖𝑅

𝑖=1 + 𝑧𝑟
𝑖   𝑎 𝑖𝑀

𝑖=𝑅+1

   𝑎
𝑖𝑅

𝑖=1 +   𝑎 𝑖𝑀
𝑖=𝑅+1

,          (40) 

in which 𝑦𝑙 = 𝑄𝑙  𝑧𝑙  and  𝑦𝑟 = 𝑄𝑟  𝑧𝑟 , where 𝑄𝑙  and 𝑄𝑟  are an 

𝑀 × 𝑀 permutation matrix. 

Now, we should be going from the rule-unordered versions to 

the rule-ordered versions [13], [14]. For re-express 𝑦𝑟  in terms 

of rule-ordered quantities, we have to re-express the four sums 

of  𝑦𝑟  in (39) as the follows: 

Let 𝐛 =  𝑏1 , 𝑏2 , … , 𝑏𝑀 
𝑇

≡ 𝑄𝑟 . 𝐚  and   𝐛 =  𝑏
1
, 𝑏

2
, … , 𝑏

𝑀
 

𝑇

≡ 𝑄𝑟 . 𝐚 ,  

𝐄𝟏𝟏 =  𝑒1 𝑒2 … |𝑒𝑅|0| … |0 𝑅×𝑀
𝑇 , where  𝑒𝑖 = 𝑅 × 1 is the 𝑖𝑡  

elementary vector, and   

𝐄𝟐𝟐 =  0| … |0|𝜀1 𝜀2 … |𝜀𝑀−𝑅  𝑀−𝑅 ×1
𝑇 , where 

𝜀𝑖 =  𝑀 − 𝑅 × 1 is the 𝑖𝑡  elementary vector, therefore 

 𝑏𝑖  𝑦𝑟
𝑖

𝑅

𝑖=1
= 

 𝑒1 𝑒2 … |𝑒𝑅|0| … |0 𝑇 𝑏1, 𝑏2 , … , 𝑏𝑀 
𝑇
 𝑒1 𝑒2 … |𝑒𝑅|0| … |0  𝑦𝑟

1 , … , 𝑦𝑟
𝑀  

                 =  𝐄𝟏𝟏𝐛 
𝑇
 𝐄𝟏𝟏𝑦𝑟 =  𝐄𝟏𝟏𝑄𝑟 . 𝐚 

𝑇
 𝐄𝟏𝟏𝑄𝑟 . 𝑧𝑟  

                 = 𝐚𝑇 𝑄𝑟
𝑇𝐄𝟏𝟏

𝑇𝐄𝟏𝟏𝑄𝑟         𝑧𝑟 = 𝐚𝑇 𝐻𝑟1𝑧𝑟   = 𝐚𝑇  𝜎𝑟 .     (41) 

 𝑏
𝑖
 𝑦𝑟

𝑖  𝑀
𝑖=𝑅+1 =  0| … |0|𝜀1 𝜀2 … |𝜀𝑀−𝑅 𝑇  𝑏

1
, 𝑏

2
, … , 𝑏

𝑀
 

𝑇

* 

 0| … |0|𝜀1 𝜀2 … |𝜀𝑀−𝑅  𝑦𝑟
1 , … , 𝑦𝑟

𝑀  

                      =  𝐄𝟐𝟐𝐛 
𝑇
 𝐄𝟐𝟐𝑦𝑙 =  𝐄𝟐𝟐𝑄𝑟 . 𝐚 𝑇 𝐄𝟐𝟐𝑄𝑟 . 𝑧𝑟  

                      = 𝐚
𝑇

𝑄𝑟
𝑇𝐄𝟐𝟐

𝑇𝐄𝟐𝟐𝑄𝑟         𝑧𝑟 = 𝐚
𝑇

𝐻𝑟2𝑧𝑟   = 𝐚
𝑇
𝜌𝑟    (42) 

in which  𝑄𝑟
𝑇𝐄𝟏𝟏

𝑇𝐄𝟏𝟏𝑄𝑟 𝑀×𝑀
= 𝐻𝑟1,  𝐻𝑟1𝑧𝑟 𝑀×1 = 𝜎𝑟 , 

 𝑄𝑟
𝑇𝐄𝟐𝟐

𝑇𝐄𝟐𝟐𝑄𝑟 𝑀×𝑀
= 𝐻𝑟2, and  𝐻𝑟2𝑧𝑟 𝑀×1 = 𝜌𝑟  

suppose  1,1, … ,1     
𝑅

, 0, … ,0 

𝑀×1

= 𝑘1𝑟,  0, … ,0, 1,1, … ,1     
𝑀−𝑅

 

𝑀×1

= 𝑘2𝑟   

   𝑏𝑖
𝑅

𝑖=1
=  1,1, … ,1,0, … ,0 𝑇 𝑏1, 𝑏2, … , 𝑏𝑀 = 𝑘1𝑟

𝑇𝑄𝑟     . 𝐚 

                   = 𝜏𝑟
𝑇  𝐚                                                                         (43) 

  𝑏
𝑖
 

𝑀

𝑖=𝐿+1
=  0, … ,0,1,1, … ,1 𝑇  𝑏

1
, 𝑏

2
, … , 𝑏

𝑀
  

                       = 𝑘2𝑟
𝑇𝑄𝑟     . 𝐚 = 𝜗𝑟

𝑇  𝐚                                            (44) 

in which  𝑘1𝑟
𝑇𝑄𝑟 1×𝑀

= 𝜏𝑟  and   𝑘2𝑟
𝑇𝑄𝑟 1×𝑀

= 𝜗𝑟 . 

Consequently, from (41)-(44), we obtained: 

𝑦𝑟 =
𝐚𝑇  𝐻𝑟1 𝑧𝑟 + 𝐚

𝑇
𝐻𝑟2 𝑧𝑟

𝑘1𝑟
𝑇𝑄𝑟  𝐚 + 𝑘2𝑟

𝑇𝑄𝑟  𝐚
                                                   (45𝑎) 

      =
𝐚𝑇  𝛔𝑟 + 𝐚

𝑇
𝛒𝑟

𝛕𝑟
𝑇  𝐚 + 𝛝𝑟

𝑇  𝐚
=

𝐚𝑇  𝛔𝑟 + 𝐚
𝑇
𝛒𝑟

𝐚𝑇  𝛕𝑟 + 𝐚
𝑇
𝛝𝑟

                                  (45𝑏) 

      =
  𝜎𝑟 ,𝑖  𝑏

𝑖𝑀
𝑖=1 +  𝜌𝑟 ,𝑖   𝑏

𝑖
 𝑀

𝑖=1

  𝜏𝑟 ,𝑖  𝑏
𝑖𝑀

𝑖=1 +  𝜗𝑟 ,𝑖    𝑏
𝑖

𝑀
𝑖=1

                                         (45𝑐) 

Note that Equation (45a) includes the entire  𝐚, 

 𝐚 and  𝑧𝑟  vectors. The matrices 𝐻𝑟1, 𝐻𝑟2 and the vectors 

𝑘1𝑟 , 𝑘2𝑟  will automatically get out of the unnecessary 

elements of 𝐚 and  𝐚 those depend on 𝑅. Similarly, 𝑦𝑙  can be 

express in terms of rule-ordered quantities, [15], [17].  

