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ABSTRACT

This work provides mathematical formulas and algorithm in
order to calculate the derivatives that being necessary to
perform Steepest Descent models to make T1 and T2 FLSs
much more accessible to FLS modelers. It provides derivative
computations that are applied on different kind of MFs, and
some computations which are then clarified for specific MFs.
We have learned how to model T1 FLSs when a set of
training data is available and provided an application to derive
the Steepest Descent models that depend on trigonometric
function (SDTFM). This work, also focused on an interval
type-2 non-singleton type-2 FLS (IT2 NS-T2 FLS) in order to
determine how to assign all the parameters of the antecedent
and consequent MFs using the set of n input-output and build
mathematical formulas to calculate the derivatives
dcosh(a)/06 depend on general formula of SDTFM.
Additionally, we showed how to complete the calculations for
input measurement and antecedent Gaussian primary MFs
with uncertain standard deviations and means.
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1. INTRODUCTION

In many mathematical and engineering problems, the
computation of certain solutions depends on the availability of
exact values for the variables of model equations. Because the
existing information usually is incomplete, inaccurate, fuzzy
or linguistic, then the accurate values cannot be obtained.
Therefore, it is necessary to introduce uncertain variables for
modeling the available information [1], [22]. Both T1 FLS
and T2 FLS include fuzzifier, rule-base, fuzzy inference
engine, and output processor [2]. The output processor in T2
FLS includes type-reducer and defuzzifier while the output
processor in T1 FLS includes a crisp number from the
defuzzifier, [28], [4-8]. If-then rules, but its antecedent
describes a T2 or consequent sets are now T2, [13], [18], [25].
T2 FLSs can be used when the cases are so uncertain to
determine exact membership degrees such as when training
data is corrupted by noise [3], [16], [17]. The most popular
one to date, uses back propagation models (steepest descent
models) for tuning all model parameters, which require the
computation of first derivatives of an objective function with
respect to each model parameter for making T2 FLSs much
more accessible to FLS designers [23]. When all T2 FSs are
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modeled as interval sets, and then we obtain an IT2 FLS. We
have focused on an interval type-2 non-singleton type-2 FLS
(IT2 NS-T2 FLSs) [9], [26]. The T1 FLS is described using a
fuzzy basis function extension that is useful for computing the
output of that FLS, and used during its model for computing
derivatives of an objective function with respect to MF
parameters, [19]. By “model”, we specify the parameters that
describe the interval T2 FLS [10], [11]. A T2 FLS model
method builds how to determine all the parameters of the
antecedent and consequent MFs using the training pairs [30],
[4-8].

In the first part of work, we will focus on rule-based FLSs
when no uncertainties are present [21], [27]. This is similar to
first studying deterministic systems before studying random
systems [12]. Then we will learn about extension of rule-
based FLSs, ones that can directly model uncertainties [29].
The major purpose of this work is to learn how to model non-
singleton type-1 fuzzy logic systems (NS-T1 FLSs) when a
set of training data is available. Recount how many model
parameters there can be in a specific model and describe the
relation of that number to the number of possible rules in the
NS-T1 FLS [20]. Explain how to calculate the derivatives that
are needed for the backpropagation, such as Steepest Descent
model that depend on trigonometric function (SDTFM), for
updating the MF parameters. The training data is used to tune
the input measurement, antecedent, and consequent MF
parameters. Here mathematical formulas are built to calculate
the derivatives d cosh(j)/a6.

The structure of this work provides an introduction in this
Section. In Section 2, we will learn how to model T1 FLSs
when a set of training data is available [3], [2]; Section 3
provides an application to derive the SDTFM, [19], [15].
Generalized bell-shaped MF is chosen for the antecedent and
the consequent [24]. Section 4, focused on an IT2 NS-T2 FLS
in order to determine how to assign all the parameters of the
antecedent and consequent MFs using the set of ninput-
output and build mathematical formulas to calculate the
derivatives dcosh(a)/d6 depend on general formula of
SDTFM [13]. Also, provides general formulas for the left and
right end-points of the type reduced set [26]. Section 5
provides computation of 0 cosh(a)/aeil‘k for antecedent and
consequent parameters for derivatives of a cosh(a) with
respect to antecedent MF parameters and provided an
algorithm of the derivatives for antecedent parameters to
calculate acosh(a)/aei{k [19], [13]. Section 6 provides an

application in order to calculate duy(x!,)/06},, and
2T (Efs) /ae},,( for antecedent Gaussian primary MFs with
uncertain means, and input measurement Gaussian primary
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MFs with uncertain standard deviations [30]. Finally, Section
7, conclusions are presented, and handles the derivatives of
the left end-point of the type-reduced set.

2. MODEL TYPE-1 FUZZY LOGIC
SYSTEMS

The main purpose of this Section is to learn how to model T1
FLSs when a set of training data is available. By “model”, we
mean specify the parameters that describe the FLS. We collect
all of the equations that are needed to implement NS-T1
FLSs, [16], [17]. These equations require the modeler to make
many choices. The general equations for inference system as
follows [29], [19]:

tor(xis) = sup py, (x;) * (%), 1)
¢ X;EX; i
where,
x{ = arg| sup py, (x;) * uA<(xi)] )
XEX; t
ot (1) =t () * Ty (i) 3)

The input-output equation, y(x), for the FLS is given by:

L .

