
International Journal of Computer Applications (0975 – 8887)

Volume 104 – No 11, October 2014

24

An Algorithm for Retrieving Skyline Points based on

User Specified Constraints using the Skyline Ordering

Jasna S

MTech Student
TKM College of engineering

Kollam

Manu J Pillai
Assistant Professor

TKM College of engineering
Kollam

ABSTRACT

Given a multidimensional data set, a skyline query returns the

interesting points that are not dominated by other points. The

actual cardinality (s) of a skyline query result may vary

substantially from the desired result cardinality (k). An

approach called skyline ordering is used that forms a skyline

based partitioning of a given data set, it provides an ordering

among the partitions. The constrained skyline query results

the skyline points that may be too small in some cases. The

paper proposes a new method for finding the arbitrary number

of points for the constrained skyline query. The skyline

ordering algorithm and size constrained skyline ordering

algorithm are used for developing the algorithm. The results

of experiments of algorithm show that the proposed scheme

yields an efficient and scalable resolution of arbitrary size

constraints on constrained skyline queries. By comparing the

existing and proposed system, the proposed system is efficient

in returning the arbitrary number of skyline points.

General Terms

Data Base Management, Query Processing

Keywords

Constrained Skyline Query, Skyline Queries, Skyline Order

1. INTRODUCTION
The Skyline query has received considerable attention from

the database community, because of its importance in many

applications like decision making, data mining etc. The

Skyline query returns all interesting points that are not

dominated by any other points. A point p dominates another

point q if p is not worse than q in every single dimension but

better than q in atleast one dimension.

So the skyline queries have the powerful capability of

retrieving points from a large multidimensional data set.

Skyline queries have the ability for multi-criteria decision

making and user preference applications. For example(fig 1),

a tourist can issue a skyline query on a hotel relation in order

to get the hotels with high facilities and having cheap prices.

This work focuses on the constrained skyline query. The

constrained skyline query returns the interesting points from

the data set if the constraints specified by the user are

satisfied. For example, a tourist wants to get only the hotels

within a specified price range.

The well-known weakness of the skyline queries is that the

result cardinality may vary. The result cardinality can be large

when the dimensionality of the data set is high. This problem

also arises in the case of constrained skyline queries.

In order to deal with the large skyline results, there are four

approaches. In the first approach called pointwise ranking, all

the points are ordered based on some mapping function and

only top points are returned. In the second approach called

subspace reference, subspaces of full d-dimensional space are

investigated and points preferred in subspaces are favoured in

the result. In the third approach, called set-wide

maximization, a subset of skyline points is selected such that a

collective quantity based objective. In the fourth approach,

called approximate selection, a predefined threshold is given

so that the points are compared with this such that more points

are identified as being dominated.

Fig 1. Skyline of Hotels

The small skylines are also a problem. Suppose the tourist

specifies a parameter k, the number of interesting hotels that

satisfies the constraint to be returned. The conventional

constrained skyline query, usually, if not always, fails to

return k hotels. So in order to get the arbitrary number of

skyline points from a d-dimensional data set, the approach

called skyline ordering is used. This approach combines the

point-wise ranking and the set-wide maximization techniques.

Skyline ordering provides a skyline-based partitioning of a

given data set and these partitions provides an ordering. To

this skyline order the size constrained skyline query is applied

in order to get the arbitrary number of points.

The experiments on these methods show that the proposed

constrained skyline query with skyline ordering returns the

arbitrary number of points that is obtained using the

conventional constrained skyline query.

This article is organized as follows. Section II introduces

definitions and motivating examples. Literature survey is

discussed in section III. Section IV explains the algorithms for

skyline order computation, constrained skyline query with

skyline ordering. Section V presents the comparison of

existing and proposed methods. These methods are compared

using large datasets. Section VI contains the conclusions and

directions for future work.

International Journal of Computer Applications (0975 – 8887)

Volume 104 – No 11, October 2014

25

2. DEFINITIONS
The definition for skyline ordering, size constrained skyline

query and constrained skyline query with skyline ordering are

defined below. Table 1 lists the notation used in this paper.

2.1 Skyline Order
Skyline order of a set of d-dimensional points Q is a sequence

< S1,S2,.....Sn> defined as :

1. S1 is the skyline of Q (data set).

 2. for all i, 1< i ≤ n, Si is the skyline of Q

 3. = Q.