5. COMPUTATION of  𝝏 𝐜𝐨𝐬𝐡 𝜶 𝝏𝜽𝒊,𝒌
𝒍   

for ANTECEDENT and CONSEQU-

ENT PARAMETERS  
In this Section, we can built mathematical formulas to 

calculate the derivatives  𝜕cosh(𝛼) 𝜕𝜃  first for antecedent 

parameters, and second for consequent parameters as follows 

[13]: 

5.1 Computation of  𝛛𝐜𝐨𝐬𝐡(𝛂) 𝛛𝛉𝐢,𝐤
𝐥  for 

Parameters of Antecedent  

Parameters of an antecedent are the parameters that describe 

antecedent MFs [12]. Let us denote any one of the antecedent 

parameters that will be tuned as  𝜃𝑖,𝑘
𝑙  (𝑖 = 1, … , 𝑛  and 𝑙 =

1, … , 𝑀), and  𝑚 denotes the number of parameters when 

there can be more than one parameter related with the MF of 

each antecedent  𝑖 and rule 𝑙. From Equation (35), where 

𝑓𝑛𝑠  𝑥  is given as [Mitchell 2006]: 

𝑓𝑛𝑠  𝑥 =
 𝑦𝑙(𝑥) + 𝑦𝑟(𝑥) 

2
 ,                                                      (46) 

Therefore,  

𝜕 cosh 𝛼 

𝜕𝜃𝑖 ,𝑘
𝑙

=
1

2
  

𝜕 𝑒 𝛼  
−1

𝜕𝜃𝑖 ,𝑘
𝑙

+
𝜕 𝑒 𝛼  

𝜕𝜃𝑖 ,𝑘
𝑙

  

                    =
1

2
  

𝜕 𝑒 𝛼  
−1

𝜕𝑓𝑛𝑠
.
𝜕𝑓𝑛𝑠

𝜕𝜃𝑖 ,𝑘
𝑙

+
𝜕 𝑒 𝛼  

𝜕𝑓𝑛𝑠
.
𝜕𝑓𝑛𝑠

𝜕𝜃𝑖 ,𝑘
𝑙

  

                       =
1

2
 

 
 
 
 
 𝜕 𝑒 𝛼  

−1

𝜕𝑓𝑛𝑠

.  
𝜕𝑓𝑛𝑠

𝜕𝑦𝑙

.
𝜕𝑦𝑙

𝜕𝜃𝑖 ,𝑘
𝑙 +

𝜕𝑓𝑛𝑠

𝜕𝑦𝑟

.
𝜕𝑦𝑟

𝜕𝜃𝑖 ,𝑘
𝑙  

+
𝜕 𝑒 𝛼  

𝜕𝑓𝑛𝑠

.  
𝜕𝑓𝑛𝑠

𝜕𝑦𝑙

.
𝜕𝑦𝑙

𝜕𝜃𝑖 ,𝑘
𝑙 +

𝜕𝑓𝑛𝑠

𝜕𝑦𝑟

.
𝜕𝑦𝑟

𝜕𝜃𝑖 ,𝑘
𝑙  

 
 
 
 
 

 

                    =
1

2
 

 
 
 
 
  

𝜕 𝑒 𝛼  
−1

𝜕𝑓𝑛𝑠
+

𝜕 𝑒 𝛼  

𝜕𝑓𝑛𝑠
 ∗

 
𝜕𝑓𝑛𝑠

𝜕𝑦𝑙
.

𝜕𝑦𝑙

𝜕𝜃𝑖 ,𝑘
𝑙

+
𝜕𝑓𝑛𝑠

𝜕𝑦𝑟
.
𝜕𝑦𝑟

𝜕𝜃𝑖 ,𝑘
𝑙

 
 
 
 
 
 

                     (47) 

Since, 𝜕𝑓𝑛𝑠 (𝑥) 𝜕𝑦𝑙(𝑥) = 𝜕𝑓𝑛𝑠 (𝑥) 𝜕𝑦𝑟(𝑥) = 1 2  and  

𝜕 𝑒 𝛼  
−1

𝜕𝑓𝑛𝑠
+

𝜕 𝑒 𝛼  

𝜕𝑓𝑛𝑠
=  

−4

 𝑓𝑛𝑠  𝑥 𝛼  − 𝑦 𝛼  3

+ 𝑓𝑛𝑠 𝑥 𝛼  − 𝑦 𝛼  
2
              (48) 

Then, from (47) and (48) we obtain, 
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𝜕 cosh 𝛼 

𝜕𝜃𝑖 ,𝑘
𝑙

=  

 
 
 
 
 

 

 
 

 𝑓
𝑛𝑠

 𝑥 𝛼  − 𝑦 𝛼  

4

−
1

 𝑓
𝑛𝑠

 𝑥 𝛼  − 𝑦 𝛼  
3

 

 
 

.  
𝜕𝑦

𝑙

𝜕𝜃𝑖,𝑘
𝑙 +

𝜕𝑦
𝑟

𝜕𝜃𝑖,𝑘
𝑙  

 
 
 
 
 

    (49) 

Now handle 𝑦𝑙  and 𝑦𝑟  in (49) such as functions of  𝐚 and 𝐚; 

therefore,   

𝜕𝑦𝑟

𝜕𝜃𝑖 ,𝑘
𝑙

=  
𝜕𝑦𝑟

𝜕𝑎𝑗
.
𝜕𝑎𝑗

𝜕𝜃𝑖 ,𝑘
𝑙

+
𝜕𝑦𝑟

𝜕𝑎
𝑗

.
𝜕𝑎

𝑗

𝜕𝜃𝑖 ,𝑘
𝑙

𝑀

𝑗=1
  ,                                             (50) 

𝜕𝑦𝑙

𝜕𝜃𝑖 ,𝑘
𝑙

=  
𝜕𝑦𝑙

𝜕𝑎
𝑗

.
𝜕𝑎

𝑗

𝜕𝜃𝑖 ,𝑘
𝑙

+
𝜕𝑦𝑙

𝜕𝑎𝑗
.
𝜕𝑎𝑗

𝜕𝜃𝑖 ,𝑘
𝑙

  .                              (51)
𝑀

𝑗 =1
 

Consequently, we must estimate all of the derivatives in (50) 

and (51). From the formula of  𝑦𝑟  in (45), we obtain  

𝜕𝑦𝑟

𝜕𝑎𝑖
=

𝜎𝑟 ,𝑖 𝐚𝑇  𝛕𝑟 + 𝐚
𝑇
𝛝𝑟 − 𝜏𝑟 ,𝑖 𝐚𝑇  𝛔𝑟 + 𝐚

𝑇
𝛒𝑟 

(𝐚𝑇  𝛕𝑟 + 𝐚
𝑇
𝛝𝑟)2

 , 

so that 

𝜕𝑦𝑟

𝜕𝑎𝑖
=

𝜎𝑟 ,𝑖

 𝐚𝑇  𝛕𝑟 + 𝐚
𝑇
𝛝𝑟 

−
𝑦𝑟  𝜏𝑟 ,𝑖

 𝐚𝑇  𝛕𝑟 + 𝐚
𝑇
𝛝𝑟 

 

       =
𝜎𝑟 ,𝑖 − 𝑦𝑟  𝜏𝑟 ,𝑖

(𝐚𝑇  𝛕𝑟 + 𝐚
𝑇
𝛝𝑟)

                                                               (52) 

From (45) and (A-5) with the same manner, we have obtained 

𝜕𝑦𝑟

𝜕𝑎
𝑖

=
𝜌𝑟 ,𝑖 − 𝑦𝑟  𝜗𝑟 ,𝑖

(𝐚𝑇  𝛕𝑟 + 𝐚
𝑇
𝛝𝑟)

                                                              (53) 

𝜕𝑦𝑙

𝜕𝑎𝑖
=

𝜌𝑙 ,𝑖 − 𝑦𝑙  𝜗𝑙,𝑖

(𝐚
𝑇

 𝛕𝑙 + 𝐚𝑇𝛝𝑙)
                                                               (54) 

𝜕𝑦𝑙

𝜕𝑎
𝑖

=
𝜎𝑙 ,𝑖 − 𝑦𝑙  𝜏𝑙,𝑖

(𝐚
𝑇

 𝛕𝑙 + 𝐚𝑇𝛝𝑙)
                                                               (55) 

In order to obtain  𝜕𝑦𝑟 𝜕𝜃𝑖 ,𝑘
𝑙 , calculate 𝜕𝑎𝑙 𝜕𝜃𝑖 ,𝑘

𝑙  and 

𝜕𝑎
𝑙

𝜕𝜃𝑖 ,𝑘
𝑙 . Now, we just need to calculate [𝑎𝑙 , 𝑎

𝑙
], then try to 

choose an operator t-norm and create the functions 𝜇𝑂 𝑖
𝑙 𝑥𝑖  

and 𝜇
𝑂 𝑖

𝑙 𝑥𝑖 , in which,  

𝜇𝑂 𝑖
𝑙 𝑥𝑖 =   𝜇𝑋 𝑖

 𝑥𝑖 ∗ 𝜇𝐴 𝑖
𝑙 𝑥𝑖  𝑥𝑖 

.

𝑥𝑖∈𝑋𝑖

                                (56) 

𝜇
𝑂 𝑖

𝑙 𝑥𝑖 =   𝜇
𝑋 𝑖

 𝑥𝑖 ∗ 𝜇
𝐴 𝑖

𝑙 𝑥𝑖  𝑥𝑖    
.

