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ABSTRACT 
Multiplication and division are the two elementary operations 

essential for the core computing process or for the arithmetic 

operation. These two operations are also the most critical 

functions carried out by the processors, as the multiplication 

requires more number of steps for the computation, limiting 

the overall performance of the system, and the division has 

the highest latency among all arithmetic operations. Thus, 

high performance multiplication and division algorithms/ 

architectures, if available, will considerably improve the 

speeds of processing system. Consequently, the need for faster 

processing of arithmetic operations, is continuously driving 

major improvements in processor technologies, as well as the 

search for new arithmetic algorithms. In the present paper 

alternate design for single and double precision multiplier 

processor is presented. 
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1. INTRODUCTION 
Solutions for some computational problems are mainly driven 

by the demanded speed and the budget available. If the 

highest possible speed is asked for and the algorithm is 

known, often the only possible solution is to design an 

expensive application specific integrated circuits (ASIC). The 

ASIC will certainly fulfill the speed criteria, but if a slight 

change in the algorithm occurs, the same ASIC cannot be 

used. These have to be a complicated and expensive redesign. 

On the other hand, when the required speed is not critical, a 

slower and cheaper variant is possible. A general purpose 

processor (GPP) will be fast enough to master the task. The 

advantage of this solution is that a change in the algorithm can 

easily be overcome with a change in the software and 

therefore the GPP can be used again. It is clearly that the GPP 

has more flexibility than the ASIC, but is slower. Other list of 

typical applications includes: random logic, integrating 

multiple SPLDs, device controllers, communication encoding 

and filtering, small to medium sized systems with SRAM 

blocks, and many more. 

1.1 Reconfigurable FPGAs 
Compared with ASICs and with standard microprocessors, 

FPGAs can be reprogrammed or reconfigured. Partial 

reconfiguration is the process of configuring a portion of a 

field programmable gate array while the other part is still 

running / operating. Partial reconfiguration is a design process 

that allows a limited, predefined portion of an FPGA to be 

reconfigured while the remaining of the device continues to 

operate. This is especially valuable where devices operate in a 

mission-critical environment and cannot be disrupted while 

subsystems are redefined. The ability to partially reconfigure 

a device takes the already powerful benefits of reprogram 

ability to a much higher level. Normally, reconfiguring an 

FPGA requires it to be held in reset while an external 

controller reloads a design onto it. Partial reconfiguration 

allows for critical parts of the design to continue operating 

while a controller either on the FPGA or off of it loads a 

partial design into a reconfigurable module. Partial 

reconfiguration also can be used to save space for multiple 

designs by only storing the partial designs that change 

between designs. Partial reconfiguration is not supported on 

all FPGAs.  Xilinx supports partial reconfiguration on Virtex 

II, Virtex II Pro, and Virtex 4 FPGA lines. From the 

functionality of the design, partial reconfiguration can be 

divided into two groups: Dynamic partial reconfiguration, 

also known as an active partial reconfiguration - permits to 

change the part of the device while the rest of an FPGA is still 

running. Static partial reconfiguration - the device is not 

active during the reconfiguration process. While the partial 

data is sent into the FPGA, the rest of the device is stopped (in 

the shutdown mode) and brought up after the configuration is 

completed. Organization of paper is : Section 1 describes 

briefly about multipliers & processor. In Section II brief 

literature review is presented. Chapter III and IV  describe 

single & double precision multiplier simulations. In the last 

chapter V discusses conclusion of paper. 

