
International Journal of Computer Applications (0975 – 8887)

Volume 104 – No.1, October 2014

21

Improving Host-to-Host Congestion Control Protocols

by Dynamic Bandwidth Estimation of the Network

Marwa O. Al-Enany

B.SC. in Computer Science
and Engineering,

Faculty of Electronic Eng.,
Menoufia University, Egypt.

Gamal Attiya

Department of Computer
Science and Engineering,
Faculty of Electronic Eng.,
Menoufia University, Egypt.

Nagy W. Meseha

Department of Electronics and
Electrical Communication Eng,

Faculty of Electronic Eng.,
Menoufia University, Egypt.

ABSTRACT

Congestion is one of the major problems that affects on

throughput, delay, losses and other performance metrics of the

network. During the last decade, several congestion control

protocols have been proposed to overcome this problem. The

most widely protocols are TCP Tahoe, Reno, New Reno,

Vegas and SACK. In this paper, a new approach is developed

to enhance most of the existing host-to-host congestion

control protocols. The main idea is to adjust the congestion

window size (cwnd) dynamically according to the available

bandwidth of the network. In the proposed strategy, instead of

increasing the cwnd size linearly by the AIMD, the cwnd is

increased according to the available bandwidth of the

network. Also, instead of decreasing the cwnd to half of its

size as congestion happens, the cwnd is decreased to latest

value that was used effectively without losses. The proposed

approach is implemented in the TCP Tahoe, Reno, Newreno,

Vegas and SACK and the performance is evaluated by using

the network simulator NS-2 considering a realistic network

topology generated by the GT-ITM.

General Terms

Computer Networks, Network Protocols.

Keywords

TCP, Congestion Control, Congestion Avoidance, Dynamic

Bandwidth Estimation.

1. INTRODUCTION
With the dramatic growth and significant increase of the

internet, an important problem called congestion is arising.

Congestion occurs when the number of transmitted packets by

the sender exceeds the capacity of the network. Generally,

congestion has significant impact on the network

performance. If congestion happens, the network throughput

will decrease, packet delay and losses will increase and that

causes the network performance to degrade [1].

Over the last decade, several congestion control protocols

have been proposed by researchers to overcome the

congestion problem and to improve the network performance.

They try to keep number of packets being transmitted below

the level at which performance falls off. The proposed

congestion control protocols may be classified into two

categories; (i) Network-assisted congestion control protocols,

taken by routers and (ii) Host-to-Host congestion control

protocols, taken by the Transmission Control Protocol (TCP)

at the end hosts and are mostly achieved in transport layer.

This paper concerns with the Host-to-Host congestion control

protocols.

TCP is a reliable window based connection oriented end-to-

end protocol. It ensures reliability by making the receiver to

acknowledge the segments that it receives. It sets a timer

whenever it sends a segment. If it does not receive an

acknowledgement from the receiver within the ‘time-out’

interval, then it retransmits the segment. Many congestion

control mechanisms were developed based on the TCP to

overcome the congestion problem. TCP Tahoe is the first

proposal developed by Jacobson and Karles [2]. Then, various

versions were developed based on Tahoe including; TCP

Reno [3], Newreno [4], TCP Vegas [5] and SACK [6]. In [7],

the effects of using the End to End protocols in the Internet

are studied.

Recently, several modifications are released aiming to

overcome the congestion problem [8-22]. However, most of

them use the Additive Increase Multiplicative Decrease

(AIMD) strategy for adjusting the congestion window (cwnd).

This strategy is inefficient in terms of network utilization and

unfair in throughput. This is because, the AIMD strategy

blindly updates the congestion window (cwnd) size statically

by a fixed value regardless the network status. In this paper, a

new strategy is proposed to dynamically adjust the cwnd size

based on the available bandwidth of the network. The aim is

to overcome the congestion problem, increase the network

throughput and decrease packet delay and losses.

This paper is organized as follows. The Host-to-Host

congestion control protocols are described in Section 2.

