
International Journal of Computer Applications (0975 – 8887)

Volume 104 – No 11, October 2014

14

Mode Enabled Coprocessor for Precision Multipliers

Dinesh Kumar
Research Scholar, SVU,

Gajraula, Amroha (U.P.)

Girish Chander Lall
Former Professor, ECE Deptt.

HCTM Kaithal, Haryana

ABSTRACT
Multiplication and division are the two elementary operations

essential for the core computing process or for the arithmetic

operation. These two operations are also the most critical

functions carried out by the processors, as the multiplication

requires more number of steps for the computation, limiting

the overall performance of the system, and the division has

the highest latency among all arithmetic operations. Thus,

high performance multiplication and division algorithms/

architectures, if available, will considerably improve the

speeds of processing system. Consequently, the need for faster

processing of arithmetic operations, is continuously driving

major improvements in processor technologies, as well as the

search for new arithmetic algorithms. In the present paper

alternate design for single and double precision multiplier

processor is presented.

Keywords : Processor, FPGA, Floating Point

1. INTRODUCTION
Solutions for some computational problems are mainly driven

by the demanded speed and the budget available. If the

highest possible speed is asked for and the algorithm is

known, often the only possible solution is to design an

expensive application specific integrated circuits (ASIC). The

ASIC will certainly fulfill the speed criteria, but if a slight

change in the algorithm occurs, the same ASIC cannot be

used. These have to be a complicated and expensive redesign.

On the other hand, when the required speed is not critical, a

slower and cheaper variant is possible. A general purpose

processor (GPP) will be fast enough to master the task. The

advantage of this solution is that a change in the algorithm can

easily be overcome with a change in the software and

therefore the GPP can be used again. It is clearly that the GPP

has more flexibility than the ASIC, but is slower. Other list of

typical applications includes: random logic, integrating

multiple SPLDs, device controllers, communication encoding

and filtering, small to medium sized systems with SRAM

blocks, and many more.

1.1 Reconfigurable FPGAs
Compared with ASICs and with standard microprocessors,

FPGAs can be reprogrammed or reconfigured. Partial

reconfiguration is the process of configuring a portion of a

field programmable gate array while the other part is still

running / operating. Partial reconfiguration is a design process

that allows a limited, predefined portion of an FPGA to be

reconfigured while the remaining of the device continues to

operate. This is especially valuable where devices operate in a

mission-critical environment and cannot be disrupted while

subsystems are redefined. The ability to partially reconfigure

a device takes the already powerful benefits of reprogram

ability to a much higher level. Normally, reconfiguring an

FPGA requires it to be held in reset while an external

controller reloads a design onto it. Partial reconfiguration

allows for critical parts of the design to continue operating

while a controller either on the FPGA or off of it loads a

partial design into a reconfigurable module. Partial

reconfiguration also can be used to save space for multiple

designs by only storing the partial designs that change

between designs. Partial reconfiguration is not supported on

all FPGAs. Xilinx supports partial reconfiguration on Virtex

II, Virtex II Pro, and Virtex 4 FPGA lines. From the

functionality of the design, partial reconfiguration can be

divided into two groups: Dynamic partial reconfiguration,

also known as an active partial reconfiguration - permits to

change the part of the device while the rest of an FPGA is still

running. Static partial reconfiguration - the device is not

active during the reconfiguration process. While the partial

data is sent into the FPGA, the rest of the device is stopped (in

the shutdown mode) and brought up after the configuration is

completed. Organization of paper is : Section 1 describes

briefly about multipliers & processor. In Section II brief

literature review is presented. Chapter III and IV describe

single & double precision multiplier simulations. In the last

chapter V discusses conclusion of paper.