Each Si is called as skyline subset in the skyline order or a

skyline order subset. The n is called as the skyline order

length.

Skyline ordering introduces a skyline-based partitioning of a

given data set, it provides an ordering among the partitions. In

particular, given the partitions in skyline order, the following

hold:

1) No point can dominate any other point in the same partition

or in a previous partition;

2) Any point in a partition, except in the first partition, must

be dominated by some point(s) in the previous partition.

Fig.2: Skyline order

2.2 Size Constrained Skyline Query
Given a set of d-dimensional points P and the skyline order

S=<S1,S2,….Sn> then the size constrained skyline query

Ssoscs is defined as:

Ssoscs = (
) U S’l+1

 where l is defined such that
 ≤ k <

 ,

 and S’l+1 Sl+1 such that |Ssoscs| = k.

S’l+1 is selected from Sl+1 using the set-wide maximization

approach.

2.3 Constrained Skyline query with skyline

ordering
The constrained skyline query with skyline ordering returns

the arbitrary number of skyline points based on the constraints

specified by the user. In order to get the arbitrary number of

points the skyline ordering concept is used. The skyline order

partition the data set based on the dominance relation and

from that the points satisfying the constraints are retrieved.

Then the size constrained skyline query is applied to this to

get the k number of skyline points as specified by the user.

Fig.3: Steps for obtaining constrained skyline query with

skyline ordering

 Table 3.1 Table of notations

Notation Description

Q Argument data set

N Cardinality of Q

d Dimensionality of Q

Sp Skyline of Q

s Size of Sq

 (P) A k-size constrained skyline query on Q

Sp Skyline order of Q

Si i-th skyline order subset of Sq

n Skyline order length

Cp Skyline points satisfying constraints

D

 (p) All points in P that are dominated by p

3. LITERATURE SURVEY

3.1 Skyline Algorithms
There are two categories of skyline algorithms. In the first

category, it does not rely on indexes on the data set.

Theoretical algorithms for maximal vector

computation[1],[3],[19]fall into this first category. The

skyline query is introduced into database by Borzonyi

[5],defines Block Nested Loop(BNL) and Divide-and-

Conquer(D&C) algorithms. A variant of BNL is sort-filter-

skyline (SFS)[10]. Godfrey et al. [12] proposes a

comprehensive analysis of the non index- based

algorithms.Two progressive algorithms are proposed by

Tan.et.al [25],they are Bitmap and Index. The Bitmap method

represents points by means of bit vectors, and employs bitwise

operations, while the Index method utilizes data

transformation and B+ tree indexing. Kosmann.et.al proposes

a Nearest Neighbour method. This method identifies skyline

points by recursively invoking R*-tree based depth-first NN

search over different data portions. Papadias et al. [22]

propose a BBS method that is based on the best first nearest

neighbor algorithm. Zhang et al. [30] propose dynamic

indexing tree for the skyline points that helps to reduce the

CPU costs in sort-based algorithms[10],[12],[2].

A constrained skyline query [23] returns the most interesting

points in the data set defined by the constraints. The

constrained skyline query first considers the whole database

that satisfies the specified constraint.

The weakness of the constrained query algorithm is that it

does not return the arbitrary number of skyline points. So a

new method is needed to return the required result. The

International Journal of Computer Applications (0975 – 8887)

Volume 104 – No 11, October 2014

26

skyline ordering concept and the size constrained skyline

query introduced in [31] is used to solve the weakness of

constrained skyline query.

3.2 Dominance-Based Skyline Query

Derivatives
Several skyline query derivatives have been proposed based

on the dominance relation. Its methodological nature is

considered in all approaches, and also its applicability to the

case where the number of points expected (k) is less than the

skyline size(s) and the case where k>s, and its relevant

algorithm. Based on the nature of an approach four types are

considered, they are point-wise ranking, subspace reference,

set-wide maximization and approximate selection.

The top-k dominating query [22] that retrieves points that

dominate the largest number of points. Yiu and Mamoulis

[28] proposes an efficient algorithm for this problem.The top-

k dominating query is a point-wise ranking type. Chan.et.al

[7] proposes a top-k ranking problem that gives the priority to

points that appear more frequently in subspace skylines. The

concept of strong skyline points proposed by Zhang.et.al [29]

which appear frequently in small sized subspace skylines in

high dimensional spaces. It does not return a fixed number of

points in the case of k<s and not applicable to case of k>s. A

k-dominant skyline for high-dimensional space is proposed by

Chan.et.al [6] does not return a fixed number of points in the

case of k<s, and not applicable for k>s.