Section 3 presents the problem of the current congestion

control protocols while the proposed strategy is introduced in

Section 4. Section 5 presents the simulation results with

comparative study between the network behavior under the

current congestion mechanisms and under the proposed

modifications. Finally, the concluding remarks and the

direction for future work are presented in Section 6.

2. HOST-TO-HOST CONGESTION

CONTROL
The main idea of the Host-to-Host congestion control

protocols is based on implementing some mechanisms at the

end hosts of the network rather than in the intermediate nodes

(routers) to organize packets flow in the network. In this

section, the most widely Host-to-Host congestion control

protocols; namely; TCP Tahoe, Reno, New Reno, SACK and

Vegas, are presented.

2.1 TCP Tahoe
TCP Tahoe is the first developed congestion control protocol.

It consists of three mechanisms: Slow Start, Congestion

Avoidance, and Fast Retransmit [2].

International Journal of Computer Applications (0975 – 8887)

Volume 104 – No.1, October 2014

22

Slow Start operates at the sender by employing two windows,

called congestion window (cwnd) and advertised window [7].

When a new connection is established, the cwnd is initialized

to one segment. The sender then starts by transmitting one

segment and waiting for ACK. Each time an ACK is received,

the cwnd is increased by one segment. That is, the cwnd is

incremented from one to two, and the two segments are sent.

Then, the congestion window is increased to four when each

of those two segments is acknowledged, and so on. This

provides an exponential growth behavior [7]. This behavior

continues until the cwnd reaches slow start threshold

(ssthresh) or packet loss detection. Once the cwnd reaches the

ssthresh, TCP goes into congestion avoidance. While, if a

packet loss occurs, the ssthresh is set to half of the current

cwnd (the multiplicative decrease), the cwnd is set to 1 and

the slow start begins again.

Slow Start Algorithm:

Initial: cwnd = 1;

For (each packet Acked)

 cwnd++;

Until (congestion event, or, cwnd > ssthresh)

Congestion avoidance starts when the cwnd reaches the

ssthresh. This Mechanism is used to slow the increasing rate

of the cwnd, where the cwnd increases by one segment every

Round Trip Time (RTT). This phase uses the AIMD strategy

and continues until congestion is detected. That is, on each

successful ACK, the cwnd is increased by 1/cwnd (Additive

Increase), implying linear growth instead of exponential

growth. But, if congestion is detected by timeout, the ssthresh

is set to one half of the current cwnd (Multiplicative

Decrease) and the cwnd is reset to one segment, which

automatically puts the sender into Slow Start mode. If

congestion was detected by duplicate ACKs, the Fast

Retransmit algorithm is invoked.

Congestion Avoidance Algorithm:

/* slow start is over and cwnd > ssthresh */

Every Ack:

 cwnd = cwnd + (1/cwnd) /* normal operation */

Until (Timeout or 3 DUPACKs) /*loss occurred*/

Fast Retransmit speeds up the retransmission process. It

starts when congestion is detected by 3 duplicate ACK. This

phase performs a retransmission of what appears to be

missing segment, without waiting for a retransmission timer

to expire.

Fast Retransmit Algorithm:

After receiving 3 DUPACKs;

Resend lost packet; /*avoid waiting timeout*/

2.2 TCP Reno
TCP Reno is the most widely adopted Internet protocol [3]. It

employs four transmission phases; Slow Start, Congestion

Avoidance, Fast Retransmit, and Fast Recovery. In Reno, the

behavior the fast retransmit of the TCP Tahoe is modified to

include the fast recovery phase. The fast retransmit and fast

recovery algorithms are usually implemented together [8] as

follows. When 3 duplicate ACK is received, Reno retransmits

the missing segment (Fast Retransmit), sets the ssthresh to

one-half the current cwnd, and sets cwnd to ssthresh plus 3.

This inflates the congestion window by the number of

segments that have left the network and which the other end

has cached. Each time another duplicate ACK arrives,

increment cwnd by one segment. This inflates the congestion

window for the additional segment that has left the network.