1.2 Literature Review
Cui et.al.[1] presented a GaAs floating point single precision

multiplier. A modified carry save array is used in conjunction

with Booth's algorithm to reduce the partial product addition

and interconnection. A special rounding technique called

Trailing-1's Predictor is used to speed up the final addition

and rounding. Suthikshn Kumar et.al [2] described FPGA

implementation of artificial neural networks calls for

multipliers of various word length. In their paper, a new

algorithm for generating variable word length multipliers for

FPGA implementation was presented. Akkas et.al [3]

explained that double precision floating-point arithmetic is

inadequate for many scientific computations. There paper

presented the design of a quadruple precision floating-point

multiplier that also supports two parallel double precision

multiplications. Marcus G. et.al [4] presented an

adder/substractor and a multiplier for single precision floating

point numbers in IEEE-754 format. They are fully

synthesizable hardware descriptions in VHDL that are

available for general and educational use. Each one is

presented in a single cycle and pipelined implementation,

suitable for high speed computing, with performance

comparable to other available implementations.Thapliyal et.al

[5] designed a N X N bit parallel overlay multiplier

architecture for high speed DSP operations. The architecture

is based on the vertical and crosswise algorithm of ancient

Indian Vedic Mathematics. Akhter [6] explained a novel

technique for digital multiplication that is quite different from

the conventional method of multiplication like add and shift.

This also gives chances for modular design where smaller

block can be used to design the bigger one.

http://www.xilinx.com/products/silicon_solutions/fpgas/virtex/virtex4/index.htm

International Journal of Computer Applications (0975 – 8887)

Volume 104 – No 11, October 2014

15

1.3 Single Precision Multiplier
A floating point unit is a part of a computer system specially

designed to carry out operations on floating point numbers.

Typical operations are addition, subtraction, multiplication,

division, and square root. Some systems can also perform

various transcendental functions such as exponential or

trigonometric calculations, though in most modern processors

these are done with software library routines. A FPU, also

known as a math coprocessor or numeric coprocessor, is a

specialized coprocessor that manipulates numbers more

quickly than the basic microprocessor circuitry. The FPU does

this by means of instructions that focus entirely on large

mathematical operations.

1.3.1 Multiplication Algorithm
Binary floating-point numbers are stored in a sign-magnitude

form where the most significant bit is the sign bit, exponent is

the biased exponent, and "fraction" or “mantissa” is the

significand minus the most significant bit. Given that eA, eB

and fracA, fracB are the exponents and significands of the

numbers, respectively. A detailed description of the

algorithm Urdhva-tiryabhyam method [7] follows:

1. The hidden bit (24th bit) is made explicit. If ea or eb = 0, it is

made ‘0’, otherwise a ‘1’. At this point 33 bits are needed to

store the number, 8 for the exponent, 24 for the significand

and 1 for the sign.

2. The result of the multiplication is given by the formula:

Sign =signA xor signB, e = eA + eB,

Frac = fracA x fracB

The addition of the exponents is a trivial operation as long as

we keep in mind that they are biased. This means that in order

to get the right result, we have to subtract 127 (bias) from

their sum. The sign of the result is just the XOR of the two

sign bits. The multiplication of the significands is just an

unsigned, integer multiplication.

3. The product of two 24-bit numbers can be 48-bit wide. But

only, 24 bits can be accommodated for the significand.

Therefore, 48-bit result is rounded up to 24 bits. There are

four methods for rounding: Round-to-nearest-even, round-up,

round-down and round-to-zero; in which round-to-nearest-

even is the most widely used (mode enabled).

Since the result precision is not infinite, sometimes rounding

is necessary. To increase the precision of the result and to

enable round-to-nearest-even rounding mode, three bits were

added internally and temporally to the actual fraction: guard,

round, and sticky bit. While guard and round bits are normal

storage holders, the sticky bit is turned ‘1’ whenever a ‘1’ is

shifted out of range.

4. There must be a leading ‘1’ in the significand of any

floating-point number (unless it is not denormalized). To

make the MSB ‘1’ in the result, the bits are shifted left, and

with each shift, the exponent is incremented by 1. This way

normalization is done.

5. The result is assembled into the 32 bit format, neglecting

the 24th bit of the significand.