𝑥𝑖∈𝑋𝑖

                             (57) 

Further, calculate the values of  𝑥𝑖  that are related with 

 sup𝑥𝑖
𝜇𝑂 𝑖

𝑙 𝑥𝑖   and  sup𝑥𝑖
𝜇𝑂 𝑖

𝑙 𝑥𝑖   as follows: 

𝑥𝑖 ,𝑠
𝑙 = sup𝑥𝑖

𝜇𝑂 𝑖
𝑙 𝑥𝑖  And 𝑥𝑖,𝑠

𝑙
= sup𝑥𝑖

𝜇𝑂 𝑖
𝑙 𝑥𝑖 ,                   (58) 

Where 𝑥𝑖 ,𝑠
𝑙  and 𝑥𝑖 ,𝑠

𝑙
 are the maximum values of 𝑥𝑖 , then we 

have estimated 𝑎𝑖
𝑙(𝑥𝑖 ′) and 𝑎𝑖

𝑙
(𝑥𝑖 ′), in which 

𝑎𝑖
𝑙 𝑥𝑖

′ = 𝜇𝑂 𝑖
𝑙 𝑥𝑖 ,𝑠

𝑙   ,                                                                  (59𝑎) 

And  

𝑎𝑖
𝑙
 𝑥𝑖

′ = 𝜇𝑂 𝑖
𝑙  𝑥𝑖 ,𝑠

𝑙
  .                                                                (59𝑏) 

Observe that 𝑥𝑖 ,𝑠
𝑙  and 𝑥𝑖 ,𝑠

𝑙
 are depended on measurement 𝑥𝑖

′ , 

and computed  

𝑎𝑙 𝑥′ = 𝑇𝑖=1
𝑛  𝑎𝑖

𝑙 𝑥𝑖
′ = 𝑇𝑖=1

𝑛  𝜇𝑂 𝑖
𝑙 𝑥𝑖 ,𝑠

𝑙   

             = 𝜇𝑂 1
𝑙  𝑥1,𝑠

𝑙  ∗ … ∗ 𝜇𝑂 𝑛
𝑙  𝑥𝑛 ,𝑠

𝑙                                          (60) 

and 

𝑎
𝑙
 𝑥′ = 𝑇𝑖=1

𝑛  𝑎𝑖
𝑙
 𝑥𝑖

′ = 𝑇𝑖=1
𝑛  𝜇𝑂 𝑖

𝑙  𝑥𝑖,𝑠
𝑙

  

             = 𝜇𝑂 1
𝑙  𝑥1,𝑠

𝑙
 ∗ … ∗ 𝜇𝑂 𝑛

𝑙  𝑥𝑛 ,𝑠
𝑙

 .                                    (61) 

The major difference between calculating the firing interval 

for an IT2 non-singleton T2 FLS and an interval singleton T2 

FLS is to calculate 𝑥𝑖 ,𝑠
𝑙  and 𝑥𝑖 ,𝑠

𝑙
 [23], [26]. Because no 

parameters are shared across rules or MFs, then for specified 

values of  𝑖 and  𝑙. Parameters of antecedent 𝜃𝑖 ,𝑘
𝑙  can appear in 

𝜇𝑂 𝑖
𝑙 𝑥𝑖 ,𝑠

𝑙   and  𝜇𝑂 𝑖
𝑙  𝑥𝑖 ,𝑠

𝑙
  and cannot appear in 

𝜇𝑂 𝑗
𝑙 𝑥𝑗 ,𝑠

𝑙   and  𝜇𝑂 𝑗
𝑙  𝑥𝑗 ,𝑠

𝑙
  for  j ≠ i, that means, 

𝜕𝑎𝑗

𝜕𝜃𝑖 ,𝑘
𝑙

=  

𝜕𝑎𝑙

𝜕𝜃𝑖 ,𝑘
𝑙      ∀ 𝑗 ≠ 𝑙

0             ∀ 𝑗 ≠ 𝑙

      𝑎𝑛𝑑   

 
𝜕𝑎

𝑗

𝜕𝜃𝑖 ,𝑘
𝑙

=  

𝜕𝑎
𝑙

𝜕𝜃𝑖 ,𝑘
𝑙

     ∀ 𝑗 ≠ 𝑙

0             ∀ 𝑗 ≠ 𝑙

                                                         (62) 

Therefore, from (62), simplify (50) and (51) as the following: 

𝜕𝑦𝑟

𝜕𝜃𝑖 ,𝑘
𝑙

=
𝜕𝑦𝑟

𝜕𝑎𝑙 .
𝜕𝑎𝑙

𝜕𝜃𝑖 ,𝑘
𝑙

+
𝜕𝑦𝑟

𝜕𝑎
𝑙 .

𝜕𝑎
𝑙

𝜕𝜃𝑖 ,𝑘
𝑙

                                              (63) 

𝜕𝑦𝑙

𝜕𝜃𝑖 ,𝑘
𝑙

=
𝜕𝑦𝑙

𝜕𝑎
𝑙 .

𝜕𝑎
𝑙

𝜕𝜃𝑖 ,𝑘
𝑙

+
𝜕𝑦𝑙

𝜕𝑎𝑙 .
𝜕𝑎𝑙

𝜕𝜃𝑖 ,𝑘
𝑙

                                              (64) 

Thus, the last part in (49) become: 

𝜕𝑦𝑙

𝜕𝜃𝑖 ,𝑘
𝑙 +

𝜕𝑦𝑟

𝜕𝜃𝑖 ,𝑘
𝑙 =

=  
𝜕𝑦𝑙

𝜕𝑎
𝑙 .

𝜕𝑎
𝑙

𝜕𝜃𝑖 ,𝑘
𝑙 +

𝜕𝑦𝑙

𝜕𝑎𝑙
.
𝜕𝑎𝑙

𝜕𝜃𝑖 ,𝑘
𝑙  +  

𝜕𝑦𝑟

𝜕𝑎𝑙
.
𝜕𝑎𝑙

𝜕𝜃𝑖 ,𝑘
𝑙 +

𝜕𝑦𝑟

𝜕𝑎
𝑙 .

𝜕𝑎
𝑙

𝜕𝜃𝑖 ,𝑘
𝑙   

                        =  
𝜕𝑦𝑙

𝜕𝑎
𝑙 +

𝜕𝑦𝑟

𝜕𝑎
𝑙 

𝜕𝑎
𝑙

𝜕𝜃𝑖 ,𝑘
𝑙 +  

𝜕𝑦𝑙

𝜕𝑎𝑙
+

𝜕𝑦𝑟

𝜕𝑎𝑙
 

𝜕𝑎𝑙

𝜕𝜃𝑖 ,𝑘
𝑙                  (65) 

Consequently, from (49) and (64), we obtained, 

𝜕 𝑐𝑜𝑠 𝛼 

𝜕𝜃𝑖 ,𝑘
𝑙

=  

 
 
 
 
 
 
 
 
 
 
 

 

 
 

 𝑓𝑛𝑠 𝑥 𝛼  − 𝑦 𝛼  

4

−
1

 𝑓𝑛𝑠  𝑥 𝛼  − 𝑦 𝛼  3
 

 
 

∗

 

 
 

 
𝜕𝑦𝑙

𝜕𝑎
𝑙 +

𝜕𝑦𝑟

𝜕𝑎
𝑙 

𝜕𝑎
𝑙

𝜕𝜃𝑖 ,𝑘
𝑙

+  
𝜕𝑦𝑙

𝜕𝑎𝑙 +
𝜕𝑦𝑟

𝜕𝑎𝑙 
𝜕𝑎𝑙

𝜕𝜃𝑖 ,𝑘
𝑙

 

 
 

 
 
 
 
 
 
 
 
 
 
 

                        (66) 

Now, since the parameters of antecedent 𝜃𝑖 ,𝑘
𝑙  can appear in 

𝜇𝑂 𝑖
𝑙 𝑥𝑖 ,𝑠

𝑙   and  𝜇𝑂 𝑖
𝑙  𝑥𝑖 ,𝑠

𝑙
  and cannot appear in 𝜇𝑂 𝑗

𝑙 𝑥𝑗 ,𝑠
𝑙   and 

𝜇𝑂 𝑗
𝑙  𝑥𝑗 ,𝑠

𝑙
  for  𝑗 ≠ 𝑖 with Equations (60) and (61) [27], and we 

obtain for t-norm, 

𝜕𝑎𝑙  𝑥𝑖
 𝛼 

 

