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ABSTRACT 

Congestion is one of the major problems that affects on 

throughput, delay, losses and other performance metrics of the 

network. During the last decade, several congestion control 

protocols have been proposed to overcome this problem. The 

most widely protocols are TCP Tahoe, Reno, New Reno, 

Vegas and SACK. In this paper, a new approach is developed 

to enhance most of the existing host-to-host congestion 

control protocols. The main idea is to adjust the congestion 

window size (cwnd) dynamically according to the available 

bandwidth of the network. In the proposed strategy, instead of 

increasing the cwnd size linearly by the AIMD, the cwnd is 

increased according to the available bandwidth of the 

network. Also, instead of decreasing the cwnd to half of its 

size as congestion happens, the cwnd is decreased to latest 

value that was used effectively without losses. The proposed 

approach is implemented in the TCP Tahoe, Reno, Newreno, 

Vegas and SACK and the performance is evaluated by using 

the network simulator NS-2 considering a realistic network 

topology generated by the GT-ITM. 
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1. INTRODUCTION 
With the dramatic growth and significant increase of the 

internet, an important problem called congestion is arising. 

Congestion occurs when the number of transmitted packets by 

the sender exceeds the capacity of the network. Generally, 

congestion has significant impact on the network 

performance. If congestion happens, the network throughput 

will decrease, packet delay and losses will increase and that 

causes the network performance to degrade [1]. 

Over the last decade, several congestion control protocols 

have been proposed by researchers to overcome the 

congestion problem and to improve the network performance. 

They try to keep number of packets being transmitted below 

the level at which performance falls off. The proposed 

congestion control protocols may be classified into two 

categories; (i) Network-assisted congestion control protocols, 

taken by routers and (ii) Host-to-Host congestion control 

protocols, taken by the Transmission Control Protocol (TCP) 

at the end hosts and are mostly achieved in transport layer. 

This paper concerns with the Host-to-Host congestion control 

protocols.  

TCP is a reliable window based connection oriented end-to-

end protocol. It ensures reliability by making the receiver to 

acknowledge the segments that it receives. It sets a timer 

whenever it sends a segment. If it does not receive an 

acknowledgement from the receiver within the ‘time-out’ 

interval, then it retransmits the segment. Many congestion 

control mechanisms were developed based on the TCP to 

overcome the congestion problem. TCP Tahoe is the first 

proposal developed by Jacobson and Karles [2]. Then, various 

versions were developed based on Tahoe including; TCP 

Reno [3], Newreno [4], TCP Vegas [5] and SACK [6]. In [7], 

the effects of using the End to End protocols in the Internet 

are studied.  

Recently, several modifications are released aiming to 

overcome the congestion problem [8-22]. However, most of 

them use the Additive Increase Multiplicative Decrease 

(AIMD) strategy for adjusting the congestion window (cwnd). 

This strategy is inefficient in terms of network utilization and 

unfair in throughput. This is because, the AIMD strategy 

blindly updates the congestion window (cwnd) size statically 

by a fixed value regardless the network status. In this paper, a 

new strategy is proposed to dynamically adjust the cwnd size 

based on the available bandwidth of the network. The aim is 

to overcome the congestion problem, increase the network 

throughput and decrease packet delay and losses. 

This paper is organized as follows. The Host-to-Host 

congestion control protocols are described in Section 2. 

Section 3 presents the problem of the current congestion 

control protocols while the proposed strategy is introduced in 

Section 4. Section 5 presents the simulation results with 

comparative study between the network behavior under the 

current congestion mechanisms and under the proposed 

modifications. Finally, the concluding remarks and the 

direction for future work are presented in Section 6.  

2. HOST-TO-HOST CONGESTION 

CONTROL 
The main idea of the Host-to-Host congestion control 

protocols is based on implementing some mechanisms at the 

end hosts of the network rather than in the intermediate nodes 

(routers) to organize packets flow in the network. In this 

section, the most widely Host-to-Host congestion control 

protocols; namely; TCP Tahoe, Reno, New Reno, SACK and 

Vegas, are presented. 

2.1 TCP Tahoe 
TCP Tahoe is the first developed congestion control protocol. 

It consists of three mechanisms: Slow Start, Congestion 

Avoidance, and Fast Retransmit [2]. 
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Slow Start operates at the sender by employing two windows, 

called congestion window (cwnd) and advertised window [7]. 