1.3.2 Design And Simulation
The code is written in HDL, synthesized and simulated using

Virtex 4 (Device: xc4vsx35-10-ff668) and speed grade of -12.

RTL schematic is shown in Fig.1.3.1 and Technology

schematic is shown in Fig.1.3.2

Fig.1.3.1: RTL schematics of FP Multiplier

Fig.1.3.2: Technology Schematics FP Multiplier

1.3.3 Results and Discussions
Synthesis results shows 2688 slices are used out of 15360,

5148 numbers of 4 input LUTs are used out of 30720 and

number of bonded IOBs are 100 out of 448. This is shown in

Fig.1.3.3. Rounding techniques are used which make

processor mode enabled.

Fig.1.3.3: Synthesis results of FP Multiplier

Timing report summary indicates total time taken for process

is 50.239 ns out of which 16.136 ns are used for logic and

34.103 ns are utilized for routing. Simulation Results are

shown in Fig.1.3.4.

http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Floating_point
http://en.wikipedia.org/wiki/Transcendental_function
http://searchwinit.techtarget.com/definition/0,,sid9_gci1146711,00.html
http://searchsmb.techtarget.com/sDefinition/0,,sid44_gci212568,00.html
http://searchsmb.techtarget.com/sDefinition/0,,sid44_gci211786,00.html
http://en.wikipedia.org/wiki/Signed_number_representations#Sign-and-magnitude
http://en.wikipedia.org/wiki/Sign_bit
http://en.wikipedia.org/wiki/Exponent_bias
http://en.wikipedia.org/wiki/Significand

International Journal of Computer Applications (0975 – 8887)

Volume 104 – No 11, October 2014

16

Fig.1.3.4: Simulation results of FP Multiplier

Power analysis shows total power of 0.412W out of which

0.393W is quiescent power and 0.018W dynamic powers.

This is shown in Fig.1.3.5

Fig. 1.3.5: Power analysis

1.3.4 Layout of 2*2 multiplier
Layout of 2*2 multiplier is shown in Fig.1.3.6.

Fig.1.3.6: Layout of 2*2 Multiplier

1.4 Double Precision Multiplier
Design and Simulation

The code is written in HDL, synthesized and simulated using

Virtex 4 (Device : xc4vsx35-10-ff668) and speed grade of -

12. RTL schematics is shown in Fig.1.4.1 and Technology

schematics is shown in Fig 1.4.2.

Fig.1.4.1: RTL Schematics of Double Precision Multiplier

Fig.1.4.2: Technology Schematics of Double Precision

Multiplier

Results and Discussions
Synthesis results shows 12447 slices are used out of 15360,

22789 numbers of 4 input LUTs are used out of 30720 and

number of bonded IOBs are 195 out of 448. This is shown in

Fig1.4.3.

Fig.1.4.3: Synthesis results of Double Precision Multiplier

Timing report summary indicates total time taken for process

is 203.817 ns out of which 79,879 ns are used for logic and

18.755ns are utilized for routing. Simulation results are shown

in Fig.1.44

Fig.1.4.4: Simulation Results of Double Precision

Multiplier

International Journal of Computer Applications (0975 – 8887)

Volume 104 – No 11, October 2014

17

Comparison with Booth Multiplier
When compared with booth multiplier, it is observed that

numbers of slices used are 13055 out of 15360 which is 84%

of total available and using Vedic method it is 81 %.which

saves 3% area.

1.5 Conclusions
Synthesis results of single precision multiplier shows 2688

slices are used out of 15360, 5148 numbers of 4 input LUTs

are used out of 30720 and number of bonded IOBs are 100 out

of 448. Timing report summary indicates total time taken for

process is 50.239 ns out of which 16.136 ns are used for logic

and 34.103 ns are utilized for routing and Synthesis results of

double precision multiplier shows 12447 slices are used out of

15360, 22789 numbers of 4 input LUTs are used out of 30720

and number of bonded IOBs are 195 out of 448. Timing report

summary indicates total time taken for process is 203.817 ns

out of which 79,879 ns are used for logic and 18.755ns are

utilized for routing. This is found to be more area efficient

than booth multiplier.