𝜕𝜃𝑖 ,𝑘
𝑙

=  𝑇𝑗 =1
𝑗≠𝑖

𝑛  𝜇𝑂 𝑗
𝑙 𝑥𝑗 ,𝑠

𝑙   ×
𝜕𝜇𝑂 𝑖

𝑙 𝑥𝑖,𝑠
𝑙  

𝜕𝜃𝑖 ,𝑘
𝑙

                     (67) 

𝜕𝑎
𝑙
 𝑥𝑖

 𝛼 
 

𝜕𝜃𝑖 ,𝑘
𝑙

=  𝑇𝑗 =1
𝑗≠𝑖

𝑛  𝜇𝑂 𝑗
𝑙  𝑥𝑗 ,𝑠

𝑙
  ×

𝜕𝜇𝑂 𝑖
𝑙  𝑥𝑖,𝑠

𝑙
 

𝜕𝜃𝑖 ,𝑘
𝑙

                    (68) 
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Next, the remaining computation of  𝜕𝜇𝑂 𝑖
𝑙 𝑥𝑖 ,𝑠

𝑙  𝜕𝜃𝑖 ,𝑘
𝑙  and 

 𝜕𝜇𝑂 𝑖
𝑙  𝑥𝑖 ,𝑠

𝑙
 𝜕𝜃𝑖 ,𝑘

𝑙  need designation of antecedent MFs and 

their related FOUs, therefore, we can be summarized the steps 

for calculation 𝜕 𝑐𝑜𝑠 𝛼 𝜕𝜃𝑖 ,𝑘
𝑙  as follows: 

5.2 Algorithm (The Derivatives for 

Antecedent Parameters to Calculate 

𝛛 𝐜𝐨𝐬𝐡 𝛂 𝛛𝛉𝐢,𝐤
𝐥 )  

Step 1: For input vector x α , specify active states for all 

i = 1, … , n. 

Step 2:  For all i = 1, … , n and for all 𝑙 = 1, … , 𝑀, using (58)- 

(59) calculate  xi,s
l , xi,s

l
, μO i

l  xi,s
l   and  μO i

l  xi,s
l

 . 

Step 3:  For all 𝑙 = 1, … , 𝑀, 

a) Using (61) to calculate 𝑎𝑙 𝑥 𝛼  , thus depend on 

𝜃𝑖 ,𝑘
𝑙  𝑎𝑛𝑑  𝜕 𝜇𝑂 𝑖

𝑙 𝑥𝑖,𝑠
𝑙  𝜕𝜃𝑖 ,𝑘

𝑙  with (67), calculate 

𝜕𝑎𝑙 𝑥 𝛼  𝜕𝜃𝑖 ,𝑘
𝑙 .  

b) Using (62) to calculate 𝑎
𝑙
 𝑥 𝛼  , thus depend on 

𝜃𝑖 ,𝑘
𝑙  𝑎𝑛𝑑  𝜕 𝜇

𝑂 𝑖
𝑙  𝑥𝑖 ,𝑠

𝑙
 𝜕𝜃𝑖 ,𝑘

𝑙  with (68), calculate 

𝜕𝑎
𝑙
 𝑥 𝛼  𝜕𝜃𝑖 ,𝑘

𝑙 . 

Step 4:  Using the KM iterative procedure  

a) Depending on 𝑧𝑙
𝑖 , calculate  𝑦𝑙 , 𝐿 and 𝑄𝑙 .  

b) Depending on 𝑧𝑟
𝑖 , calculate 𝑦𝑟 , 𝑅 and 𝑄𝑟 . 

From (a) and (b) with (46), we can calculate  𝑓𝑛𝑠 𝑥
 𝛼  , and 

thus, calculate the first term in (65), 

 
 𝑓𝑛𝑠  𝑥  𝛼  −𝑦  𝛼  

4
−

1

 𝑓𝑛𝑠  𝑥  𝛼  −𝑦  𝛼  
3  . 

Step 5:  For  𝒂 =  𝑎1, 𝑎2, … , 𝑎𝑀 
𝑇
 and  𝒂 =  𝑎

1
, 𝑎

2
, … , 𝑎

𝑀
 
𝑇
 

a) Using definitions of  𝑬𝟏 and 𝑬𝟐 in order to calculate 

𝐻𝑙1, 𝐻𝑙2, 𝑘1𝑙 , 𝑘2𝑙 , 𝝈𝑙 , 𝝆𝑙 , 𝝉𝑙
𝑇  𝑎𝑛𝑑 𝝑𝑙

𝑇 . 

b) Using definitions of  𝐄 𝟏𝟏  and 𝐄 𝟐 2 in order to calculate 

𝐻𝑟1, 𝐻𝑟2, 𝑘1𝑟 , 𝑘2𝑟 , 𝝈𝑟 , 𝝆𝑟 , 𝝉𝑟
𝑇  𝑎𝑛𝑑 𝝑𝑟

𝑇 . 

Step 6:   

a) Using (54) and (55) to calculate  ∂yl ∂ai  and   ∂yl ∂a
i

 , 

respectively. 

b) Using (52) and (53) to calculate   ∂yr ∂ai   and   ∂yr ∂a
i

 , 

respectively. 

Step 7:  From the results of step 3 and step 4 with using (66), 

we can be calculated  𝜕 𝑐𝑜𝑠 𝛼 𝜕𝜃𝑖 ,𝑘
𝑙 . 

5.3 Computation of  𝛛𝐜𝐨𝐬𝐡(𝛂) 𝛛𝛉𝐣  for 

Parameters of Consequent 

Parameters of consequent are the parameters that describe 

consequent MFs. When, we use height type-reduction, then 

those parameters can be replaced by the two end-points of the 

T2 consequent sets [28], [25], and this can reduce the number 

of model parameters [3], [18]. Observe that the parameters of 

consequent do not need the "𝑖 " and "𝑘" subscript symbols in 

𝜃𝑖 ,𝑘
𝑗

. 

 

 

Since, 𝜃𝑗 = 𝑧𝑙
𝑗
 𝑜𝑟 𝜃𝑗 = 𝑧𝑟

𝑗
 and from (36) and (46), we obtain, 

𝜕 𝑐𝑜𝑠 𝛼 

𝜕𝑧𝑙
𝑗

=
𝜕 𝑐𝑜𝑠 𝛼 

𝜕𝑓𝑛𝑠  𝑥 𝛼  
.
𝜕𝑓𝑛𝑠 𝑥 𝛼  

𝜕𝑦𝑙
.
𝜕𝑦𝑙

𝜕𝑧𝑙
𝑗
 

    =  
 𝑓𝑛𝑠 𝑥 𝛼  − 𝑦 𝛼  

4
−

1

 𝑓𝑛𝑠  𝑥 𝛼  − 𝑦 𝛼  3
 .

𝜕𝑦𝑙

𝜕𝑧𝑙
𝑗

 ,   (69) 

and 

𝜕 𝑐𝑜𝑠 𝛼 

𝜕𝑧𝑟
𝑗

= 

 
 𝑓𝑛𝑠 𝑥 𝛼  − 𝑦 𝛼  

4
−

1

 𝑓𝑛𝑠  𝑥 𝛼  − 𝑦 𝛼  3
 .