Ly min_ p, (%) M

i=1,..,n i - Z yl (PI(X)
XLy min pg (%) 1=1

fns (X) = (4)

There are many ways to optimize a function [18], but we will
describe a very popular way that uses the value of the function
being optimized and its first derivative. Methods that use this
information are called steepest descent (SDM). Here suppose
that the function being minimized depends on the
parameter 6, and the function is denoted J(6) that is called an
objective function [1], [22]. We have a mathematical formula
for J(8), and we do not know the shape of J(8), but available
only a set of training data{(x%"),y?), j=1,..,n},
here ] = J(D,8). Let Dy is used by the SDM because that
model is based on minimizing Dy = J(Dr,8). The general
structure of a SDM for minimizing objective function is as
[19], [20]:

041=6 —7vo (derivatives of J(Dr, B)IQI,) , (5)
where yq is a learning parameter, and j = 0,1, ..... In this
tuning procedure, a trigonometric function is used, as:
J(Dr,0) = cosh(Dr, 6), 6)
where

cosh(Dr,0) =

[y(Dy, 6) — yD DI\ " . ([y(Dr, 8) — yD(Dy)]?
(()’T Zy(T)) +(}’(T)23’(T) )>

2

~ 1 [y(Dr,8) -y (Dp)]*
~ (05,8 - yDOPE 7 ™

y(DTre) zf(DTre) (8)
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From (8), note that f(Dr,8) is the output of a T1 FLS. It is
easy to calculate the derivatives of J(Dr, 8) that are needed in
(). using (6)—(8),
8](Dr,8) 9 cosh(Dr,0)

9 a0

N . 2 9 y(Dr,0)
= (3000 -y O - o) g
1 .
Sy @r 0 =yP O] =\ 5 £p,, 0
2 8 (C)]
[y(Dy,0) =y (Dp)]3

For follow up, the specified FLS choices mentioned above
must be made. Those choices will let us assign analytical
formulas for @ f(Dr,6)/06. We continue to complete these
computations for a specific set of choices through an
application in the next Section [24], [18].

3. APPLICATION

This Section will derive the Steepest Descent model that
depends on trigonometric function (SDTFM). Note that the
following generalized bell-shaped MF is chosen for the
antecedent and the consequent [30],

1

L+ ()

u(x) = (10)

in which m, o are used to adjust to vary the center and width
of the membership function, and s denotes the slop at the
cross points. The final implementation of input—output
equation for the FLS requires choices to be made about the
MFs, where generalized bell-shaped antecedent and input
MFs respectively are given as the following:

1
() =————, I=1,..,M (11)
t Xi —mAé A;
()
— 1 j—
luXi(xi) = W, i=1,..,n, (12)
14 (B
O'XL,
! 1
ﬂoil(xi,s) = ' (13)
my, — mA% Z(SXL,-FSA%)
1+ Ox, T Oyt

Equations (4) and (13) perform a non-singleton T1 FLS, the
parameter 6 = 9!, my,m,i,0x,, 041,55, OF Syt .

The certain parts of the computations of d/(6)/d6,

1 [fns (XU))_J/U)]Z
GOy D P

where J(8) = cosh(j) = T are

as the following:

2J() d 1 [fs (x9) _y(n]Z
90 00 [fus &D) -y D2 4

1 . .
E[fm(xo))_y(/)] ) ,

= _; %fns(x(])) (14)
[fns(x(j))_y(j)]3
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where,

mln uoz(xl s)

) ()]
frs(xP) = Z P ou(x) = zll len}m uoz(xls)

gk g - / (sx ‘s )\\ (15)
o 2] )
| i J

Derivative of the output of non-singleton T1 FLS that given
by (15) with respect to each one of the parameter 6 as the
follows:

1. Wheng =

a . )

a_jilfns(X(])) = (pl(XO))r (16)
so that

51 =5, =150 (2 J6).

1 . .
3 [fos (x9) = y©] .
=9~y (2_ 2 o(x) | @7)

[frs (x0)—y 0]
2. Wheno = mXL.,

N
frs (x99) =%
=W

5X+51

(
mX m
Z?/’:l }71 mmi_l,...,nll/ 1+< ox;*o,
)

= (18)
my . —m SX +s
L min =1, 1/ 1+<0x =
| 4l
Therefore,
3 fus _ 0 fus OW!
omy,  ow! amy,
o (1, wh). (Zlaul,YW) (1, 9'wh). (Et 1W)
ow! (Zhyw! )
Z(Zz wH-E gw!) yl_fns(x(/))
(Z[ W ) L w (19)
And

aw! d . My M Z(SX"+SA5)
= mini=y, o1/ 1+|—F7—
amxi 6mxi r ox;+0 1
L
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my,—m 2(5X1+SA§)
= minizlu,.‘n 1/ 1+ —0 i *
KTl

2(sx.+5 ,)—1
iCA
my. —m l) ¢

2 LA
SXi+SA% .
2 Sxi+SAl
<0Xi+”AL> ¢

gy
==

2(sxi+s l>_1

A
my, mAf
Y )
t 2 SXi+SAl
<crxl+crA ) {

[ rnmgy i)
SE

wi, (20)

Uxi+er4
i

thus,

ooxgteg )
2(*>(L
/ \(UXLMEDZ(S%)*;M) )

wt(21)

0 fas — (ﬁl_fns (x(/)))

dmy. Z;"Llwl

Uxi-HTAl,
i

Consequently,

Bmxi

1 . .
_[fns(x(/)) — y(/)]
(mXi)]‘+1 = (mXi)]‘ —Vm <2 _ 2 afi
[fas (x07)=y O]