When a new connection is established, the cwnd is initialized 

to one segment. The sender then starts by transmitting one 

segment and waiting for ACK. Each time an ACK is received, 

the cwnd is increased by one segment. That is, the cwnd is 

incremented from one to two, and the two segments are sent. 

Then, the congestion window is increased to four when each 

of those two segments is acknowledged, and so on. This 

provides an exponential growth behavior [7]. This behavior 

continues until the cwnd reaches slow start threshold 

(ssthresh) or packet loss detection. Once the cwnd reaches the 

ssthresh, TCP goes into congestion avoidance. While, if a 

packet loss occurs, the ssthresh is set to half of the current 

cwnd (the multiplicative decrease), the cwnd is set to 1 and 

the slow start begins again. 

Slow Start Algorithm: 

Initial: cwnd = 1; 

For (each packet Acked) 

       cwnd++; 

Until (congestion event, or, cwnd > ssthresh) 

Congestion avoidance starts when the cwnd reaches the 

ssthresh. This Mechanism is used to slow the increasing rate 

of the cwnd, where the cwnd increases by one segment every 

Round Trip Time (RTT). This phase uses the AIMD strategy 

and continues until congestion is detected. That is, on each 

successful ACK, the cwnd is increased by 1/cwnd (Additive 

Increase), implying linear growth instead of exponential 

growth. But, if congestion is detected by timeout, the ssthresh 

is set to one half of the current cwnd (Multiplicative 

Decrease) and the cwnd is reset to one segment, which 

automatically puts the sender into Slow Start mode. If 

congestion was detected by duplicate ACKs, the Fast 

Retransmit algorithm is invoked. 

Congestion Avoidance Algorithm: 

/* slow start is over and cwnd > ssthresh */ 

Every Ack: 

     cwnd = cwnd + (1/cwnd)           /* normal operation */ 

Until (Timeout or 3 DUPACKs)    /*loss occurred*/ 

Fast Retransmit speeds up the retransmission process. It 

starts when congestion is detected by 3 duplicate ACK. This 

phase performs a retransmission of what appears to be 

missing segment, without waiting for a retransmission timer 

to expire. 

Fast Retransmit Algorithm: 

After receiving 3 DUPACKs; 

Resend lost packet;                 /*avoid waiting timeout*/ 

2.2 TCP Reno 
TCP Reno is the most widely adopted Internet protocol [3]. It 

employs four transmission phases; Slow Start, Congestion 

Avoidance, Fast Retransmit, and Fast Recovery. In Reno, the 

behavior the fast retransmit of the TCP Tahoe is modified to 

include the fast recovery phase. The fast retransmit and fast 

recovery algorithms are usually implemented together [8] as 

follows. When 3 duplicate ACK is received, Reno retransmits 

the missing segment (Fast Retransmit), sets the ssthresh to 

one-half the current cwnd, and sets cwnd to ssthresh plus 3. 

This inflates the congestion window by the number of 

segments that have left the network and which the other end 

has cached. Each time another duplicate ACK arrives, 

increment cwnd by one segment. This inflates the congestion 

window for the additional segment that has left the network. 

When receiving new ACK that acknowledges new data, Reno 

sets cwnd to ssthresh and works in congestion avoidance. 

Fast recovery algorithm: 

After fast retransmit; 

         /*do not enter slow start*/ 

ssthresh=cwnd/2; 

cwnd = 3 + ssthresh; 

Each DACK received; 

         cwnd++; 

         send new packet if allowed; 

After new ACK; 

      cwnd=ssthresh; 

           return to congestion avoidance; 

Note that: TCP Reno improves TCP performance in the case 

of a single packet loss within the same window of data. 

However, performance of TCP Reno suffers in the case of 

multiple packet losses within the same window of data [4]. 

2.3 TCP NewReno  
TCP NewReno is an enhanced version of the TCP Reno to 

combat multiple packet losses from a single window without 

entering into fast recovery multiple times as Reno [4]. In 

entering fast recovery, the ssthresh is set to one-half the 

current congestion window (cwnd) but no less than two 

segments and the cwnd is set to the ssthresh plus three. TCP 

NewReno continues in fast recovery until all the packets 

which were outstanding during the start of the fast recovery 

have been acknowledged. This strategy helps to combat 

multiple losses without entering into fast recovery multiple 

times as TCP Reno or causing timeout. During fast recovery, 

the TCP NewReno distinguishes between a partial Ack and a 

full Ack. A partial acknowledgement is considered as an 

indication that the packet following the acknowledged one in 

the sequence space has been lost and should be retransmitted. 