1.2 Literature Review  
Cui et.al.[1] presented a GaAs  floating point  single precision 

multiplier. A modified carry save array is used in conjunction 

with Booth's algorithm to reduce the partial product addition 

and interconnection. A special rounding technique called 

Trailing-1's Predictor is used to speed up the final addition 

and rounding. Suthikshn Kumar et.al [2] described FPGA 

implementation of artificial neural networks calls for 

multipliers of various word length. In their paper, a new 

algorithm for generating variable word length multipliers for 

FPGA implementation was presented. Akkas et.al [3] 

explained that double precision floating-point arithmetic is 

inadequate for many scientific computations. There paper 

presented the design of a quadruple precision floating-point 

multiplier that also supports two parallel double precision 

multiplications. Marcus G. et.al [4] presented an 

adder/substractor and a multiplier for single precision floating 

point numbers in IEEE-754 format. They are fully 

synthesizable hardware descriptions in VHDL that are 

available for general and educational use. Each one is 

presented in a single cycle and pipelined implementation, 

suitable for high speed computing, with performance 

comparable to other available implementations.Thapliyal et.al 

[5] designed a N X N bit parallel overlay multiplier 

architecture for high speed DSP operations. The architecture 

is based on the vertical and crosswise algorithm of ancient 

Indian Vedic Mathematics. Akhter [6] explained a novel 

technique for digital multiplication that is quite different from 

the conventional method of multiplication like add and shift. 

This also gives chances for modular design where smaller 

block can be used to design the bigger one.  

 

 

 

http://www.xilinx.com/products/silicon_solutions/fpgas/virtex/virtex4/index.htm
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1.3   Single Precision Multiplier 
A floating point unit is a part of a computer system specially 

designed to carry out operations on floating point numbers. 

Typical operations are addition, subtraction, multiplication, 

division, and square root. Some systems can also perform 

various transcendental functions such as exponential or 

trigonometric calculations, though in most modern processors 

these are done with software library routines. A FPU, also 

known as a math coprocessor or numeric coprocessor, is a 

specialized coprocessor that manipulates numbers more 

quickly than the basic microprocessor circuitry. The FPU does 

this by means of instructions that focus entirely on large 

mathematical operations.  

 

1.3.1  Multiplication Algorithm 
Binary floating-point numbers are stored in a sign-magnitude 

form where the most significant bit is the sign bit, exponent is 

the biased exponent, and "fraction" or “mantissa” is the 

significand minus the most significant bit. Given that eA, eB 

and fracA, fracB are the exponents and significands of the 

numbers, respectively.   A detailed description of the 

algorithm Urdhva-tiryabhyam method [7] follows: 

1. The hidden bit (24th bit) is made explicit. If ea or eb = 0, it is 

made ‘0’, otherwise a ‘1’. At this point  33 bits  are needed to  

store the number, 8 for the exponent, 24 for the significand 

and 1 for the sign.              

2. The result of the multiplication is given by the formula: 

Sign =signA xor signB, e = eA + eB,  

Frac = fracA x fracB 

The addition of the exponents is a trivial operation as long as 

we keep in mind that they are biased. This means that in order 

to get the right result, we have to subtract 127 (bias) from 

their sum. The sign of the result is just the XOR of the two 

sign bits. The multiplication of the significands is just an 

unsigned, integer multiplication.  

3. The product of two 24-bit numbers can be 48-bit wide. But 

only, 24 bits can be accommodated for the significand. 

Therefore, 48-bit result is rounded up to 24 bits. There are 

four methods for rounding: Round-to-nearest-even, round-up, 

round-down and round-to-zero; in which round-to-nearest-

even is the most widely used (mode enabled).  

Since the result precision is not infinite, sometimes rounding 

is necessary. To increase the precision of the result and to 

enable round-to-nearest-even rounding mode, three bits were 

added internally and temporally to the actual fraction: guard, 

round, and sticky bit. While guard and round bits are normal 

storage holders, the sticky bit is turned ‘1’ whenever a ‘1’ is 

shifted out of range.  

4. There must be a leading ‘1’ in the significand of any 

floating-point number (unless it is not denormalized). To 

make the MSB ‘1’ in the result, the bits are shifted left, and 

with each shift, the exponent is incremented by 1. This way 

normalization is done. 

5. The result is assembled into the 32 bit format, neglecting 

the 24th bit of the significand. 

 

1.3.2 Design And Simulation 
The code is written in HDL, synthesized and simulated using 

Virtex 4 (Device: xc4vsx35-10-ff668) and speed grade of -12. 