(mxi)j+1 = (mxi)]' ~Vm *
1 . .
1 (6) 50 |
2 g / [)A,zj — fs (xo))]

[frs (x6)—y @]

2<Sxi+SAl,>_l
my.—m t
)( i Af)

—2(sxi+sAg —_— (22)
t Z(SXiJrSAl,)
(UX1+JA’> l wh
’ '(z“ wlv)
X (SXiHAé) Y
T Xty
From (15) and (18), we note that,
l
w; .
Mill = (Pz(x(’))- (23)
1=1W

Replacing equation (23) into the one just before it, then we
reach the SDTFM for updating m/ as the following:

(mxi)jJrl = (sz)]- -
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e () =y
(2[fns( 2 Y ]>[)7[j—fns(x(j))]

s GO OF

2<5Xi+sAl_)71
— i
i)

2<5Xi+SAl.>
(JX_+0 1) t

LA

my.—m 2<SXE+SA£)
i A;
1+ ox.to |
\ LA /

Similarly, when 8 = m,, we obtain,

_z(sxi +sA%). (24)

*

.(pl(x(j))

(), = (), =

L (x) = y&)
(2[_}?”( ) ]>[9l,.—ﬁm(x0>)]

[fus (x(/'))fy(/')]E

2<3Xi+SAl.>_l
mromg)

[ fmgyom y20reoat))
)

2<5Xi+SA§)' (25)

.<p1(x(i))

axi+aA4
i

3. When 6 = gy,

The derivation of 9 f,;/d gy, is just like the derivation
of 8 f,,5 /@ my,, therefore, we calculate,

doy, ow! 'Boxi !

1
Ofns _ Ofns OW_ (26)

where a f,,/d w! has been computed through (19). So, we
need only the new computation of @ w'/d ay,.

awl _ a T {orirs)
= —/| miny; 1/ 1+ :
doy, doy, ax; 0 41
My =M, Z(Sxi+SA£)
=mini—q 1/ 1+ : *
(e a-xi+0-A%

)z(m,_) )z(wlw)
: ,

(mxl_mAl.

my -m |
i Al
i
2<Sxi+sA4). 2 SXi+SAl.>'
¢ 2\ sx s 0 4L t

(eri+er4) t (nxi-er[
i i

/ 1 2(’“"”/‘%)\, B / T z(xxiwf)\,
E=) ) e

oy.to
X%l

Thus,
afns — )';l _fns(x(/)) "
9 O}-l ?/1:1 wl

2(sx.+s 2(sy.+s +1
(XL A’.) (Xl Al)
Z(SX[+SA£>' (m;([—mAf) i (0')([+0'A£) i

1

2l sy.+s )
X T L ( g
i
1+ ox.to |
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Therefore,

oy. =oy, B —
Xij41 Xi j Yo

LIe (x0)) = 40
<z[fns( 2) y ]>[ylj_fns(x(j)):|

T, 7 v s
[fas (x @)=y D]
2(5X1+5A(>
mxi—mA(> i
i

2<SX,+S l>+l
oA
(Ux_+0' l) ¢

i

Z(SXi+SA£)' (28)

Similarly, when 6 = o,,:, we obtain,

[ =0, — Vo *
Aijpr Ay T

1 ) ‘

<2 % )[)711' fns(xO))]
ns (X -y

mxime)Z(SXiJrsAf)

el - (@)

) .<pl(x(i))

Z(SXL+SA’.)'
13

4. When 6 = sy,

The derivation of 9 f,,/d sy, is just like the derivation of
0 fus /0 oy,, and we then calculate

L
Ofns _ Ofns 0w (30)

sy, aw! “osy,

where a f,;/9 w' has been computed through (19). We only
need the new computation of  w'/d sy,.

ow _ o0 [ 1/ 14 (2 torita)
dsx, sy, =1, I Ty
mx; =Myl Z(SXL'HA%)
=mini=1,...,n 1/ 1+(0 + l) '
XiTo,l

my.—-m | z(sxi+SAl») my.-m |
LA t oA
2 | —— log| ———
axi+aA£ O‘XL,+O'A£
2(sx.+s l)
X T L < v
14—
UXL,-HIA%
2| sx.+s
my.—m | ( L Ai) my.—m |
oAt A
2 y L log T L
XTI L XTI L
i i
2(sx.+s l)
XTI gL < b
1+ " L
UXL UAi
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Thus,
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/ my.—m 2<Sxi+sx4£>\ my.—m |
Zi o L-HrAi I.lug o l+aAi
X KTl

a
0 fns _ (ﬁl*fns(x(j))) \ / w! (32)
Osx; Ty w! / 2<Sx_+s z)\ ’

| mXi_mAf i Ai |

|\1+<in+a l> /l
Therefore,
SKijpg = Sxi; Ve ¥

( [fns (x(n) y(n]

)[y — fus (x(J))]
[fns(xw) y )]

| () <””S“)) 1<_> (33)

UXLJ”’Af axl+aA£
i)
o (x9)

/ my 2(”““/‘5)\,
|\1+<axi+a ) }|

Similarly, when 6 = s, we obtain,

!
Ai

S[) =S — Ve *
(Ai j+1 Aij g

A
/ X T L 2<SXE+SA%)\ my;Tm !
2| <ﬂxi+ﬂAz_L> | -IOg(gX +aAll> |
* \ / (Pl(x(l) |

[

|

| -

\ |\1+<"X +o, ) ( >/ )