Lin et al. [21] propose the top- k representative skyline points

problem. It selects a portion of points from the skyline points

that maximizes the total number of dominated points. In this

the results turn out not to be representative. So Tan et al. [24]

propose the techniques that minimize the distance between a

non representative skyline point and its nearest representative

point in the selection. These approaches are the examples of

set-wide maximization.

Approximately dominating representatives are proposed by

Koltun and Papadimitriou [17] which produces smaller but

not fixed size called Ɛ-ADR skyline. For k>s this approach is

not applicable. Xia et al. [27] define Ɛ-skyline in which user

specified weights are allowed on each dimension. The size of

the Ɛ-skyline can be increased and decreased by varying Ɛ and

the weights.

4. ALGORITHMS

4.1 Constrained Skyline Query

Computation
The algorithm scans the input data set P. For each point p in

P, the constraint is applied and if p satisfies the constraint it is

added into the set W. Then the skyline points are retrieved

from the set W. Each point q in W is compared with each

point r in W. If r dominates q then deletes q from W.

Otherwise if q dominates r then delete r from W. Finally, the

set W contain the skyline points satisfying the constraints.

Algorithm 1: ConstrainSkyQry (dataset P, constraints c)

 1: W=< >

 2: for each point p in P do

 3: begin

 4: if p satisfies the constraints c then

 5: add p to W

 6: end

 7: for each point q in W

 8: begin

 9: for each point r in W

10: begin

11: if r < q then

12: delete q from W

13: else

14: if q < r then

15: delete r from W

16: end

17: return W

18: end

4.2 Skyline order computation
The algorithm takes input data set Q. For each point q in Q, q

is checked against each subset in the current skyline order and

put it into a specified subset or a new subset is created for it.

All subsets of the current skyline order is maintained by the

algorithm. The q s added to the appropriate subset, during this

time some of the points in the skyline order subset is changed

their membership, producing a new subset in the skyline

order.

Algorithm 2: SkyOrdScan (data set Q)

 1: S = < >

 2: for each point q in Q do

 3: begin

 4: for each Si from S1 to Sn in S do

 5: begin

 6: isSky = TRUE; Stmp = NULL

 7: for each point t in Si do

 8: begin

 9: if t < q then

10: isSky = FALSE; break

11: else

12: if q < t then

13: move t from Si to Stmp

14: end

15: if isSky then

16: begin

17: if Si =NULL then

18: Si = {q}; insert Stmp into S after Si

19: else

 begin

20: if Stmp ≠ NULL then

21: AdjustSkyOrd(Stmp, S, i+1)

22: add q to Si

23: end

24: break

25: end

26: end

27: if q does not belong to any Si then

28: append {q} to S

29: end

30. return S

Initially the skyline order S is empty. Each point q in Q is

compared to each point t in each Si from s1 to sn. If q is

dominated by t, break from the loop and go to next subset in

skyline order. If t is dominated q, t will be moved to a

temporary list Stmp. Stmpcontains all points that come from

current Si, the actions are taken to update the skyline order. If

Si is empty, which means that q dominates all points in Si,

{q} is inserted into new subset and Stmp is inserted into S

after the new Si. If Si is not empty, the AdjSkyOrd is called to

adjust the subsets after current Si in S, this is done only if

Stmp is not empty and q will be added into Si. If q doesnot

belong to any Si, {q} will be added to S.

The algorithm for AdjSkyOrd is given below. Three inputs are

taken:Stmp the temporary list contains points excluded from

the current skyline subset, current skyline order S, next subset

index. Starting from Snext, it loops on each subset Si in S. If q

is not dominated by any point in Stmp then each point q in Si

is moved to temporary list temp. If the temp is empty,Stmp is

International Journal of Computer Applications (0975 – 8887)

Volume 104 – No 11, October 2014

27

added to S immediately before Si. If Si is empty after all the

points in it are checked, Stmp replaces it in D.