When receiving new ACK that acknowledges new data, Reno

sets cwnd to ssthresh and works in congestion avoidance.

Fast recovery algorithm:

After fast retransmit;

 /*do not enter slow start*/

ssthresh=cwnd/2;

cwnd = 3 + ssthresh;

Each DACK received;

 cwnd++;

 send new packet if allowed;

After new ACK;

 cwnd=ssthresh;

 return to congestion avoidance;

Note that: TCP Reno improves TCP performance in the case

of a single packet loss within the same window of data.

However, performance of TCP Reno suffers in the case of

multiple packet losses within the same window of data [4].

2.3 TCP NewReno
TCP NewReno is an enhanced version of the TCP Reno to

combat multiple packet losses from a single window without

entering into fast recovery multiple times as Reno [4]. In

entering fast recovery, the ssthresh is set to one-half the

current congestion window (cwnd) but no less than two

segments and the cwnd is set to the ssthresh plus three. TCP

NewReno continues in fast recovery until all the packets

which were outstanding during the start of the fast recovery

have been acknowledged. This strategy helps to combat

multiple losses without entering into fast recovery multiple

times as TCP Reno or causing timeout. During fast recovery,

the TCP NewReno distinguishes between a partial Ack and a

full Ack. A partial acknowledgement is considered as an

indication that the packet following the acknowledged one in

the sequence space has been lost and should be retransmitted.

Therefore, TCP NewReno immediately retransmits the other

lost packet indicated by the partial acknowledgement and

remains in fast recovery. On the other hand, a full

acknowledgement acknowledges some but not all of the

outstanding data. TCP NewReno exits fast recovery when all

data in the window is acknowledged. When the sender

receives new acknowledgement, it exits that phase putting its

cwnd to ssthresh and start congestion avoidance algorithm.

Note that, whenever a timeout occur, the ssthresh is set to one

half of the current congestion window and the congestion

window is set to one and the sender enters into the slow-start

phase. In NewReno,

Partial ACK → stay in fast recovery.

Full ACK → Exit fast recovery.

2.4 TCP Vegas
TCP Vegas emphasizes packet delay, rather than packet loss,

as a signal to determine the rate at which packets may send

[5]. It detects congestion at an incipient stage based on the

increasing Round-Trip Time (RTT). If the RTT is too small,

then the sending rate on the connection is less than the

bandwidth available while if the value is too large then it will

overrun the connection. Generally, Vegas works by

monitoring the difference between the expected and the actual

flow rates and adjusts the congestion window as follows:

Expected flow rate = current cwnd / base RTT.

Actual flow rate = current cwnd /RTT.

Difference = (Expected – Actual)*base RTT.

International Journal of Computer Applications (0975 – 8887)

Volume 104 – No.1, October 2014

23

cwnd continuously updated to:

 cwnd+1; if difference < α

 cwnd-1; if difference > β

 cwnd; otherwise

Where, α, β are thresholds more than 0 [5].

2.5 TCP SACK
Selective Acknowledgment (SACK) is a strategy that makes

the receiver to inform the sender about all segments that have

arrived successfully. So, the sender retransmits only the

segments that have actually been lost [6]. SACK ads to the

ACK an option field containing a pair of sequence numbers

for blocks of data received out of order with maximum size 40

bytes [6]. When multiple packets dropped from one window,

the sender can selectively resend lost packets depending on

the sack option field in the acknowledgement. SACK adds

variable called pipe to the Fast Recovery algorithm to

represent the estimated number of packets that stand in the

path. The TCP sender sends packets when the pipe variable <

cwnd. Every time it receives an ACK it reduces the pipe by 1

and every time it retransmits a segment it increments it by 1.