Therefore, TCP NewReno immediately retransmits the other 

lost packet indicated by the partial acknowledgement and 

remains in fast recovery. On the other hand, a full 

acknowledgement acknowledges some but not all of the 

outstanding data. TCP NewReno exits fast recovery when all 

data in the window is acknowledged. When the sender 

receives new acknowledgement, it exits that phase putting its 

cwnd to ssthresh and start congestion avoidance algorithm. 

Note that, whenever a timeout occur, the ssthresh is set to one 

half of the current congestion window and the congestion 

window is set to one and the sender enters into the slow-start 

phase. In NewReno, 

Partial ACK → stay in fast recovery.       

Full ACK → Exit fast recovery.  

 

2.4 TCP Vegas 
TCP Vegas emphasizes packet delay, rather than packet loss, 

as a signal to determine the rate at which packets may send 

[5]. It detects congestion at an incipient stage based on the 

increasing Round-Trip Time (RTT). If the RTT is too small, 

then the sending rate on the connection is less than the 

bandwidth available while if the value is too large then it will 

overrun the connection.  Generally, Vegas works by 

monitoring the difference between the expected and the actual 

flow rates and adjusts the congestion window as follows: 

Expected flow rate = current cwnd / base RTT. 

Actual flow rate = current cwnd /RTT. 

Difference = (Expected – Actual)*base RTT. 
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cwnd continuously updated to:   

              cwnd+1;        if difference  < α 

              cwnd-1;         if difference  > β 

              cwnd;            otherwise 

Where, α, β are thresholds more than 0 [5]. 

2.5 TCP SACK 
Selective Acknowledgment (SACK) is a strategy that makes 

the receiver to inform the sender about all segments that have 

arrived successfully. So, the sender retransmits only the 

segments that have actually been lost [6]. SACK ads to the 

ACK an option field containing a pair of sequence numbers 

for blocks of data received out of order with maximum size 40 

bytes [6]. When multiple packets dropped from one window, 

the sender can selectively resend lost packets depending on 

the sack option field in the acknowledgement. SACK adds 

variable called pipe to the Fast Recovery algorithm to 

represent the estimated number of packets that stand in the 

path. The TCP sender sends packets when the pipe variable < 

cwnd. Every time it receives an ACK it reduces the pipe by 1 

and every time it retransmits a segment it increments it by 1. 

3. PROBLEM STATEMENT 
From the above discussion, it is clear that, most of the 

proposed protocols depend on the Additive Increase 

Multiplicative Decrease (AIMD) strategy in adjusting cwnd 

and so the sending rate. The AIMD strategy makes the cwnd 

to be increased by one packet per window for each 

acknowledge in the congestion avoidance phase. Also, the 

AIMD strategy forces the cwnd to set to half of its value as 

long as a packet drop is detected. This behavior inefficiently 

utilizes the available capacity of the network. In case of no 

congestion, it leads to a significant decrease of network 

throughput since the number of packets to be transmitted is 

less than the available capacity of the network. On the other 

hand, when congestion is detected, it blindly halves the cwnd 

which in turn decreases the packet sending rate and so 

decreases the network utilization. 

To overcome this problem, a new strategy is required to 

adjust the sending rate at the end hosts according to the 

available bandwidth of the network at any time. 

4. PROPOSED STRATEGY 
This section presents a new strategy for adjusting (increasing 

and decreasing) the cwnd size dynamically based on the 

available bandwidth of the network. The main idea is to 

estimate the available bandwidth of the network at any time 

and then adjust the sending rate at the TCP sender according 

to the estimated bandwidth. This strategy could be used 

instead of the AIMD strategy to improve the Host-to-Host 

congestion control protocols. 

4.1 Dynamic Increasing Strategy 
The main idea of dynamic increasing is to estimate the 

available bandwidth of the network with each arrival of an 

ACK at the sender. Then, depending on the bandwidth ratio 

(BWratio) between the current estimated bandwidth (BWcurrent) 

and the previous estimated bandwidth (BWprevious), increase 

the congestion window (cnwd).  

To estimate the bandwidth at any moment k, let an ACKk is 

arrived at the sender at time tk. This implies that the 

corresponding amount of data dk has been received by the 

receiver. So the bandwidth bk that used by the connection to 

transfer the data dk can be measured as: 

bk = dk / (tk-tk-1)  

Where, tk-1 is the arrival time of the previous ACK at previous 

moment k-1.  