Otherwise,Stmp and Si are swapped, and continues to next

subset in S. When the loop ends, if Stmp till contains the

points, then it is added to S.

Algorithm 3: AdjSkyOrd (Temporary list Stmp, Current

Skyline order S, Next subset index next)

 1: for each subset Si from Snext to Sn in S do

 2: begin

 3: temp = NULL

 4: for each point p in Si do

 5: begin

 6: if q Ɛ Stmp s.t. q < p then

 7: move p from Si to temp

 8: end

 9: if temp==NULL then

10: add Stmp to S immediately before Si; return

11: merge temp to Stmp

12: if Si== NULL then

13: replace Si in S with Stmp; return

14: swap Si and Stmp

15: end

16: if Stmp ≠ NULL then

17: append Stmp to S

4.3 User Specified Constrained Skyline

Query Algorithm
If the skyline order S of the data set P has been computed

before a user specified constrained skyline query is issued, S

can be used to facilitate the query processing.. The algorithm

takes skyline order S and constraints specified by the user, c

as input. First the set R is initialized to be empty. Then each

point p in each Si sequentially from S1 to the current Sn is

checked with the constraints specified by the user. If the point

p satisfies the constraints, it is added into the set R. Otherwise

the point is not added to the set. The pseudocode for user

specified constrained skyline query is described below.

Algorithm 4: USConstrskyord(Skyline order S, constraints c)

 1: R =<>

 2: for each subset Si from S1 to Sn in S do

 3: begin

 4: for each point p in Si do

 5: begin

 6: if p satisfies the constraints c then

 7: append {p} to R

 8: else

 9: continue

10: end

11: end

12: return R

4.4 Size Constrained On User Specified

Constrained Skyline Query Algorithm
The algorithm takes constraint satisfying points R and the

number of points to be retrieved, k as input. First, the result

set R is initialized to be empty, and a count variable cnt is set

to k (line 1). Then, each subset Ri in R is checked

sequentially. If the cardinality of Ri equals the current count in

cnt, Ri is merged into R, and the loop stops (lines 3-4). If the

cardinality of Ri is smaller than cnt, Ri is merged into R and

the loop continues with an updated cnt (lines 5-6). Otherwise,

rSKY is called to select the last cnt points from Ri, and the

loop stops (line 8). The set-wide maximization approaches

can be used for implementing rSKY. The pseudocode for size
constrained on user specified constrained skyline query is

described below.

Algorithm 5: USCskyord(constrained points R, number of

points to retrieve k)

1: R = Ø ; cnt = k

2: for each subset Ri from R 1 to R t in R do

3: begin

4: if | R i | == cnt then

5: R = R U R i; break

6: else if | R i | < cnt then

7: R = R U R i; cnt = cnt - | R i |

8: else

9: R = R U rSKY(R i ,cnt) ;break

10: end

11: return R

5. EXPERIMENTAL EVALUATION

5.1 Data Sets
The NBA(National Basketball Association) data set is used

for analyzing the algorithms. NBA data set contains regular

season statistics of 19112 NBA players (i.e., data objects) and

generally it follows a correlated data distribution. This data set

contains Player regular season stats, player regular season

career totals, player playoff stats, player playoff career totals,

player all-star game stats, team regular season stats, complete

draft history. In order for the query to be meaningful, only

few important attributes are selected for the NBA players:

games played (gp), points (pts), rebounds (reb), and assists
(ast).

5.2 Comparison of Constrained Skyline

Query with Skyline Ordering and

without Skyline Ordering
For the given data set the constrained skyline query with

skyline ordering is executed. The tables of different

cardinality are used for the comparison. For the same table,

depends on the constraint applied the number of skyline

points it returned varies. In constrained skyline query with

skyline ordering the arbitrary number of skyline points are

obtained. But there is no provision to arbitrary number of

points in constrained skyline query with skyline ordering.

Fig. 4: Comparison of Constrained Skyline Query

Algorithm with Skyline Ordering and without

Skyline Ordering

Figure.4 shows the comparison existing and proposed system.