4. MODEL INTERVAL TYPE-2 NON-
SINGLETON TYPE-2 FUZZY LOGIC
SYSTEM

This Section will model an interval type-2 non-singleton type-

2 fuzzy logic system (IT2 NS-T2 FLS). We are given a set of

data training pairs, {(x@®,y®), (x®,y®), .., (x™, y™)},

where x is an input vector and y is the scalar output of an

IT2 FLS. There are many types of IT2 FLS; but we focused

on an IT2 NS-T2 FLS [29]. The rule antecedents and conse-

quent of FLS described by IT2 FSs and the inputs that activate
the FLS are IT2 FSs [10], [11]. The MFs is denoted by

g, (x;) for all input x;, with lower MFs pg (x;) and upper

MFs ﬁxi(xi)’ and the aim is to specify the type-2 FLS by

using the training data. This model determines how to assign

all the parameters of the antecedent and consequent MFs
using the set of n input-output. Suppose a general structure
that tuned all MF parameters given by the formula:

5] cosh(a)‘

(34)

b+1 =6 —va (35)

where 6is a model for any parameter of the FLS,

Yo — % n
respect to a specified. We have to replace all
remaining 6 values by 6;, and cosh(a) = (e=@ +e®)/2 =

((e®)™ +e®)/2, in which
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e@ = [fs(x@) =y @)’ /2, a=1,.,n,

Then,
cosh(a) =
-1
(Ut = 12) " + (L) - 5P 12) )2
1 £ (x@) — y@7]?
=[fns(x(“>)—y“’)]2+[ e ©0)

The aim of this part is to build mathematical formulas for
calculate the derivatives dcosh(a)/d6. The kinds of primary
MFs can be described mathematically such as Gaussians,
triangles, trapezoids, etc [30]. We have chosen height type-
reduction because there is a specific appearance of antecedent
and consequent MF parameters for it. Since the centroid of an
IT2 FS is an IT1 FS [9], [12], and as sets are completely
described by their left-end point y, and right-end point y;;
then, calculating the centroid of an IT2 FS just requires
calculating those two end-points [2]. All the different types of
type-reduction, Y,_g(x), can be expressed as, [13], [15], [17]:

byl =
. . . . j; i l
B fyle[y}.yﬁ] "'fyMe[yV.nyule[y#] "'LME[@M,E“]< / fl_ly ) ¢

Here focused on the hight type-reduction; hence, yf = yi =
v’ be a single point in the consequent domain of the it rule

and treated as a consequent parameter, a‘and @ are lower
and upper firing degrees of the i"rule that contains
antecedent MF parameters, and M is a rules number. We
always compute y; and y, using the Karnik—Mendel iterative
procedures, [13], [14]. Therefore, reorder the a’ accordingly
and call them b¢ and we can be represented y; and y, as [28]:

L ) . .
Yiiyibl Tyl b + 3L a9 b

y =2 ~ =, 37)
Zim bi i1 b +Z§W=L+1 b
And
L=l . .
y =2y br EEay b+ 5y b 38)
TOXi b BB +SM, b
=1 i=R+1 =

Since b}, y}, b} and y! have been unordered during step-1
of the two iterative procedures of type-reduction, therefore,
these formulas cannot be used as it is. We need to know
exactly where specified antecedent and consequent MF
parameters are located for computing the derivatives of
vy, and y, with respect to parameters of MF. It is very
difficult to satisfy when y; and y, are not in rule-ordered
format, therefore, we must first re-express (37) and (38) in
rule-ordered format [11].

Now, let A'(x") are denoted rule-ordered firing intervals, and
we have described the rule-unordered firing intervals by
B!(x"), as the following [20]:

Al(x) = [gl(x’),ﬁl(x’)] = [gl,al],
B(x) = [b5 ]
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Let y; and y, denote rule-unordered values as the following

[3]:

T
yi=l -y and y. = G, D7,

oo . . R . .
_ Tiavi bv+2?4:L+1}’ll b _ Xy b_+2fw:R+1le b! (39)

yl —i . - —i . 1
Tha b3, b DU Vi L

1 Jr
and z; and z, denote rule-ordered counterparts as:

T
z=(z},..,2") and z, = (z},..,z2")T

L i—iom o R i i M o
7 = Li1z] A%z 412 @ 7 = i=1%r @ +Xi—p41%r &' (40)
L s de, o T SR s, o

i=1 i=L+1 % i=1 i=R+1 =

in which y; = Q, z; and y, = Q, z,, where Q, and Q, are an
M x M permutation matrix.