The bandwidth estimation (BWE) starts at the congestion 

avoidance phase where the increase of cwnd is very slow 

(1/cwnd) and applied as follows. 

Modified Congestion avoidance 

/*cwnd > ssthresh*/ 

For every new ACK:  

     Estimate BWE; 

     Set BWcurrent = BWE; 

      BWratio=BWcurrent/BWprevious; 

      BWprevious = BWcurrent; 

      If (1 <= BWratio < 1.5)  

           cwnd = cwnd + 1/cwnd ; 

      Else If (BWratio >= 1.5)  

           cwnd = cwnd + 2/cwnd ; 

      Else if (BWratio < 1)  

              cwnd = cwnd + 0 ; 

Until (timeout or 3 DUPACKs); 

4.2 Dynamic Decreasing Strategy  
The main idea of dynamic decreasing is to avoid decreasing 

the cwnd to half of its value when detecting congestion but 

decrease the cwnd to an average value between the current 

value and the last value before congestion. To do so, with 

each ACK, a variable called cwndp is set to the present value 

of the cwnd before its updating. If congestion is detected, the 

cwnd is set to the average value between the current value of 

the cwnd and the previous value that stored in the variable 

cwndp. Decreasing the cwnd to the average value maintains 

the network throughput, since this behavior guarantees a large 

number of packets in the cwnd. 

/*in case of no congestion*/ 

cwndp = cwnd; 

Update cwnd; 

if  congestion 

         /* Do not use AIMD */ 

cwnd= int (cwndp + cwnd) / 2; 

 

5. SIMULATION RESULTS 
To study the effect of the suggested modifications on the 

behavior of the Host-to-Host congestion control protocols, the 

cwnd size of the existing protocols is adapted by the new 

proposed strategy. Then, the network performance is tested by 

using the network simulation NS2 [22] and the results are 

compared with that obtained by applying the original 

protocols considering different topologies; simple and real 

AT&T topology. The network topology is created by using 

the topology generator GT-ITM [23]. In each topology, the 

comparison is done by considering throughput, packet delay, 

and losses. In this study, the main widely existing congestion 

control protocols; Tahoe, Reno, Newreno, and SACK are 

considered in the evaluation. 

5.1 Scenario 1: Simple Topology  

The simple topology consists of 12 nodes (6 sources and 6 

destinations) and two routers (N0 and N1), as shown in Figure 

1. The link between the routers has bandwidth of 1.5 Mbps 

and delay of 50ms and acts as a bottleneck link of this 

topology. TCP connections are established between the 

sources and the sinks to transfer File Transfer Protocol (FTP) 

application. The FTP application starts at the first second and 

ends at 20s. 
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Figure 1:  Simple Network Topology 

5.1.1 Effect of modifications on Throughput 
This section presents the effect of the proposed modifications 

on throughput. Throughput is used to identify the number of 

packets sent by the source and received by the destination 

correctly. In other words, it means the sum of the data that are 

delivered to all terminals over the time in the network. Figure 

2 shows the network throughput of both the original and 

modified congestion control protocols after adding the 

proposed modifications. Figure 2(a) shows the throughput of 

Tahoe and Tahoe+, Figure 2(b) shows the throughput of Reno 

and Reno+, Figure 2(c) shows the throughput of NewReno 

and NewReno+, while Figure 2(d) shows the throughput of 

SACK and SACK+. From the figures, the network throughput 

is increased in the case of applying the proposed 

modifications with the existing protocols. This indicates that 

the network throughput is improved by changing the cwnd 

size according to the estimated bandwidth. 

5.1.2 Effect of modifications on Delay 
This section presents the effect of the proposed modifications 

on packet delay. Figure 3 shows the packet delay of both the 

original and modified congestion control protocols after 

adding the proposed modifications. Figure 3(a) shows the 

delay of Tahoe and Tahoe+, Figure 3(b) shows the delay of 

Reno and Reno+, Figure 3(c) shows the delay of NewReno 

and NewReno+, while Figure 3(d) shows the delay of SACK 

and SACK+. The figures show that the average delay when 

considering modifications is less than that of applying the 

original protocols. 