𝜕𝑦𝑟

𝜕𝑧𝑟
𝑗

 .         (70) 

From (45a) and (A-5) with the fact  
𝜕

𝜕𝑧
 (𝛽𝑇  𝑧) = 𝛽, we obtain,  

𝜕 𝑦𝑙

𝜕 𝑧𝑙
=  

𝒂𝑇  𝐻𝑙1  + 𝒂
𝑇
𝐻𝑙2 

𝑘1𝑙
𝑇𝑄𝑙  𝒂 + 𝑘2𝑙

𝑇𝑄𝑙  𝒂
 

𝑇

=
 𝐻𝑙1

𝑇 𝑇
𝒂 + 𝐻𝑙2

𝑇  𝒂

𝑘1𝑙
𝑇  𝑄𝑙  𝒂 + 𝑘2𝑙

𝑇  𝑄𝑙  𝒂
   (71) 

𝜕 𝑦𝑟

𝜕 𝑧𝑟
=  

𝒂𝑇  𝐻𝑟1  + 𝒂
𝑇
𝐻𝑟2 

𝑘1𝑟
𝑇𝑄𝑟  𝒂 + 𝑘2𝑟

𝑇𝑄𝑟  𝒂
 

𝑇

=
 𝐻𝑟1

𝑇 𝑇
𝒂 + 𝐻𝑟2

𝑇  𝒂

𝑘1𝑟
𝑇  𝑄𝑟  𝒂 + 𝑘2𝑟

𝑇  𝑄𝑟  𝒂
(72) 

Since,  
𝜕  𝑦𝑙

𝜕  𝑧𝑙
=  

𝜕  𝑦𝑙

𝜕  𝑧𝑙
1 ,

𝜕  𝑦𝑙

𝜕  𝑧𝑙
1 , … ,

𝜕  𝑦𝑙

𝜕  𝑧𝑙
1 

𝑇

, so that  𝑒𝑗
𝑇 .

𝜕  𝑦𝑙

𝜕  𝑧𝑙
=

𝜕  𝑦𝑙

𝜕  𝑧𝑙
𝑗 . 

Consequently, re-write the Equations (71) and (72) as the 

following: 

𝜕 𝑦𝑙

𝜕 𝑧𝑙
𝑗

= 𝑒𝑗
𝑇  

 𝐻𝑙1
𝑇 𝑇

𝒂 + 𝐻𝑙2
𝑇  𝒂

𝑘1𝑙
𝑇  𝑄𝑙  𝒂 + 𝑘2𝑙

𝑇  𝑄𝑙  𝒂
                                            (73) 

𝜕 𝑦𝑟

𝜕 𝑧𝑟
𝑗

= 𝑒𝑗
𝑇  

 𝐻𝑟1
𝑇 𝑇

𝒂 + 𝐻𝑟2
𝑇  𝒂

𝑘1𝑟
𝑇  𝑄𝑟  𝒂 + 𝑘2𝑟

𝑇  𝑄𝑟  𝒂
                                          (74) 

This completes the derivations of derivative models for 

calculate  ∂ cosh α ∂θi,k
l . 

6. APPLICATION 
Consider the case of Gaussian primary MF having an 

uncertain mean and standard deviation that take on values in 

𝑚 ∈ [𝑚1, 𝑚2], and 𝜎 ∈  𝜎1, 𝜎2  respectively, as follows [19], 

[27]: 

𝜇𝐴 𝑥 = 𝑒𝑥𝑝  −
 𝑥 − 𝑚 2

2𝜎2
 , 𝑚 ∈  𝑚1, 𝑚2 , 𝜎 ∈  𝜎1, 𝜎2       (75)   

For calculate 𝜕𝑎
𝑙

𝜕𝜃𝑖 ,𝑘
𝑙   and  𝜕𝑎𝑙 𝜕𝜃𝑖 ,𝑘

𝑙  using (67) and (68), 

we need to calculate 𝜕𝜇𝑂 𝑖
𝑙 𝑥𝑖,𝑠

𝑙  𝜕𝜃𝑖 ,𝑘
𝑙  and  𝜕𝜇𝑂 𝑖

𝑙  𝑥𝑖 ,𝑠
𝑙

 𝜕𝜃𝑖 ,𝑘
𝑙 . 

Further, calculate 𝜕𝜇𝑂 𝑖
𝑙 𝑥𝑖 ,𝑠

𝑙  𝜕𝜃𝑖 ,𝑘
𝑙  and 𝜕𝜇𝑂 𝑖

𝑙  𝑥𝑖 ,𝑠
𝑙

 𝜕𝜃𝑖 ,𝑘
𝑙  for 

antecedent Gaussian primary MFs with uncertain means and 

input measurement Gaussian primary MFs with uncertain 

standard deviations. Formulas for antecedent MFs and their 

lower and upper MFs are given as [13]: 

𝜇𝑖
𝑙 𝑥 = 𝑒𝑥𝑝  −

 𝑥𝑖 − 𝑚𝑖
𝑙 

2

2𝜎𝑖
𝑙2  ,   𝑚𝑖

𝑙 ∈  𝑚𝑖 ,1
𝑙 , 𝑚𝑖 ,2

𝑙  ,     

                𝑖 = 1, … , 𝑛,   𝑙 = 1, … , 𝑀.                                          (76) 

𝜇𝑖

𝑙 𝑥𝑖 =

 
 
 

 
 𝑒𝑥𝑝  −

 𝑥𝑖−𝑚 𝑖 ,1
𝑙  

2

2𝜎𝑖
𝑙2         𝑥𝑖 < 𝑚𝑖,1

𝑙                 

1                                   𝑥𝑖 ∈ [𝑚𝑖 ,1
𝑙 , 𝑚𝑖 ,2

𝑙 ]

𝑒𝑥𝑝  −
 𝑥𝑖−𝑚 𝑖 ,2

𝑙  
2

2𝜎𝑖
𝑙2         𝑚𝑖 ,2

𝑙 < 𝑥𝑖                

         (77a) 
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𝜇𝑖
𝑙 𝑥𝑖 =

 
 
 

 
 𝑒𝑥𝑝  −

 𝑥𝑖−𝑚 𝑖 ,2
𝑙  

2

2𝜎𝑖
𝑙2     𝑥𝑖 ≤

𝑚 𝑖 ,1
𝑙 +𝑚 𝑖 ,2

𝑙

2

𝑒𝑥𝑝  −
 𝑥𝑖−𝑚 𝑖 ,1

𝑙  
2

2𝜎𝑖
𝑙2      

𝑚 𝑖 ,1
𝑙 +𝑚 𝑖 ,2

𝑙

2
< 𝑥𝑖

                   (77b) 

 Formulas for input measurement MFs and their lower and 

upper MFs are: 

𝜇𝑖
𝑙 𝑥𝑖 = 𝑒𝑥𝑝  −

 𝑥𝑖 − 𝑥𝑖
(𝑗 )

 
2

2𝜎𝑖
𝑙2  ,     𝜎𝑖

𝑙 ∈  𝜎𝑖1
𝑙 , 𝜎𝑖2

𝑙  ,            (78) 

𝜇𝑖

𝑙 𝑥𝑖 = 𝑒𝑥𝑝  −
 𝑥𝑖−𝑥𝑖

(𝑗 )
 

2

2𝜎𝑖 ,2
𝑙 2  , 𝜇𝑖

𝑙 𝑥𝑖 = 𝑒𝑥𝑝  −
 𝑥𝑖−𝑥𝑖

(𝑗 )
 

2

2𝜎𝑖 ,1
𝑙 2   (79)  

We have summarized the state of 𝑥𝑖
′  and the results for 

 𝜕𝜇𝑂 𝑖
𝑙 𝑥𝑖,𝑠

𝑙  𝜕𝜃𝑖 ,𝑘
𝑙  and  𝜕𝜇𝑂 𝑖

𝑙  𝑥𝑖 ,𝑠
𝑙

 𝜕𝜃𝑖 ,𝑘
𝑙   that depend on, as a 

function of 𝑥𝑖 , in Table II. 