3. PROBLEM STATEMENT
From the above discussion, it is clear that, most of the

proposed protocols depend on the Additive Increase

Multiplicative Decrease (AIMD) strategy in adjusting cwnd

and so the sending rate. The AIMD strategy makes the cwnd

to be increased by one packet per window for each

acknowledge in the congestion avoidance phase. Also, the

AIMD strategy forces the cwnd to set to half of its value as

long as a packet drop is detected. This behavior inefficiently

utilizes the available capacity of the network. In case of no

congestion, it leads to a significant decrease of network

throughput since the number of packets to be transmitted is

less than the available capacity of the network. On the other

hand, when congestion is detected, it blindly halves the cwnd

which in turn decreases the packet sending rate and so

decreases the network utilization.

To overcome this problem, a new strategy is required to

adjust the sending rate at the end hosts according to the

available bandwidth of the network at any time.

4. PROPOSED STRATEGY
This section presents a new strategy for adjusting (increasing

and decreasing) the cwnd size dynamically based on the

available bandwidth of the network. The main idea is to

estimate the available bandwidth of the network at any time

and then adjust the sending rate at the TCP sender according

to the estimated bandwidth. This strategy could be used

instead of the AIMD strategy to improve the Host-to-Host

congestion control protocols.

4.1 Dynamic Increasing Strategy
The main idea of dynamic increasing is to estimate the

available bandwidth of the network with each arrival of an

ACK at the sender. Then, depending on the bandwidth ratio

(BWratio) between the current estimated bandwidth (BWcurrent)

and the previous estimated bandwidth (BWprevious), increase

the congestion window (cnwd).

To estimate the bandwidth at any moment k, let an ACKk is

arrived at the sender at time tk. This implies that the

corresponding amount of data dk has been received by the

receiver. So the bandwidth bk that used by the connection to

transfer the data dk can be measured as:

bk = dk / (tk-tk-1)

Where, tk-1 is the arrival time of the previous ACK at previous

moment k-1.

The bandwidth estimation (BWE) starts at the congestion

avoidance phase where the increase of cwnd is very slow

(1/cwnd) and applied as follows.

Modified Congestion avoidance

/*cwnd > ssthresh*/

For every new ACK:

 Estimate BWE;

 Set BWcurrent = BWE;

 BWratio=BWcurrent/BWprevious;

 BWprevious = BWcurrent;

 If (1 <= BWratio < 1.5)

 cwnd = cwnd + 1/cwnd ;

 Else If (BWratio >= 1.5)

 cwnd = cwnd + 2/cwnd ;

 Else if (BWratio < 1)

 cwnd = cwnd + 0 ;

Until (timeout or 3 DUPACKs);

4.2 Dynamic Decreasing Strategy
The main idea of dynamic decreasing is to avoid decreasing

the cwnd to half of its value when detecting congestion but

decrease the cwnd to an average value between the current

value and the last value before congestion. To do so, with

each ACK, a variable called cwndp is set to the present value

of the cwnd before its updating. If congestion is detected, the

cwnd is set to the average value between the current value of

the cwnd and the previous value that stored in the variable

cwndp. Decreasing the cwnd to the average value maintains

the network throughput, since this behavior guarantees a large

number of packets in the cwnd.

/*in case of no congestion*/

cwndp = cwnd;

Update cwnd;

if congestion

 /* Do not use AIMD */

cwnd= int (cwndp + cwnd) / 2;

5. SIMULATION RESULTS
To study the effect of the suggested modifications on the

behavior of the Host-to-Host congestion control protocols, the

cwnd size of the existing protocols is adapted by the new

proposed strategy. Then, the network performance is tested by

using the network simulation NS2 [22] and the results are

compared with that obtained by applying the original

protocols considering different topologies; simple and real

AT&T topology. The network topology is created by using

the topology generator GT-ITM [23]. In each topology, the

comparison is done by considering throughput, packet delay,

and losses. In this study, the main widely existing congestion

control protocols; Tahoe, Reno, Newreno, and SACK are

considered in the evaluation.

5.1 Scenario 1: Simple Topology

The simple topology consists of 12 nodes (6 sources and 6

destinations) and two routers (N0 and N1), as shown in Figure

1. The link between the routers has bandwidth of 1.5 Mbps

and delay of 50ms and acts as a bottleneck link of this

topology. TCP connections are established between the

sources and the sinks to transfer File Transfer Protocol (FTP)

application. The FTP application starts at the first second and

ends at 20s.