Now, we should be going from the rule-unordered versions to
the rule-ordered versions [13], [14]. For re-express y, in terms
of rule-ordered quantities, we have to re-express the four sums
of y, in (39) as the follows:

_ 1 — _ T
Letb = (b%,b%...b") =Q.aand b=(55,..5") =03,

E11 = (e1ley] ...|eg|0] ... |0)E 4, where e; = R x 1 is the i"
elementary vector, and

Ezz = (0] ...0]&; ;] ... |€m—r){y—ryx1, Where

g = (M —R) x 11isthe i*" elementary vector, therefore

R . .
Z by =
i=1

T
(erlez .. leg|0] . 10)7 (b, b2, ..., bM) (e les | ... |eg|O] . [O) O, oo )

T T
= (E11b) (E11y,) = (E110:.2) (E11Q,.2,)
=a" Q."Ey/"E;1Q, 2 =a" Hyyzp =a' 0, (41)

—i —1 -2 —M\T
Yiriab ¥ = (0] ...10]gles] . |ey—p)” (b ,b,.b ) *

(0] .. 10lerle2] - ley—R) s e, 1)
= (EZZB)T(EZZYI) = (Ez20,-a)" (E220,.2,)
=2 Q,"Ep ExnQ, 2 = ETM =ap, (42)
in which (QrTEuTEnQr)MxM =H,, (H1z)yx1 = 0y,

(QrTEzzTEzer)MxM = H,, and (H,22, )ux1 = pr

suppose (1,1, 1,0, ...,0> =ky,, (0, 0,11, 1> =k,
Mx1 Mx1

R M~-R

R
E b =(11,..,1,0,..,007 (b}, b2, ..,bM) = k1, " Q, .2
i=1 —_——

=7 a (43)
M i —1 =2 —M
Z B =0,.011,..07 (5,5, ..5)
i=L+1
= erTQr a= 19; a (44)

in which (kerQr)lxM =1, and (erTQr)lxM =9,.
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Consequently, from (41)-(44), we obtained:

=T
_ ET Hrl Z, ta HTZ Zy

YV = — (45a)
" kerQr§+k2rTQra
—T =T
=gT¢IT+a prngar+a pr 45b)
vat+dla alr . +a 9,
. —i
_ XL o b + 3 pr b ' (45¢)

L

Mt b XM, b
Note that Equation (45a) includes the entire a,
aand z, vectors. The matrices H,;,H,, and the vectors
kir,ky- will automatically get out of the unnecessary
elements of a and a those depend on R. Similarly, y, can be
express in terms of rule-ordered quantities, [15], [17].

5. COMPUTATION of acosh()/d6}

for ANTECEDENT and CONSEQU-
ENT PARAMETERS

In this Section, we can built mathematical formulas to
calculate the derivatives dcosh(a)/d6 first for antecedent
parameters, and second for consequent parameters as follows
[13]:

5.1 Computation of dcosh(a)/d0}, for
Parameters of Antecedent

Parameters of an antecedent are the parameters that describe
antecedent MFs [12]. Let us denote any one of the antecedent
parameters that will be tuned as 91'1,1( (i=1,..,nand!l =
1,..,M), and m denotes the number of parameters when
there can be more than one parameter related with the MF of
each antecedent i and rulel. From Equation (35), where
fas () is given as [Mitchell 2006]:

() +y-(x))

fas (X) = > ) (46)
Therefore,
dcosh(a) 1 6(6(’1))_1 a(e@)
06!, 2| a6}, 26},
1 [0(e@) " af, . 3(e@) af]
2| Ofis (06f,  0fus 06/,
0(e™)" (0fis oy, Ofs 9% )|
_1| of, \ay 06!, " ay o6l
2| 0(e) (0fys Oy Ofus O
57\ 3y 307 T oy 98!
fns ayl agi’k aYr 69i_k |
(e e |
*
1 d d
5|\ e Ohe T 47)
[aﬁls aYZ +aﬁns aYT J
dy, 06}, 0y, 06},
Since, 0 fns (x)/0y1(x) = 0fns (x)/ 0y, (x) = 1/2 and
a(e(a))_l (e@) e S
+ = [fos(x@) —y@]3 (48)

afns aﬁzs +[ﬁﬂs(x(a)) _y(ll)]z

Then, from (47) and (48) we obtain,
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[/, () =¥
0 cosh(a) 4 dy, 0dy,
—= 1 =+ = (49)
26}, a0, a6,

[fTLS(X(a)) - y(a)]3

Now handle y; and y, in (49) such as functions of a anda;
therefore,

a M 9y dd 3y, @

oY s (50)
06; j=100/ 00,  ga 06,

) M 9y, 9@ 9y, o

=N A e (51)
06, j=19a 00;, 04/ 06;,

Consequently, we must estimate all of the derivatives in (50)
and (51). From the formula of y,. in (45), we obtain

ayr Ur,i(gT T, + 5T“)r) - Tr,i(gT o + 5Tpr)

da' @'t +a9,)>? '
so that
% _ ar,i Yr Tr,i

oal (gT T, + ET\‘)T) (gT T+ ETﬂr)
Ori — Vr Tr,i
@t +ad)
From (45) and (A-5) with the same manner, we have obtained
dy, _ Pri =Y Uy

(52)

9@ (@'t +29,) (53)
a_y{ _ _PLi= Vi (54)
g @ 1, +a’9)

oy; o — YTy (55)

9@ @ 1 +a’9)
In order to obtain dy,/d6!,, calculate da'/d6/, and

6&1/69},,{. Now, we just need to calculate @,El], then try to
choose an operator t-norm and create the functions s (x;)

and g5 (x;), in which,

Ko (x) = f-ex- [gxi () * pg (xi)]/xi (56)

R = | [ G + By 57)
i X€X; i i
Further, calculate the values of x; that are related with
(supxi Hot (xi)) and (supxt ﬁog(xi)) as follows:
—1 —
xls = supy, g (x) And Xi = supy, Hy (), (58)

-l .
Where x/; and X;; are the maximum values of x;, then we

have estimated a! (x;") and Ef (x;"), in which

ai(%) = pgi(xis) (59a)
And
@ () =g (%) (59b)