Suppose𝜃𝑖 ,1
𝑙 ≡ 𝑚𝑖1

𝑙 , 𝜃𝑖 ,2
𝑙 ≡ 𝑚𝑖2

𝑙 , 𝜃𝑖 ,3
𝑙 ≡ 𝜎𝑖

𝑙 , 𝜃𝑖 ,4
𝑙 ≡ 𝜎𝑖1, 𝜃𝑖 ,5

𝑙 ≡

𝜎𝑖2. Depending on the formulas in Table I, we have calculate 

the exact derivatives of  𝜕𝜇𝑂 𝑖
𝑙 𝑥𝑖 ,𝑠

𝑙  𝜕𝜃𝑖𝑘
𝑙  and 

 𝜕𝜇
𝑂 𝑖

𝑙  𝑥𝑖 ,𝑠
𝑙

 𝜕𝜃𝑖 ,𝑘
𝑙 . Tables II and III provide nonzero or zero 

derivatives of  𝜇𝑂 𝑖
𝑙 𝑥𝑖 ,𝑠

𝑙   and  𝜇
𝑂 𝑖

𝑙  𝑥𝑖 ,𝑠
𝑙

  with respect to all 𝜃𝑖 ,𝑘
𝑙  

where  𝑘 = 1, … ,5 . The results in Table II have been 

provided  𝜇𝑂 𝑖
𝑙 𝑥𝑖 ,𝑠

𝑙   which is needed to 

calculate  𝜕𝑎𝑙(𝑥𝑖
(𝑗 )

) 𝜕𝜃𝑖 ,𝑘
𝑙 , and the results in Table III have 

been provided  𝜇𝑂 𝑖
𝑙  𝑥𝑖 ,𝑠

𝑙
   which is needed to 

calculate 𝜕𝑎
𝑙
(𝑥𝑖

(𝑗 )
) 𝜕𝜃𝑖 ,𝑘

𝑙 . From the result of this application, 

note that  𝜇𝑂 𝑖
𝑙 𝑥𝑖 ,𝑠

𝑙   depends on 𝜃𝑖 ,4
𝑙 = 𝜎𝑖1  in all states, and 

 𝜇𝑂 𝑖
𝑙  𝑥𝑖 ,𝑠

𝑙
  depends on 𝜃𝑖 ,5

𝑙 = 𝜎𝑖2 only in first and last states 

and no state depends on both 𝜃𝑖 ,4
𝑙   and  𝜃𝑖 ,5

𝑙 . 

7. CONCLUSION 
This work provided methods for tuning the parameters of T1 

FLS and an IT2 FLS, which made T1 and T2 FLSs much 

more accessible to FLS modelers by using mathematical 

formulas. We have modeled T1 FLSs when a collection of 

training data is available. Further, presented an application to 

derive the SDTFM depending on generalized bell-shaped MF 

for the antecedent and the consequent. Depending on general 

formula of SDTFM, we have proposed an IT2 NS-T2 FLS in 

order to determine all the parameters of the antecedent and 

consequent MFs using the set of  𝑛 input-output and we have 

built mathematical formulas to calculate the derivatives 

 𝜕cosh(𝛼) 𝜕𝜃 . Present general formulas for the left and right 

end-points of the type-reduced set. Proposed mathematical 

formulas for derivatives of  𝜕 cosh 𝛼  with respect to 

antecedent MF parameters and consequent MF parameters. As 

well as, provided an algorithm of the derivatives for 

antecedent parameters to calculate𝜕 cosh 𝛼 𝜕𝜃𝑖 ,𝑘
𝑙 . An 

application is provided and showed how to complete the 

calculations for input measurement and antecedent Gaussian 

primary MFs with uncertain standard deviations and means. 

From the result of the application, note that  𝜇𝑂 𝑖
𝑙 𝑥𝑖 ,𝑠

𝑙   depends 

on 𝜃𝑖 ,4
𝑙  in all states, and  𝜇𝑂 𝑖

𝑙  𝑥𝑖,𝑠
𝑙

  depends on 𝜃𝑖 ,5
𝑙  only in first 

and last states and no state depends on both 𝜃𝑖 ,4
𝑙   and  𝜃𝑖 ,5

𝑙 . 

Future studies will try to handle, the large number of 

parameters or reducing the number of model parameters. If 

some parameters are shared across rules or MFs and if 

mathematical formulas for derivatives cannot be obtained then 

we must be modify and control some or all of the results of 

this work. 

8. APPENDIX A 

Re-expressing 𝒚𝒍 in Rule-Ordered Format  

In order to re-express 𝑦𝑙  in terms of rule-ordered quantities, 

we have to re-express the four sums of  𝑦𝑙  in (6) as the follows 

[14]: 

Let  𝐚 =  𝑎1, 𝑎2, … , 𝑎𝑀 
𝑇

, 𝐚 =  𝑎
1

, 𝑎
2

, … , 𝑎
𝑀

 
𝑇

, 

𝐛 =  𝑏1, 𝑏2 , … , 𝑏𝑀 
𝑇

≡ 𝑄𝑙 . 𝐚  and   𝐛 =  𝑏
1

, 𝑏
2

, … , 𝑏
𝑀

 
𝑇

≡ 𝑄𝑙 . 𝐚 ,  

𝐄𝟏 =  𝑒1 𝑒2 … |𝑒𝐿|0| … |0 𝐿×𝑀
𝑇 , where  𝑒𝑖 = 𝐿 × 1 is the 𝑖𝑡  

elementary vector, and 

𝐄𝟐 =  0| … |0|𝜀1 𝜀2 … |𝜀𝑀−𝐿  𝑀−𝐿 ×1
𝑇  where  𝜀𝑖 =  𝑀 − 𝐿 ×

1 elementary vector, therefore 

 𝑏
𝑖
 𝑦𝑙

𝑖
𝐿

𝑖=1
=  𝑒1 𝑒2 … |𝑒𝐿|0| … |0 𝑇  𝑏

1
, 𝑏

2
, … , 𝑏

𝑀
 

𝑇

∗ 

 𝑒1 𝑒2 … |𝑒𝐿|0| … |0  𝑦𝑙
1, … , 𝑦𝑙

𝑀  

                       =  𝐄𝟏𝐛 
𝑇
 𝐄𝟏𝑦𝑙 =  𝐄𝟏𝑄𝑙 . 𝐚 𝑇 𝐄𝟏𝑄𝑙 . 𝑧𝑙  

                       = 𝐚
𝑇

𝑄𝑙
𝑇𝐄𝟏

𝑇𝐄𝟏𝑄𝑙         𝑧𝑙 = 𝐚
𝑇

𝐻𝑙1𝑧𝑙   = 𝐚
𝑇

 𝜎𝑙 .    (A-1) 

 𝑦𝑙
𝑖   𝑏𝑖

𝑀

𝑖=𝐿+1
=  0| … |0|𝜀1 𝜀2 … |𝜀𝑀−𝐿 

𝑇 𝑏1, 𝑏2 , … , 𝑏𝑀 
𝑇

∗ 

 0| … |0|𝜀1 𝜀2 … |𝜀𝑀−𝐿  𝑦𝑙
1 , … , 𝑦𝑙

𝑀  

                      =  𝐄𝟐𝐛 
𝑇
 𝐄𝟐𝑦𝑙 =  𝐄𝟐𝑄𝑙 . 𝐚 

𝑇
 𝐄𝟐𝑄𝑙 . 𝑧𝑙  

                      = 𝐚𝑇 𝑄𝑙
𝑇𝐄𝟐

𝑇𝐄𝟐𝑄𝑙         𝑧𝑙 = 𝐚𝑇 𝐻𝑙2𝑧𝑙   = 𝐚𝑇𝜌𝑙 .      (A-2) 

in which  𝑄𝑙
𝑇𝐄𝟏

𝑇𝐄𝟏𝑄𝑙 𝑀×𝑀
= 𝐻𝑙1,  𝐻𝑙1𝑧𝑙 𝑀×1 = 𝜎𝑙 ,  

 𝑄𝑙
𝑇𝐄𝟐

𝑇𝐄𝟐𝑄𝑙 𝑀×𝑀
= 𝐻𝑙2, and  𝐻𝑙2𝑧𝑙 𝑀×1 = 𝜌𝑙  

Suppose  1,1, … ,1     
𝐿

, 0, … ,0 

𝑀×1

= 𝑘1𝑙and  0, … ,0, 1,1, … ,1     
𝑀−𝐿

 

𝑀×1

=

𝑘2𝑙    𝑏
𝑖

𝐿
𝑖=1 =  1,1, … ,1,0, … ,0 𝑇  𝑏

1
, 𝑏

2
, … , 𝑏

𝑀
  

                   = 𝑘1𝑙
𝑇𝑄𝑙   . 𝐚 = 𝜏𝑙

𝑇  𝐚                                            (A − 3) 

   𝑏𝑖
𝑀

𝑖=𝐿+1
=  0, … ,0,1,1, … ,1 𝑇 𝑏1, 𝑏2 , … , 𝑏𝑀  

                    = 𝑘2𝑙
𝑇𝑄𝑙   . 𝐚 = 𝜗𝑙

𝑇  𝐚                                          (𝐴 − 4) 

in which  𝑘1𝑙
𝑇𝑄𝑙 1×𝑀

= 𝜏𝑙  and   𝑘2𝑙
𝑇𝑄𝑙 1×𝑀

= 𝜗𝑙 . 