International Journal of Computer Applications (0975 – 8887)

Volume 104 – No.1, October 2014

24

Figure 1: Simple Network Topology

5.1.1 Effect of modifications on Throughput
This section presents the effect of the proposed modifications

on throughput. Throughput is used to identify the number of

packets sent by the source and received by the destination

correctly. In other words, it means the sum of the data that are

delivered to all terminals over the time in the network. Figure

2 shows the network throughput of both the original and

modified congestion control protocols after adding the

proposed modifications. Figure 2(a) shows the throughput of

Tahoe and Tahoe+, Figure 2(b) shows the throughput of Reno

and Reno+, Figure 2(c) shows the throughput of NewReno

and NewReno+, while Figure 2(d) shows the throughput of

SACK and SACK+. From the figures, the network throughput

is increased in the case of applying the proposed

modifications with the existing protocols. This indicates that

the network throughput is improved by changing the cwnd

size according to the estimated bandwidth.

5.1.2 Effect of modifications on Delay
This section presents the effect of the proposed modifications

on packet delay. Figure 3 shows the packet delay of both the

original and modified congestion control protocols after

adding the proposed modifications. Figure 3(a) shows the

delay of Tahoe and Tahoe+, Figure 3(b) shows the delay of

Reno and Reno+, Figure 3(c) shows the delay of NewReno

and NewReno+, while Figure 3(d) shows the delay of SACK

and SACK+. The figures show that the average delay when

considering modifications is less than that of applying the

original protocols.

(a) Tcp Tahoe and Tahoe+

(b) Tcp Reno and Reno+

(c) Tcp Newreno and Tcp Newreno+

(d) SACK and SACK+

Figure 2: Throughput

(a) Tcp Tahoe and Tahoe+

International Journal of Computer Applications (0975 – 8887)

Volume 104 – No.1, October 2014

25

(b) Tcp Reno and Reno+

(c) Tcp Newreno and Tcp Newreno+

(d) SACK and SACK+

Figure 3: Packet Delay

5.1.3 Effect of modifications on cwnd
Congestion window (cwnd) is a flow control window imposed

at the sender to prevent the sender from sending more data

than the network can accommodate. TCP sender dynamically

increases or decreases its window size according to the degree

of network congestion. Figure 4 shows the behavior of the

cwnd under the proposed modifications. Figure 4(a) shows the

cwnd of Tahoe+, Figure 4(b) shows the cwnd of Reno+,

Figure 4(c) shows the cwnd of NewReno+, while Figure 4(d)

shows the cwnd of SACK+. The figures show that the

proposed modifications force the cwnd size to increase

according to the available bandwidth and it does not increase

by one segment as in AIMD strategy. Also, the proposed

modifications force the cwnd size to decrease according to the

available bandwidth and it does not decrease to half of its

value as in AIMD strategy.

(a) cwnd of Tcp Tahoe+

(b) cwnd of Tcp Reno+

(c) cwnd of Newreno+

(d) cwnd of sack+

Figure 4: behavior of cwnd of modified protocols

International Journal of Computer Applications (0975 – 8887)

Volume 104 – No.1, October 2014

26

5.1.4 Packet loss
Figure 5 shows the packet loss of both the original and

modified congestion control protocols after adding the

proposed modifications. Figure 5(a) shows the losses of Reno

and Reno+ while Figure 5(b) shows the losses of NewReno

and NewReno+. The figures show that the average losses

when considering the proposed modifications are less than

that of applying the original protocols.

(a) Reno and Reno+

(b) Newreno and Newreno+

Figure 5: packet loss

5.2 Scenario 2: Real topology

In this section, a realistic topology is used to test the

performance of the proposed strategy. The AT&T real

network topology is created by using the generator GT-ITM,

as shown in Figure 6. The topology contains 166 nodes and

189 links with 65 TCP connections in addition to 5 UDP

connections [16]. The simulation time is 40 seconds.