—1 '
Observe that &-l,s and x;; are depended on measurement x;,
and computed

ﬂl(xl) =T, ﬂf (xlf) =T, #@l(&'l,s)

= pgi (x5) * o g (xhs) (60)
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and
1, 1, — (=l
a(x)=TL a(x)=TL Kot (xi.s)

— (=l — (=l

= M@% (xl,s) X ll0”7ll (xn,s)- (61)
The major difference between calculating the firing interval
for an 1T2 non-singleton T2 FLS and an interval singleton T2

FLS is to calculate ﬁs and Ef_s [23], [26]. Because no
parameters are shared across rules or MFs, then for specified
values of i and [. Parameters of antecedent Gl-l,k can appear in

#oi (i) and

Ho! (x/ ) and Ko (E]ls) for j i, that means,

ﬁ@; (Efs) and cannot appear in

l
aa a—% Vj#l
aeL, |20 nd
vk o vj#l
—1
—j da
@ ) — vj=#l
=401, "’ (62)
agik b
ko Vil

Therefore, from (62), simplify (50) and (51) as the following:

dy, 0y, ad  dy, oa@
T L T

(63)

—1
0 dy, da dy, da
bomE b 2
a@i,k aa a@i'k ag agi'k

Thus, the last part in (49) become:
ay. | 0y

0 eil,k 0 eil,k -

oy 0@ oy oa'\ (dy od' oy 0@
oa 06}, ad'"a6},)  \ad 06!, " aa 06,

aa.  oa

0 gil,k

(ayl a») oa (ay, zm) dd' (65)
aa'  dal) a6},

Consequently, from (49) and (64), we obtained,
[fs () =y

4
1

d cosh(a) [fus (x(@)) — y(@]3
O (222) oz
aa  oa'/ 08,

0 0 da
Now, since the parameters of antecedent 9},,( can appear in
poi(xis) and T (Efs) and cannot appear in EO}(E};) and
Ho“} (E,-I,S) for j # i with Equations (60) and (61) [27], and we

obtain for t-norm,

(66)

aa' (x*') e
— N 27wt P it
ool ~\Tjz @) X o, )
oa (xf“))_ 7 5) g (%is) o
P ) AT 9
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Next, the remaining computation of dug:(x{;)/d6;, and

g (ff,s)/aef_k need designation of antecedent MFs and

their related FOUs, therefore, we can be summarized the steps
for calculation @ cosh(a)/aeil,k as follows:

5.2 Algorithm (The Derivatives for
Antecedent Parameters to Calculate
d cosh(a)/06},)

Step 1: For input vector x®, specify active states for all

i=1,..,n.

Step2: Foralli=1,..,nandforalll =1,...,M, using (58)-

(59) calculate g},s,i},s,%} (xl5) and Hﬁ% (iis)

Step3: Foralll=1,.., M,

a) Using (61) to calculate a'(x®), thus depend on
0!, and dpyi(xls)/06},  with  (67), calculate
0a!(x) /06,

b) Using (62) to calculatea (x®), thus depend on
6l and 07, (%is)/06l,  with (68), calculate
0@ (x@)/a6L,.

Step 4: Using the KM iterative procedure

a) Depending on z}, calculate y;, L and Q;.

b) Depending on z., calculate y,, R and Q,..

From (a) and (b) with (46), we can calculate f,;(x(®), and

thus, calculate the first term in (65),

([fns (x(ﬂt))_y(a)] _ 1 )
4 [fus (x@)—y @]
Step 5: For a = (at,a?, ...,gM)T and a=(a,a’,..,a")
a) Using definitions of E; and E, in order to calculate
Hp, Hyp, kyy, kay, 00, py, 7] and 97

T

b) Using definitions of E4 andE,2 in order to calculate
Hrl: HrZ' klrr err 0y, Pr, T;C and 19'7;

Step 6:

a) Using (54) and (55) to calculate dy,/da' and ayl/aai,
respectively.

b) Using (52) and (53) to calculate dy,/da’ and ayr/aai,
respectively.

Step 7: From the results of step 3 and step 4 with using (66),
we can be calculated 8 cosh(a)/6},.

5.3 Computation of dcosh(a)/80 for
Parameters of Consequent

Parameters of consequent are the parameters that describe
consequent MFs. When, we use height type-reduction, then
those parameters can be replaced by the two end-points of the
T2 consequent sets [28], [25], and this can reduce the number
of model parameters [3], [18]. Observe that the parameters of
consequent do not need the "i " and "k" subscript symbols in

j
Hi,k.
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Since, 8/ = z{ or 6/ = z/ and from (36) and (46), we obtain,

dcosh(a) 0 cosh(a) Ofys (x(“)) ay

ale - 0 fas (x(a)) ' ay, ' aZl]
_ (s ) =y ] 1 i
) ( 4 s (@) —y(a)]3>'a_lev (69)
and
d cosh(@) _
Ozi -
[fns (x(a)) — y(a)] 1 -
( *  [fos @) = y(a)]3> TrR (70)

From (45a) and (A-5) with the fact % (BT z) = B, we obtain,

T
ay, ([ a' Hy +a Hy, _ HleTE"' Hp @ (71)
02 ky'Qa+ky Q@ ki, Qa+kyQa
T
dy, [ a'Hy +@ H, _ H a+HLa 72)
0z \ky, Qra+ky Q. a) ki,Q a+kjQa
T

i 9y _ |2y dn  dwm Ty _9n

Since, il e so that g Y PRrrE

Consequently, re-write the Equations (71) and (72) as the
following:

2 H. a+HLa
—y;:ejT . na Tzz _ (73)
d z| kijyQua+k; Qa
d H,"a+H,a

yr — ejT - rl =2 TrZ _ (74)
aZZ. k1r Qr2+k2r Qra

This completes the derivations of derivative models for
calculate 0 cosh(a)/aﬁglk.