Consequently, from (A-1)-(A-4) we are obtained 

𝑦𝑙 =
𝐚

𝑇
 𝛔𝑙 + 𝐚𝑇𝛒𝑙

𝛕𝑙
𝑇  𝐚 + 𝛝𝑙

𝑇  𝐚
=

𝐚
𝑇

 𝛔𝑙 + 𝐚𝑇𝛒𝑙

𝐚
𝑇

 𝛕𝑙 + 𝐚𝑇𝛝𝑙

 

      =
  𝜎𝑙,𝑖   𝑏

𝑖
𝑀
𝑖=1 +  𝜌𝑙 ,𝑖   𝑏

𝑖𝑀
𝑖=1

  𝜏𝑙 ,𝑖  𝑏
𝑖

𝑀
𝑖=1 +  𝜗𝑙 ,𝑖   𝑏

𝑖𝑀
𝑖=1

                                      (A − 5) 
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Note that Equation (A-5) includes the entire  𝐚,  𝐚  

and  𝑧𝑙  vectors. The matrices 𝐻𝑙1, 𝐻𝑙2 and the vectors 𝑘1𝑙 , 𝑘2𝑙  

will automatically get out of the unnecessary elements of  𝐚 

and  𝐚 those depend on 𝐿. 
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Table I. Definitions of the states and the  𝝁
𝑶 𝒊

𝒍 𝒙𝒊,𝒔
𝒍   and  𝝁

𝑶 𝒊
𝒍  𝒙𝒊,𝒔

𝒍
  

State of  𝒙𝒊
′  𝝁𝑶 𝒊

𝒍 𝒙𝒊,𝒔
𝒍   𝝁𝑶 𝒊

𝒍  𝒙𝒊,𝒔
𝒍

  

𝑥𝑖
(𝑗 )

<  
𝑚𝑖1

𝑙 +𝑚𝑖2
𝑙

2
−

𝜎𝑖1 𝑚𝑖2
𝑙 −𝑚𝑖1

𝑙  

2𝜎𝑖
𝑙  ≤ 𝑚𝑖1

𝑙  𝑒𝑥𝑝  −
 𝑚𝑖2

𝑙 − 𝑥𝑖
(𝑗)

 
2

2 𝜎𝑖1 + 𝜎𝑖
𝑙 

  𝑒𝑥𝑝  −
 𝑚𝑖1

𝑙 − 𝑥𝑖
(𝑗 )

 
2

2 𝜎𝑖2 + 𝜎𝑖
𝑙 

  

𝑚𝑖1
𝑙 ≤ 𝑥𝑖

(𝑗 )
<  

𝑚𝑖1
𝑙 +𝑚𝑖2

𝑙

2
−

𝜎𝑖1 𝑚𝑖2
𝑙 −𝑚𝑖1

𝑙  

2𝜎𝑖
𝑙  ≤ 𝑚𝑖2

𝑙  𝑒𝑥𝑝  −
 𝑚𝑖2

𝑙 − 𝑥𝑖
(𝑗)

 
2

2 𝜎𝑖1 + 𝜎𝑖
𝑙 

  1 

𝑚𝑖1
𝑙 ≤  

𝑚𝑖1
𝑙 +𝑚𝑖2

𝑙

2
−

𝜎𝑖1 𝑚𝑖2
𝑙 −𝑚𝑖1

𝑙  

2𝜎𝑖
𝑙  ≤ 𝑥𝑖

(𝑗 )
≤  

𝑚𝑖1
𝑙 +𝑚𝑖2

𝑙

2
+

𝜎𝑖1 𝑚𝑖2
𝑙 −𝑚𝑖1

𝑙  

2𝜎𝑖
𝑙  ≤ 𝑚𝑖2

𝑙  𝑒𝑥𝑝  −
 𝑚𝑖2

𝑙 + 𝑚𝑖1
𝑙 − 2𝑥𝑖

(𝑗 )
 

2

8𝜎𝑖1
−

 𝑚𝑖2
𝑙 − 𝑚𝑖1

𝑙  
2

8𝜎𝑖
𝑙   1 

𝑚𝑖1
𝑙 ≤  

𝑚𝑖1
𝑙 +𝑚𝑖2

𝑙

2
+

𝜎𝑖1 𝑚𝑖2
𝑙 −𝑚𝑖1

𝑙  

2𝜎𝑖
𝑙  < 𝑥𝑖

(𝑗 )
≤ 𝑚𝑖2

𝑙  𝑒𝑥𝑝  −
 𝑚𝑖1

𝑙 − 𝑥𝑖
(𝑗)

 
2

2 𝜎𝑖1 + 𝜎𝑖
𝑙 

  1 

 
𝑚𝑖1

𝑙 +𝑚𝑖2
𝑙

2
+

𝜎𝑖1 𝑚𝑖2
𝑙 −𝑚𝑖1

𝑙  

2𝜎𝑖
𝑙  < 𝑚𝑖2

𝑙 ≤ 𝑥𝑖
(𝑗 )

 𝑒𝑥𝑝  −
 𝑚𝑖1

𝑙 − 𝑥𝑖
(𝑗)

 
2

2 𝜎𝑖1 + 𝜎𝑖
𝑙 

  𝑒𝑥𝑝  −
 𝑚𝑖2

𝑙 − 𝑥𝑖
(𝑗 )

 
2

2 𝜎𝑖2 + 𝜎𝑖
𝑙 
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Table II. The derivatives of  𝝁𝑶 𝒊
𝒍 𝒙𝒊,𝒔

𝒍   with respect to all 𝜽𝒊,𝒋
𝒍  

𝝁𝑶 𝒊
𝒍 𝒙𝒊,𝒔

𝒍  

𝒎𝒊𝟏
𝒍

 
𝝁𝑶 𝒊

𝒍 𝒙𝒊,𝒔
𝒍  

𝒎𝒊𝟐
𝒍

 
𝝁𝑶 𝒊

𝒍 𝒙𝒊,𝒔
𝒍  

𝝈𝒊
𝒍

 
𝝁𝑶 𝒊

𝒍 𝒙𝒊,𝒔
𝒍  

𝝈𝒊𝟏
 

𝝁𝑶 𝒊
𝒍 𝒙𝒊,𝒔

𝒍  

𝝈𝒊𝟐
 

0 −
 𝑚𝑖2

𝑙 − 𝑥𝑖
(𝑗 )

 

 𝜎𝑖1 + 𝜎𝑖
𝑙 

𝑒𝑥𝑝  −
 𝑚𝑖2

𝑙 − 𝑥𝑖
(𝑗 )

 
2

2 𝜎𝑖1 + 𝜎𝑖
𝑙 

  
 𝑚𝑖2

𝑙 − 𝑥𝑖
(𝑗 )

 
2

2 𝜎𝑖1 + 𝜎𝑖
𝑙 

2 𝑒𝑥𝑝  −
 𝑚𝑖2

𝑙 − 𝑥𝑖
(𝑗 )

 
2

2 𝜎𝑖1 + 𝜎𝑖
𝑙 

  
 𝑚𝑖2

𝑙 − 𝑥𝑖
(𝑗)

 
2

2 𝜎𝑖1 + 𝜎𝑖
𝑙 

2 𝑒𝑥𝑝  −
 𝑚𝑖2

𝑙 − 𝑥𝑖
(𝑗 )

 
2

2 𝜎𝑖1 + 𝜎𝑖
𝑙 

  0 

0 −
 𝑚𝑖2

𝑙 − 𝑥𝑖
(𝑗 )

 

 𝜎𝑖1 + 𝜎𝑖
𝑙 

𝑒𝑥𝑝  −
 𝑚𝑖2

𝑙 − 𝑥𝑖
(𝑗 )

 
2

2 𝜎𝑖1 + 𝜎𝑖
𝑙 

  
 𝑚𝑖2

𝑙 − 𝑥𝑖
(𝑗 )

 
2

2 𝜎𝑖1 + 𝜎𝑖
𝑙 

2 𝑒𝑥𝑝  −
 𝑚𝑖2

𝑙 − 𝑥𝑖
(𝑗 )

 
2

2 𝜎𝑖1 + 𝜎𝑖
𝑙 

  
 𝑚𝑖2

𝑙 − 𝑥𝑖
(𝑗)