RTL schematic is shown in Fig.1.3.1 and Technology 

schematic is shown in Fig.1.3.2  

 

 

Fig.1.3.1: RTL schematics of FP Multiplier  

 

Fig.1.3.2: Technology Schematics FP Multiplier 

1.3.3 Results and Discussions 
Synthesis results shows 2688 slices are used out of 15360, 

5148 numbers of 4 input LUTs are used out of 30720 and 

number of bonded IOBs are 100 out of 448. This is shown in 

Fig.1.3.3. Rounding techniques are used which make 

processor mode enabled.                       

 

Fig.1.3.3: Synthesis results of   FP Multiplier 

Timing report summary indicates total time taken for process 

is 50.239 ns out of which 16.136 ns are used for logic and 

34.103 ns are utilized for routing. Simulation Results are 

shown in Fig.1.3.4.  

http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Floating_point
http://en.wikipedia.org/wiki/Transcendental_function
http://searchwinit.techtarget.com/definition/0,,sid9_gci1146711,00.html
http://searchsmb.techtarget.com/sDefinition/0,,sid44_gci212568,00.html
http://searchsmb.techtarget.com/sDefinition/0,,sid44_gci211786,00.html
http://en.wikipedia.org/wiki/Signed_number_representations#Sign-and-magnitude
http://en.wikipedia.org/wiki/Sign_bit
http://en.wikipedia.org/wiki/Exponent_bias
http://en.wikipedia.org/wiki/Significand
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Fig.1.3.4: Simulation results of FP Multiplier  

Power analysis shows total power of 0.412W out of which 

0.393W is quiescent power and 0.018W dynamic powers. 

This is shown in Fig.1.3.5 

Fig. 1.3.5: Power analysis 

1.3.4 Layout of 2*2 multiplier  
Layout  of 2*2 multiplier is shown in Fig.1.3.6. 

 

 
Fig.1.3.6: Layout of 2*2 Multiplier 

1.4 Double Precision Multiplier 
Design and Simulation 

The code is written in HDL, synthesized and simulated using 

Virtex 4 (Device : xc4vsx35-10-ff668) and speed grade of -

12. RTL schematics is shown in Fig.1.4.1 and Technology 

schematics is shown in Fig 1.4.2. 

 

Fig.1.4.1: RTL Schematics of Double Precision Multiplier 

 

Fig.1.4.2: Technology Schematics of Double Precision 

Multiplier 

Results and Discussions 
Synthesis results shows 12447 slices are used out of 15360, 

22789 numbers of 4 input LUTs are used out of 30720 and 

number of bonded IOBs are 195 out of 448. This is shown in 

Fig1.4.3. 

 

 

Fig.1.4.3: Synthesis results of Double Precision Multiplier 

Timing report summary indicates total time taken for process 

is 203.817 ns out of which 79,879 ns are used for logic and 

18.755ns are utilized for routing. Simulation results are shown 

in Fig.1.44

 
 

Fig.1.4.4: Simulation Results of Double Precision 

Multiplier 
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Comparison with Booth Multiplier 
When compared with booth multiplier, it is observed that 

numbers of slices used are 13055 out of 15360 which is   84% 

of total available and using Vedic method it is 81 %.which 

saves 3% area.  

 

1.5 Conclusions  
Synthesis results of single precision multiplier shows 2688 

slices are used out of 15360, 5148 numbers of 4 input LUTs 

are used out of 30720 and number of bonded IOBs are 100 out 

of 448. Timing report summary indicates total time taken for 

process is 50.239 ns out of which 16.136 ns are used for logic 

and 34.103 ns are utilized for routing and Synthesis results of 

double precision multiplier shows 12447 slices are used out of 

15360, 22789 numbers of 4 input LUTs are used out of 30720 

and number of bonded IOBs are 195 out of 448. Timing report 

summary indicates total time taken for process is 203.817 ns 

out of which 79,879 ns are used for logic and 18.755ns are 

utilized for routing. This is found to be more area efficient 

than booth multiplier. 
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