From the graph it is clear that the constrained skyline query

with skyline ordering gives more number of skyline points

than the constrained skyline query. By comparing the two

systems the proposed system ie, constrained skyline query

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

289 1451 4051

No: of
points

detected
per unit

time

Cardinality

with
skyline
ordering

without
skyline
ordering

International Journal of Computer Applications (0975 – 8887)

Volume 104 – No 11, October 2014

28

with skyline ordering can give the skyline points based on the

user interests. The computation time increases for both the

systems as the cardinality increases. For the constrained

skyline query with skyline ordering takes more time

constrained skyline query because of the skyline ordering

computation. But in terms of number of skyline points

retrieves, the constrained skyline query with skyline ordering

method is better than the constrained skyline query without

skyline ordering.

5. CONCLUSION
Skyline queries find the most interesting points in the

multidimensional data sets. The previous works focus on

getting the arbitrary number of skyline points in normal

skyline query. In order to get the arbitrary number of skyline

points in constrained skyline query, the skyline ordering is

used. The existing technique does not give the sufficient

number of skyline points in some cases. The skyline order

concept is used, in which data set is partitioned using the

skyline dominance relationship. An order among different

partitions is provided by the skyline ordering. An algorithm is

developed for computing the arbitrary number of points for

the constrained skyline query using the concept of skyline

ordering and size constrained skyline query.

By analyzing the proposed method, it is found that it returns

the arbitrary number of points, that provision is not in the

existing method. The algorithm does not give sufficient

number of points in case of small databases. The work can be

extended for the uncertain data.

7. REFERENCES
[1] J.L. Bentley, K.L. Clarkson, and D.B. Levine, “Fast

Linear Expected-Time Algorithms for Computing

Maxima and Convex Hulls,” Proc. First Ann. ACM-

SIAM Symp. Discrete Algorithms (SODA), pp. 179-187,

1990.

[2] I. Bartolini, P. Ciaccia, and M. Patella, “Efficient Sort-

Based Skyline Evaluation,” ACM Trans. Database

Systems, vol. 33, no. 4, pp. 1-49, 2008.

[3] J.L. Bentley, H.T. Kung, M. Schkolnick, and C.D.

Thompson, “On the Average Number of Maxima in a

Set of Vectors and Applications,” J. ACM, vol. 25, no. 4,

pp. 536-543, 1978.

[4] H. Blunck and J. Vahrenhold, “In-Place Algorithms for

Computing (Layers of) Maxima,” Proc. Scandinavian

Workshop Algorithm Theory (SWAT), pp. 363-374,

2006.

[5] S. Borzonyi, D. Kossmann, and K. Stocker, “The Skyline

Operator,” Proc. Int’l Conf. Data Eng. (ICDE), pp. 421-

430, 2001.

[6] C.-Y. Chan, H. Jagadish, K.-L. Tan, A.K. Tung, and Z.

Zhang, “Finding K-Dominant Skylines in High

Dimensional Space,” Proc. ACM SIGMOD, pp. 503-514,

2006.

[7] C.-Y. Chan, H. Jagadish, K.-L. Tan, A.K. Tung, and Z.

Zhang, “On High Dimensional Skylines,” Proc. Int’l

Conf. Extending Database Technology (EDBT), pp. 478-

495, 2006.

[8] Y.-C. Chang, L. Bergman, V. Castelli, C.-S. Li, M.-L.

Lo, and J.R. Smith, “The Onion Technique: Indexing for

Linear Optimization Queries,” Proc. ACM SIGMOD, pp.

391-402, 2000.

[9] J. Chomicki, “Preference Formulas in Relational

Queries,” ACM Trans. Database Systems, vol. 28, no. 4,

pp. 427-466, 2003.

[10] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang, “Skyline

with Presorting,” Proc. Int’l Conf. Data Eng. (ICDE), pp.

717-719, 2003.

[11] B. Cui, H. Lu, Q. Xu, L. Chen, Y. Dai, and Y. Zhou,

“Parallel Distributed Processing of Constrained Skyline

Queries by Filtering,” Proc. Int’l Conf. Data Eng.

(ICDE), pp. 546-555, 2008.

[12] P. Godfrey, R. Shipley, and J. Gryz, “Maximal Vector

Computation in Large Data Sets,” Proc. Int’l Conf. Very

Large Data Bases (VLDB), pp. 229-240, 2005.

[13] G. Hjaltason and H. Samet, “Distance Browsing in

Spatial Database,” ACM Trans. Database Systems, vol.

24, no. 2, pp. 265- 318, 1999.