 

(a) Tcp Tahoe and Tahoe+ 

 

(b) Tcp Reno and Reno+ 

 

(c) Tcp Newreno and Tcp Newreno+ 

 

(d) SACK and SACK+ 

Figure 2: Throughput 

 

(a) Tcp Tahoe and Tahoe+ 
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(b) Tcp Reno and Reno+ 

 

(c) Tcp Newreno and Tcp Newreno+ 

 

(d) SACK and SACK+ 

Figure 3: Packet Delay 

5.1.3 Effect of modifications on cwnd  
Congestion window (cwnd) is a flow control window imposed 

at the sender to prevent the sender from sending more data 

than the network can accommodate. TCP sender dynamically 

increases or decreases its window size according to the degree 

of network congestion. Figure 4 shows the behavior of the 

cwnd under the proposed modifications. Figure 4(a) shows the 

cwnd of Tahoe+, Figure 4(b) shows the cwnd of Reno+, 

Figure 4(c) shows the cwnd of NewReno+, while Figure 4(d) 

shows the cwnd of SACK+. The figures show that the 

proposed modifications force the cwnd size to increase 

according to the available bandwidth and it does not increase 

by one segment as in AIMD strategy. Also, the proposed 

modifications force the cwnd size to decrease according to the 

available bandwidth and it does not decrease to half of its 

value as in AIMD strategy. 

 

(a) cwnd of Tcp Tahoe+ 

 

(b) cwnd of Tcp Reno+ 

 

(c) cwnd of Newreno+ 

 

(d) cwnd of sack+ 

Figure 4: behavior of cwnd of modified protocols 
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5.1.4 Packet loss  
Figure 5 shows the packet loss of both the original and 

modified congestion control protocols after adding the 

proposed modifications. Figure 5(a) shows the losses of Reno 

and Reno+ while Figure 5(b) shows the losses of NewReno 

and NewReno+. The figures show that the average losses 

when considering the proposed modifications are less than 

that of applying the original protocols. 

 

(a) Reno and Reno+ 

 

(b) Newreno and Newreno+ 

Figure 5: packet loss 

5.2 Scenario 2: Real topology 

In this section, a realistic topology is used to test the 

performance of the proposed strategy. The AT&T real 

network topology is created by using the generator GT-ITM, 

as shown in Figure 6. The topology contains 166 nodes and 

189 links with 65 TCP connections in addition to 5 UDP 

connections [16]. The simulation time is 40 seconds. 

 
Figure 6: AT&T network topology 

5.2.1 Throughput 
Figure 7 shows the network throughput of both the original 

and modified congestion control protocols after adding the 

proposed modification. Figure 7(a) shows the throughput of 

Tahoe and Tahoe+, Figure 7(b) shows the throughput of Reno 

and Reno+, Figure 7(c) shows the throughput of NewReno 

and NewReno+, while Figure 7(d) shows the throughput of 

SACK and SACK+. From the figures, the network throughput 

is increased in the case of applying the proposed 

modifications with the existing protocols.  

 

(a) Tahoe and Tahoe+ 

 

(b) Reno and Reno+ 

 

(c) Newreno and Newreno+ 
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(d) Sack and Sack+ 

Figure 7: Throughput 

5.2.2 Congestion window 
Figure 8 shows the behavior of the cwnd under the proposed 

modifications. Figure 8(a) shows the cwnd of Tahoe+, Figure 

8(b) shows the cwnd of Reno+, Figure 8(c) shows the cwnd of 

NewReno+, while Figure 8(d) shows the cwnd of SACK+. 

The figures show that the proposed modifications force the 

cwnd size to increase rapidly because it increases according to 

the available bandwidth and it does not increase by one 

segment as in AIMD strategy. 

 

(a) Tahoe cwnd behavior 

 

(b) Reno cwnd behavior 

 

(c) Newreno cwnd behavior 

 

 

(d) SACK cwnd behavior 

Figure 7: cwnd behavior 

6. CONCLUSIONS 
In this paper, an efficient strategy is developed to dynamically 

estimate the available bandwidth of the network at any time 

and then adapts the sending rate at the TCP sender 

accordingly. The proposed strategy is implemented in the 

most widely proposed protocols; Tahoe, Reno, NewReno, and 

SACK instead of the AIMD strategy and then the network 

performance is tested by using the NS2. The results show that 

the proposed strategy efficiently utilizes the network capacity 

as it adapts the sending rate dynamically according to the 

available bandwidth of the network. 
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