6. APPLICATION

Consider the case of Gaussian primary MF having an
uncertain mean and standard deviation that take on values in
m € [my, m;], and o € [0y, 0] respectively, as follows [19],
[27]:

N2
pa(x) = exp (— %) ,m € [my,my],0 € [01,0,] (75)

For calculate aal/aei{k and da'/a6}, using (67) and (68),
we need to calculate dug: (x/)/06f) and 9, (zf_s)/aef,k.

Further, calculate dusi(x/)/86;, and di, (Ef_s)/ael.{k for
antecedent Gaussian primary MFs with uncertain means and
input measurement Gaussian primary MFs with uncertain
standard deviations. Formulas for antecedent MFs and their
lower and upper MFs are given as [13]:
2
(2 —mi)
12

umhw4————)ﬁewme
20

L

i=1.,n l=1,..,M. (76)

20;

i

1 x; € [m{;,m{,] (772)

(exp (— (x’ﬁ_mlfi) x; < mil
1 () = é

2
(xi—mg,z) l
exp (— ﬁ_zo-ll m;, < X;

i
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( (Xi—m§,2)2 mii+tmi,
exp| — 2 X <

kexp <— Za}i

Formulas for input measurement MFs and their lower and
upper MFs are:

wx) = (77b)

_ x(j))z

X i

2
20}

N RPN (xi==)
() = exp | ——— ) i) = exp( ==~ | (79)

02 i1

,uf (x;) = exp , al-l € [aill,ailz], (78)

We have summarized the state of x; and the results for
gl (x!s)/06}, and g (Ef_s)/aef,k that depend on, as a
function of x;, in Table II.

Suppose@il_l =mj, 91‘1,2 =mjy, 95,3 =d/, 95,4 = 0i1, ‘9il,5 =
0;>. Depending on the formulas in Table I, we have calculate
the exact derivatives of  dpuy (xls)/086}  and

Iyt (Ef,s)/aef,k. Tables Il and Il provide nonzero or zero
derivatives of pq(xi) and 7, (Ef,s) with respect to all 6},
where (k =1,..,5). The results in Table Il have been
provided  pgi(xf)  which  is  needed to
calculate agl(xf”)/aef_k, and the results in Table Il have
been  provided ;761; (Ef_s) which is needed to

calculate 9@’ (xl.(“)/ae}_k. From the result of this application,
note that uq:(x{,) depends on 6/, = gy in all states, and

Hp: (Ef,s) depends on 6/ = a;; only in first and last states
and no state depends on both 8/, and 6/s.

7. CONCLUSION

This work provided methods for tuning the parameters of T1
FLS and an IT2 FLS, which made T1 and T2 FLSs much
more accessible to FLS modelers by using mathematical
formulas. We have modeled T1 FLSs when a collection of
training data is available. Further, presented an application to
derive the SDTFM depending on generalized bell-shaped MF
for the antecedent and the consequent. Depending on general
formula of SDTFM, we have proposed an 1T2 NS-T2 FLS in
order to determine all the parameters of the antecedent and
consequent MFs using the set of n input-output and we have
built mathematical formulas to calculate the derivatives
dcosh(a)/06. Present general formulas for the left and right
end-points of the type-reduced set. Proposed mathematical
formulas for derivatives of @ cosh(a) with respect to
antecedent MF parameters and consequent MF parameters. As
well as, provided an algorithm of the derivatives for
antecedent parameters to calculated cosh(a) /691-’,,(. An
application is provided and showed how to complete the
calculations for input measurement and antecedent Gaussian
primary MFs with uncertain standard deviations and means.
From the result of the application, note that (x!) depends

on 6/, in all states, and i, (Ef,s> depends on 6/ only in first

and last states and no state depends on both 8/, and 6/s.
Future studies will try to handle, the large number of
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parameters or reducing the number of model parameters. If
some parameters are shared across rules or MFs and if
mathematical formulas for derivatives cannot be obtained then
we must be modify and control some or all of the results of
this work.

8. APPENDIX A
Re-expressing y; in Rule-Ordered Format

In order to re-express y; in terms of rule-ordered quantities,
we have to re-express the four sums of y, in (6) as the follows
[14]:

T _ 1 _ _MAT
Let a=(al,a? ..,a") ,a=(a',a’...a"),

_ 1 — — T
b=(bb%..,b") =Q.aand b=(5,5,..5") = 0.3,

Eq = (e1lezl ... |ef]0] ... [0)] .y, where e; = L x 1 is the it
elementary vector, and

EZ = (Ol |0|€1|£2| |£M*L)’€M—L)Xl where & = (M - L) X
1 elementary vector, therefore

Lo ; r (1 2 _M\T
Z. By = tleal ey 0] . |0) (5.5,..5")
i

(erlez] ... le|0] . [0)(¥E, ... ¥i")

= (E1E)T(E1YZ) = (E1Q;- )" (E1Q;.2)