Figure 6: AT&T network topology

5.2.1 Throughput
Figure 7 shows the network throughput of both the original

and modified congestion control protocols after adding the

proposed modification. Figure 7(a) shows the throughput of

Tahoe and Tahoe+, Figure 7(b) shows the throughput of Reno

and Reno+, Figure 7(c) shows the throughput of NewReno

and NewReno+, while Figure 7(d) shows the throughput of

SACK and SACK+. From the figures, the network throughput

is increased in the case of applying the proposed

modifications with the existing protocols.

(a) Tahoe and Tahoe+

(b) Reno and Reno+

(c) Newreno and Newreno+

International Journal of Computer Applications (0975 – 8887)

Volume 104 – No.1, October 2014

27

(d) Sack and Sack+

Figure 7: Throughput

5.2.2 Congestion window
Figure 8 shows the behavior of the cwnd under the proposed

modifications. Figure 8(a) shows the cwnd of Tahoe+, Figure

8(b) shows the cwnd of Reno+, Figure 8(c) shows the cwnd of

NewReno+, while Figure 8(d) shows the cwnd of SACK+.

The figures show that the proposed modifications force the

cwnd size to increase rapidly because it increases according to

the available bandwidth and it does not increase by one

segment as in AIMD strategy.

(a) Tahoe cwnd behavior

(b) Reno cwnd behavior

(c) Newreno cwnd behavior

(d) SACK cwnd behavior

Figure 7: cwnd behavior

6. CONCLUSIONS
In this paper, an efficient strategy is developed to dynamically

estimate the available bandwidth of the network at any time

and then adapts the sending rate at the TCP sender

accordingly. The proposed strategy is implemented in the

most widely proposed protocols; Tahoe, Reno, NewReno, and

SACK instead of the AIMD strategy and then the network

performance is tested by using the NS2. The results show that

the proposed strategy efficiently utilizes the network capacity

as it adapts the sending rate dynamically according to the

available bandwidth of the network.

7. REFERENCES
[1] J. Nagle, “Congestion control in IP/TCP Internetworks,”

Request for Comments (RFC) 896, Internet Engineering

Task Force, January 1984.

[2] V. Jacobson, and M. J. Karels, "Congestion Avoidance

and Control," Proceedings of ACM SIGCOMM, Vol.18

(4), pp. 314-329, August 1988.

[3] V. Jacobson, "Berkeley TCP Evolution from 4.3-Tahoe

to 4.3 Reno," Proceedings of the 18th Internet

Engineering Task Force, University of British Columbia,

Vancouver, BC, Aug. 1990.

International Journal of Computer Applications (0975 – 8887)

Volume 104 – No.1, October 2014

28

[4] J. Hoe, “Start-up Dynamics of TCP’s Congestion Control

and Avoidance Schemes,” Master Theses, Massachusetts

Institute of Technology, 1995.

[5] L. Brakmo and L. Peterson, “TCP Vegas: End-to-End

Congestion Avoidance on Global Internet,” IEEE Journal

on Selected Areas in Communications, Vol. 13, No. 8,

pp. 1465-1480, 1995.

[6] M. Mathis, J. Mahdavi, S. Floyd and A. Romanow, “TCP

Selective Acknowledgment Options,” RFC 2018,

Internet Engineering Task Force, October 1996.

[7] S. Floyd, and K. Fall, “Promoting the Use of End-to-End

Congestion Control in the Internet”, IEEE/ACM

Transactions on Networking, Vol.79 (4), pp. 458-472,

August 1999.

[8] S. Floyd, T. Henderson, and A. Gurtov, "The NewReno

Modification to TCP’s Fast Recovery Algorithm”, RFC

3782, April 2004.

[9] D. Roman, K. Yevgeni, and H. Jarmo, “TCP NewReno

Throughput in the Presence of Correlated Losses: The

Slow-but-Steady Variant”, IEEE International

Conference on Computer Communications INFOCOM,

pp. 1- 6, April 2006.