 
2

2 𝜎𝑖1 + 𝜎𝑖
𝑙 

2 𝑒𝑥𝑝  −
 𝑚𝑖2

𝑙 − 𝑥𝑖
(𝑗 )

 
2

2 𝜎𝑖1 + 𝜎𝑖
𝑙 

  0 

 

 
 

 𝑚𝑖2
𝑙 − 𝑚𝑖1

𝑙  

4𝜎𝑖
𝑙

−
 𝑚𝑖2

𝑙 + 𝑚𝑖1
𝑙 − 2𝑥𝑖

(𝑗 )
 

4𝜎𝑖1  

 
 

 

𝑒𝑥𝑝

 

  
 −

 𝑚𝑖2
𝑙 + 𝑚𝑖1

𝑙 − 2𝑥𝑖
 𝑗  

 
2

8𝜎𝑖1

−
 𝑚𝑖2

𝑙 − 𝑚𝑖1
𝑙  

2

8𝜎𝑖
𝑙  

  
 

 

 

 
 −

 𝑚𝑖2
𝑙 + 𝑚𝑖1

𝑙 − 2𝑥𝑖
 𝑗  

 

4𝜎𝑖1

−
 𝑚𝑖2

𝑙 − 𝑚𝑖1
𝑙  

4𝜎𝑖
𝑙  

 
 

∗ 

𝑒𝑥𝑝

 

  
 −

 𝑚𝑖2
𝑙 + 𝑚𝑖1

𝑙 − 2𝑥𝑖
 𝑗  

 
2

8𝜎𝑖1

−
 𝑚𝑖2

𝑙 − 𝑚𝑖1
𝑙  

2

8𝜎𝑖
𝑙  

  
 

 

 
 𝑚𝑖2

𝑙 − 𝑚𝑖1
𝑙  

2

8𝜎𝑖
𝑙 2  ∗ 

𝑒𝑥𝑝

 

  
 −

 𝑚𝑖2
𝑙 + 𝑚𝑖1

𝑙 − 2𝑥𝑖
 𝑗  

 
2

8𝜎𝑖1

−
 𝑚𝑖2

𝑙 − 𝑚𝑖1
𝑙  

2

8𝜎𝑖
𝑙  

  
 

 

 𝑚𝑖2
𝑙 + 𝑚𝑖1

𝑙 − 2𝑥𝑖
 𝑗  

 

8 𝜎𝑖1
2  

𝑒𝑥𝑝

 

  
 −

 𝑚𝑖2
𝑙 + 𝑚𝑖1

𝑙 − 2𝑥𝑖
 𝑗  

 
2

8𝜎𝑖1

−
 𝑚𝑖2

𝑙 − 𝑚𝑖1
𝑙  

2

8𝜎𝑖
𝑙  

  
 

 

0 

−
 𝑚𝑖1

𝑙 − 𝑥𝑖
(𝑗 )

 

 𝜎𝑖1 + 𝜎𝑖
𝑙 

𝑒𝑥𝑝  −
 𝑚𝑖1

𝑙 − 𝑥𝑖
(𝑗 )

 
2

2 𝜎𝑖1 + 𝜎𝑖
𝑙 

  0 
 𝑚𝑖1

𝑙 − 𝑥𝑖
(𝑗 )

 
2

2 𝜎𝑖1 + 𝜎𝑖
𝑙 

2 𝑒𝑥𝑝  −
 𝑚𝑖1

𝑙 − 𝑥𝑖
(𝑗 )

 
2

2 𝜎𝑖1 + 𝜎𝑖
𝑙 

  
 𝑚𝑖1

𝑙 − 𝑥𝑖
(𝑗 )

 
2

2 𝜎𝑖1 + 𝜎𝑖
𝑙 

2 𝑒𝑥𝑝  −
 𝑚𝑖1

𝑙 − 𝑥𝑖
(𝑗 )

 
2

2 𝜎𝑖1 + 𝜎𝑖
𝑙 

  0 

−
 𝑚𝑖1

𝑙 − 𝑥𝑖
(𝑗 )

 

 𝜎𝑖1 + 𝜎𝑖
𝑙 

𝑒𝑥𝑝  −
 𝑚𝑖1

𝑙 − 𝑥𝑖
(𝑗 )

 
2

2 𝜎𝑖1 + 𝜎𝑖
𝑙 

  0 
 𝑚𝑖1

𝑙 − 𝑥𝑖
(𝑗 )

 
2

2 𝜎𝑖1 + 𝜎𝑖
𝑙 

2 𝑒𝑥𝑝  −
 𝑚𝑖1

𝑙 − 𝑥𝑖
(𝑗 )

 
2

2 𝜎𝑖1 + 𝜎𝑖
𝑙 

  
 𝑚𝑖1

𝑙 − 𝑥𝑖
(𝑗 )

 
2

2 𝜎𝑖1 + 𝜎𝑖
𝑙 

2 𝑒𝑥𝑝  −
 𝑚𝑖1

𝑙 − 𝑥𝑖
(𝑗 )

 
2

2 𝜎𝑖1 + 𝜎𝑖
𝑙 

  0 

 

 

Table III. The derivatives of  𝝁
𝑶 𝒊

𝒍 𝒙𝒊,𝒔
𝒍

  with respect to all 𝜽𝒊,𝒋
𝒍  

𝝁
𝑶 𝒊

𝒍  𝒙𝒊,𝒔
𝒍

 

𝒎𝒊𝟏
𝒍

 
𝝁

𝑶 𝒊
𝒍  𝒙𝒊,𝒔

𝒍
 

𝒎𝒊𝟐
𝒍

 
𝝁

𝑶 𝒊
𝒍  𝒙𝒊,𝒔

𝒍
 

𝝈𝒊
𝒍

 
𝝁

𝑶 𝒊
𝒍  𝒙𝒊,𝒔

𝒍
 

𝝈𝒊𝟏

 
𝝁

𝑶 𝒊
𝒍  𝒙𝒊,𝒔

𝒍
 

𝝈𝒊𝟐

 

−
 𝑚𝑖1

𝑙 − 𝑥𝑖
(𝑗 )

 

 𝜎𝑖2 + 𝜎𝑖
𝑙 

𝑒𝑥𝑝  −
 𝑚𝑖1

𝑙 − 𝑥𝑖
(𝑗 )

 
2

2 𝜎𝑖2 + 𝜎𝑖
𝑙 

  0 
 𝑚𝑖1

𝑙 − 𝑥𝑖
(𝑗 )

 

2 𝜎𝑖2 + 𝜎𝑖
𝑙 

2 𝑒𝑥𝑝  −
 𝑚𝑖1

𝑙 − 𝑥𝑖
(𝑗 )

 
2

2 𝜎𝑖2 + 𝜎𝑖
𝑙 

  0 
 𝑚𝑖1

𝑙 − 𝑥𝑖
(𝑗 )

 

2 𝜎𝑖2 + 𝜎𝑖
𝑙 

2 𝑒𝑥𝑝  −
 𝑚𝑖1

𝑙 − 𝑥𝑖
(𝑗 )

 
2

2 𝜎𝑖2 + 𝜎𝑖
𝑙 

  

0 0 0 0 0 

                    0 0 0 0 0 

                    0 0 0 0 0 

0 −
 𝑚𝑖2

𝑙 − 𝑥𝑖
(𝑗 )

 

 𝜎𝑖2 + 𝜎𝑖
𝑙 

𝑒𝑥𝑝  −
 𝑚𝑖2

𝑙 − 𝑥𝑖
(𝑗 )

 
2

2 𝜎𝑖2 + 𝜎𝑖
𝑙 

  
 𝑚𝑖2

𝑙 − 𝑥𝑖
(𝑗 )

 
2

2 𝜎𝑖2 + 𝜎𝑖
𝑙 

2 𝑒𝑥𝑝  −
 𝑚𝑖2

𝑙 − 𝑥𝑖
(𝑗 )

 
2

2 𝜎𝑖2 + 𝜎𝑖
𝑙 

  0 
 𝑚𝑖2

𝑙 − 𝑥𝑖
(𝑗 )

 
2

2 𝜎𝑖2 + 𝜎𝑖
𝑙 

2 𝑒𝑥𝑝  −
 𝑚𝑖2

𝑙 − 𝑥𝑖
(𝑗 )

 
2

2 𝜎𝑖2 + 𝜎𝑖
𝑙 
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