—T T =T
=a Q"E{E;Qz =23 Huz =23 o. (Al
N B 8. an4

ZLHW b = (0] .. 0lesles ey )T (B, B2, ., )
©1 10111 ] o) O s 91D
= (Ezh)T(Ez}’z) = (EzQz-ﬂ)T(EzQz-Zz)
=a" QB EQz =a" Hpzy =a'p.  (A2)

in which (QITE1TE1Q1)M><M = Hj1, (Huz)uxa = o1,

(Q"E2"E2Q)),,, ,, = Hiz. and (Hi2z) w1 = py

Suppose (1,1, .,1,0, ...,0) = kyand <0,...,0, 1,1,...,1) =
L Mx1 M-L Mx1

—i —1 =2 —M
ka3, b= (11,..10,..,07 (b ,b,..,b")

=ky'Q.a=1a (A-3)
M .
Z b =(0,..,011,... D7 (b}, b? ..., bM)
i=L+1
=ky'Q.a=9a (A4-4)

inwhich (ky,"Q,),,, =t and (kz"Q1),,,, = -
Consequently, from (A-1)-(A-4) we are obtained

a o+ a’p, a o+ a’p,
= Ta+da - a v +a’y,

— i
_ Z{W:I o,; b + 2?4:1 pi b (A-5)

= )
Moty b + XM, 9, b
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Note that Equation (A-5) includes the entire a, a
and z; vectors. The matrices H;q, H;, and the vectors kq;, ky;
will automatically get out of the unnecessary elements of a
and a those depend on L.
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Table I. Definitions of the states and the pgi(x};) and iy (E;s)

State of x;

Eﬁ% (ﬁ%,s)

1 l l l

; mi +my, gy (mp—m;

xi(j) < il i2 Y ( 121 11) < 51
2 207

N2 2
(- (my =)
exp Z(O'il + O'il) P Z(Uiz + 0})

< mfz

!
mi; < X,

- 1
0) < <mi1+mi2 _ Uil(miz_mi1)>
2

i 207

N2
B (méz - Xi(])) 1
exp 2(0“ + ai’)

i i I i ! ! I !
ml < mi+m;; a1 (mi—mi;) <20 < mi+m, + i1 (mi;—mi;)
= 2 20} - 2 20}

MY)? 2
m(_ (mlo 4 mly = 2x)" ~ (mby — mly) ) .

i
801 8a;

l l l l

mi+m; o;1(my—m; P

él < il 12+ 11( 12[ 11) <xi(]) < fz
2 20]

N2
(mhi =) 1
exp 2(0“ + ai’)

[

i

2 20!

i I ! !
mj+mi; oy (mip—mj;)
+
13

)<mf25x

N2 N2
(mzl'l - xi(])) (mfz - Xi(/))
exp| - Z(Jil + Uil) P\~ Z(O'iz + ail)

26
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Table I1. The derivatives of ug(x} ;) with respect to all 8}

l l 1
Hoi(xis) Hot(xis) Hoi(xis) por(xis) poi(xis)
ml, m}, o} Oi1 Oi2
(mfz - xi(j)) (mfz - xi(j))z ( Miz — x(’)) (m12 - ’CU)) ( Miz — x(’)) (m12 - x(}))
0 (o +d) exp\ ~ 2(on+9)) | |2(0y + i) P\ 2(on +9)) | |2(0 +0!) e 2(0y1 +at) 0

(011 + /) 2(on + Ui) 2(oyy + O'il)z 2(oyy +a}) 2(oy + (Til)z 2(oiy + )

0 o) (ot (Gt Y]t

(mzz ez — ) m;) _( L +m11—2x(’))
/ +:[in 220 \| / 4o \I * <(le =
k_( iz T M / k _(mip —miy) / 80}

401 2
2 N2 / ( miy + iy — 2x(’)) \ ( iy + iy~ 2x(')) 0
_( L+mb - ZXL(/)) \‘ (ml!z +mj; — zxi(l)) expi N 801 801

11) ) ( 12+m11_2x(]))

8 01’1

_ exp
80;1

i
exp exp 801 \ (th 11) / (mzz 11) /
(mzz 11) / (mlz 11) ) BUil 80,1
80’il

<><< )) . () (( >>

(0n +f) 2(0n + ) 2(0; + oi)z 2(o + ”i)

l_x(l) m’l—x(’)
(mhy )pr(_g) 0

2(0;1 +at) 2(0n +af)

mfl—xi(j) mfl—x(” mfl—x(’) mfl—x(])
i), >> . ( >xp<_< >>

2(0;y +0}) 2(o + oi’)z 2(01 + i)

(mh =) (M) 0

2(o + cri’)z 2(oyy + )

Table I11. The derivatives of ﬁaz_(ff,s) with respect to all 8}

Foy (%) Foy (%is) Roy(%is)  Py(R)  Fay(R)

1 1 1
m;, m;; o; Oi1 Oi2

_(mf1 —xi(j)) exp <_ (Ynfl —XO)) ) 0 (mf1 —X,'U)) exp (_ (Mf1 —Xi(j))z> 0 (Mfl —X(”) exp (_ (mf1 —xO)) )

2(0i; + b’ 2(0i2 +a}) 2(0;, + 0})° 2(0i2 +0})

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

. (<) p(_( =)\ <) (_( LA P (L ))

ex exp exp
(012 +3}) 2(0; +at) 2(0i2 + Ji)z 2(0; + af) 2(0;, + oil)z 2(0; + Uz)
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