[10] Cheng-Yuan Ho, Yaw-Chung Chen, Yi-Cheng Chan,

Cheng-Yun Ho, "Fast retransmit and fast recovery

schemes of transport protocols: A survey and taxonomy,"

Computer Networks, Vol. 52, pp.1308–1327, 2008.

[11] Hanaa A. Torkey, Gamal M. Attiya and I. Z. Morsi,

"Performance Evaluation of End-to-End Congestion

Control Protocols", Minufiya Journal of Electronic

Engineering Research (MJEER), Vol. 18, No. 2, pp. 99-

118, July 2008.

[12] Alexander Afanasyev, Neil Tilley, Peter Reiher and

Leonard Kleinrock, "Host-to-Host Congestion Control

for TCP," IEEE Communications Surveys & Tutorials,

2010.

[13] Kolawole I. Oyeyinka, Ayodeji O. Oluwatope, Adio. T.

Akinwale, Olusegun Folorunso, Ganiyu A. Aderounmu,

and Olatunde O. Abiona, "TCP Window Based

Congestion Control Slow-Start Approach,"

Communications and Network, Vol. 3, pp.85-98, , May

2011.

[14] Jeff Edmonds, “On the competitiveness of AIMD-TCP

within a general network”, Theoretical Computer

Science, Vol. 462, pp. 12–22, 30 November 2012.

[15] Hanaa Torkey, Gamal Attiya and Ibrahim Z. Morsi,

"Modified Fast Recovery Algorithm for Performance

Enhancement of TCP-NewReno", International Journal

of Computer Applications, Volume 40, No.12, pp. 30-35,

February 2012.

[16] Gamal Attiya, "New Strategy for Congestion Control

based on Dynamic Adjustment of Congestion Window",

International Journal of Computer Science Issues, Vol. 9,

Issue 2, pp. 368-377, March 2012.

[17] Tharwat Ibrahim, Gamal Attiya and Ahmed Hamad,

"Fuzzy Based Tuning Congestion Window for Improving

End-to-End Congestion Control Protocols", International

Journal of Computer Applications (0975–8887), Vol. 87,

No. 1, pp. 1-8, February 2014.

[18] Hanaa Torkey, Gamal ATTIYA, Ahmed Abdel Nabi,

"An Efficient Congestion Control Protocol for

Wired/Wireless Networks", International Journal of

Electronics Communication and Computer Engineering,

Volume 5, Issue 1, pp. 77-81, 2014. ISSN (Online):

2249–071X, ISSN (Print): 2278–4209

[19] Sharma, Neeraj; Mann, Manish; Thakur, Ravinder, “TCP

Congestion Control in Wired com Wireless Networks”,

International Journal of Computer Applications, Vol. 88,

p34-37, Feb 2014.

[20] Rana A., Jennifer Cecilia, “Enhanced TCP Friendly

Congestion Control Protocol,” International Journal of

Computer Theory & Engineering, Vol. 6, Issue 1, p39-

42, Feb 2014.

[21] Lei Niu, Feng Wang, Dongdong liu and Bo Guo “A

dynamic adjustment algorithm of slow-start threshold

based on RTT”, Applied mechanics and materials, Vol.

8, pp 782-785, 2014.

[22] K. Fall, and K. Varadhan, “The ns Manual (formerly ns

Notes and Documentation)”, UC Berkeley, LBL,

USC/ISI, and Xerox PARC, December 2006.

[23] GT-ITM “Georgia Tech Internetwork Topology”,

http://www.cc.gatech.edu/project/gtitm.

IJCATM : www.ijcaonline.org

http://www.sciencedirect.com/science/article/pii/S0304397512007426
http://www.sciencedirect.com/science/journal/03043975
http://www.sciencedirect.com/science/journal/03043975
http://www.sciencedirect.com/science/journal/03043975/462/supp/C
http://www.cc.gatech.edu/project/gtitm