[14] Z. Huang, C.S. Jensen, H. Lu, and B.C. Ooi, “Skyline

Queries against Mobile Lightweight Devices in

MANETs,” Proc. Int’l Conf. Data Eng. (ICDE), p. 66,

2006.

[15] W. Jin, M. Ester, and J. Han, “Efficient Processing of

Ranked Queries with Sweeping Selection,” Proc.

European Conf. Principles and Practice of Knowledge

Discovery in Databases (PKDD), pp. 527- 535, 2005.

[16] W. Jin, J. Han, and M. Ester, “Mining Thick Skylines

over Large Databases,” Proc. European Conf. Principles

and Practice of Knowledge Discovery in Databases

(PKDD), pp. 255-266, 2004.

[17] V. Koltun and C.H. Papadimitriou, “Approximately

Dominating Representatives,” Proc. Int’l Conf. Data

Theory (ICDT), pp. 204-214, 2005.

[18] D. Kossmann, F. Ramsak, and S. Rost, “Shooting Stars

in the Sky: An Online Algorithm for Skyline Queries,”

Proc. Int’l Conf. Very Large Data Bases (VLDB), pp.

275-286, 2002.

[19] H.T. Kung, F. Luccio, and F.P. Preparata, “On Finding

the Maxima of a Set of Vectors,” J. ACM, vol. 22, no. 4,

pp. 469-476, 1975.

[20] P. Larson and H.Z. Yang, “Computing Queries from

Derived Relations,” Proc. Int’l Conf. Very Large Data

Bases (VLDB), pp. 259- 269, 1985.

[21] X. Lin, Y. Yuan, Q. Zhang, and Y. Zhang, “Selecting

Stars: The k Most Representative Skyline Operator,”

Proc. Int’l Conf. Data Eng. (ICDE), pp. 86-95, 2007.

[22] D. Papadias, Y. Tao, G. Fu, and B. Seeger, “An Optimal

and Progressive Algorithm for Skyline Queries,” Proc.

SIGMOD, pp. 467-478, 2003.

[23] D. Papadias, Y. Tao, G. Fu, and B. Seeger, “Progressive

Skyline Computation in Database Systems,” ACM Trans.

Database Systems, vol. 30, no. 1, pp. 41-82, 2005.

[24] Y. Tao, L. Ding, X. Lin, and J. Pei, “Distance-Based

Representative Skyline,” Proc. Int’l Conf. Data Eng.

(ICDE), pp. 892-903, 2009.

[25] K.L. Tan, P.K. Eng, and B.C. Ooi, “Efficient Progressive

Skyline Computation,” Proc. Int’l Conf. Very Large Data

Bases (VLDB), pp. 301-310, 2001.

International Journal of Computer Applications (0975 – 8887)

Volume 104 – No 11, October 2014

29

[26] A. Vlachou, C. Doulkeridis, K. Nørva°g, and M.

Vazirgiannis, “Skyline-Based Peer-To-Peer Top-k Query

Processing,” Proc. Int’l Conf. Data Eng. (ICDE), pp.

1421-1423, 2008.

[27] T. Xia, D. Zhang, and Y. Tao, “On Skylining with

Flexible Dominance Relation,” Proc. Int’l Conf. Data

Eng. (ICDE), pp. 1397- 1399, 2008.

[28] M.L. Yiu and N. Mamoulis, “Efficient Processing of

Top-k Dominating Queries on Multi-Dimensional Data,”

Proc. Int’l Conf. Very Large Data Bases (VLDB), pp.

483-494, 2007.

[29] Z. Zhang, X. Guo, H. Lu, A.K. Tung, and N. Wang,

“Discovering Strong Skyline Points in High Dimensional

Spaces,” Proc. ACM Int’l Conf. Information and

Knowledge Management (CIKM), pp. 247- 248, 2005.

[30] S. Zhang, N. Mamoulis, and D.W. Cheung, “Scalable

Skyline Computation Using Object-Based Space

Partitioning,” Proc. SIGMOD, pp. 483-494, 2009.

[31] Hua Lu, Christian S. Jensen, Zhenjie Zhang. “Flexible

and Efficient Resolution of Skyline Query Size

Constraints.” IEEE Transactions on Knowledge and Data

Engineering (TKDE).23(7): 991.1005, 2011.

IJCATM : www.ijcaonline.org