2. REFERENCES
[1] Cui, Burgess, Liebelt, Eshraghiant, “A GaAs IEEE

Floating Point Standard Single Precision

Multiplier”, Proceedings of the 12th IEEE Symposium on

Computer Arithmetic, Bath, UK, pp-91-97, 1995.

[2] Suthikshn, Kevin ,Patlaniswami, “A Fast-Multiplier

Generator for FPGAs” Proceedings of the 8 th

International Conference on VLSI Design, India, pp 53-

56, 1995.

[3] Akkas¸Schulte, “A Quadruple Precision and Dual Double

Precision Floating-Point Multiplier”, Proceedings of the

Euromicro Symposium on Digital Systems Design, IEEE

Computer Society USA, pp-76-79, 2003.

[4] Marcus, Hinojosa, Avila, Flores, “A Fully Synthesizable

Single-Precision, Floating-Point Adder/Substractor and

Multiplier in VHDL for General and Educational Use”,

Proceedings of the 5th IEEE International Conference on

Devices Circuits and Systems, Dominican Republic, pp-

319-323,2004.

[5] Vishal, Thapliyal, “High Speed Efficient N X N Bit

Multiplier Based on Ancient Indian Vedic Mathematics”,

Proceedings of the International Conference on VLSI,

Las Vegas, United States, pp 361-365, 2003.

[6] Akhter, “VHDL Implementation of Fast NxN

Multiplier”, 18th European Conference, Sevilla, Spain,

pp 472-475, 2007.

[7] Jagadguru Swami Sri Bharath, Krsna Tirathji, “Vedic

Mathematics or Sixteen Simple Sutras from the Vedas”,

Motilal Banarsidas, Varanasi, India, 1986.

[8] Holt, Hwang, “Finite Precision Error Analysis of Neural

Network Hardware Implementations”, IEEE Transaction

on Computers, Vol. 42, No. 3, pp. 281-290, 1993.

[9] Ciminiera , Valenzano, “Low Cost Serial Multiplier for

High Speed Specialized Processors”, IEEE Proceedings,

Vol. 135, No.5, pp. 259–265, 1988.

[10] Sriraman, Prabakar, “FPGA Implementation of High

Performance Multiplier Using Squarer”, International

Journal of Advanced Computer Engineering &

Architecture Vol. 2, No. 2 pp-121-128, 2012.

[11] Myjak, Frias, “A Medium-Grain Reconfigurable

Architecture for DSP: VLSI Design, Benchmark

Mapping, and Performance”, IEEE Transaction on VLSI

Systems, Vol.16, No.1, pp.14-23, 2008.

[12] Pradhan, Panda, “Design and Implementation of Vedic

Multiplier”, A.M.S.E. Journal, Vol.15, No.2, pp.1-19,

2010.

[13] Pradhan, Panda, Sahu, “Speed Comparison of 16x16

Vedic Multipliers”, International Journal of Computer

Applications,Vol. 21, No.6, pp-16-19, 2011.

[14] Ozbilen Gok, “A Single/Double Precision Floating-Point

Multiplier Design for Multimedia Applications”, Journal

of Electrical & Electronics Engineering, Vol. 1, pp-827-

831, 2009.

[15] Tull, “High-Speed Complex Number Multiplier and

Inner-Product Processor”, IEEE Transactions on Circuits

and Systems, Vol. 3, pp.640-643, 2002.

[16] Nan, Chen, “Low-Power Multipliers by Minimizing

Switching Activities of Partial Products”, IEEE

International Symposium on Circuits and Systems, Vol.

4, pp 93-69, 2002.

[17] Chen, Wang, Wu, “Minimization of Switching Activities

of Partial Products for Designing Low Power

Multipliers,” IEEE Transactions on VLSI. Vol. 11, No.

3, pp. 418–433, 2003.

IJCATM : www.ijcaonline.org

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=3236
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=3858
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=3858
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9596

