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ABSTRACT 

Clustering is an unsupervised learning task where one seeks to 

identify a finite set of categories termed clusters to describe 

the data. The proposed system, try to exploit computational 

power from the multicore processors by modifying the design 

on existing algorithms and software. However, the existing 

clustering algorithms either handle different data types with 

inefficiency in handling large data or handle large data with 

limitations in considering numeric attributes. Hence, parallel 

clustering has come into picture to provide crucial 

contribution towards clustering large data. In this paper a 

scalable parallel clustering algorithm called Possibilistic 

Fuzzy C-Means (PFCM) clustering to cluster large data is 

introduced. In order to harvest the full power of a multi-core 

processor the software application must be able to execute 

tasks in parallel utilizing all available CPUs. To achieve this 

aim, it use fork/join method in java programming. It is the 

most effective design techniques for obtaining good parallel 

performance. The experimental analysis will be carried out to 

evaluate the feasibility of the scalable Possibilistic Fuzzy C-

Means (PFCM) clustering approach. The experimental 

analysis showed that the proposed approach obtained upper 

head over existing method in terms of accuracy, classification 

error percentage and time.   
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1. INTRODUCTION 
Since 40 years ago, clustering, which is one of the renowned 

data mining techniques, is being extensively studied and 

applied in numerous applications [1, 2]. Clustering can be 

defined as a process of allocating data objects into a specific 

disjoint group, which is called as a cluster; in such a way that 

the data objects belong to same cluster should be similar to 

each other, while the data objects of different cluster should 

be different from each other. Numerous clustering algorithms 

have been reported in the literature for clustering the 

subjected data in an efficient way. They can be classified as 

fuzzy clustering, partitional clustering, hierarchical clustering, 

artificial neural network - based clustering, statistical 

clustering algorithms, density-based clustering algorithm, etc. 

Despite varieties of algorithm classes prevail, partitional 

clustering algorithms and hierarchical clustering algorithms 

grab great attention from the researchers. Generally, 

hierarchically clustering algorithms produce satisfactory level 

of clustering performance. However, these algorithms do not 

provide options for reallocation of entities. This may lead to 

poor classification at the initial stage. Moreover, majority of 

the hierarchical algorithms consumes high computational time 

and memory [3].  

The proposed method tries to implement the algorithm using 

Fork/Join method in JAVA. Fork/Join parallelism [4] is 

among the simplest and most effective design techniques for 

obtaining good parallel performance. Fork/join algorithms are 

parallel versions of familiar divide− and−conquer algorithms, 

taking the typical form: 

Result solve (Problem problem)  

{ 

If (problem is small) 

directly solve problem 

else  

{ 

Split problem into independent parts 

Fork new subtasks to solve each part 

Join all subtasks 

Compose result from sub results 

} 

} 

The fork operation starts a new parallel fork/join subtask. The 

join operation causes the current task not to proceed until the 

forked subtask has completed. Fork/join algorithms, like other 

divide−and−conquer algorithms, are nearly always recursive, 

repeatedly splitting subtasks until they are small enough to 

solve using simple, short sequential methods. The rest of the 

paper is organized as follows. Section 2 describes Literature 

review. Section 3 presents the proposed methodology. Section 

4 shows experimental results and evaluations. Finally, the 

conclusions and future work are presented in Section 5.  

2. LITERATURE REVIEW 
Clustering is a task of assigning a set of objects into groups 

called clusters. In general the clustering algorithms can be 

classified into two categories. One is hard clustering; another 

one is soft (fuzzy) clustering. Hard clustering, the data’s are 

divided into distinct clusters, where each data element belongs 

to exactly one cluster. In soft clustering, data elements belong 

to more than one cluster, and associated with each element is 

a set of membership levels. To obtain acceptable 

computational speed on huge datasets, most researchers turn 

to parallelizing scheme. Here, reviewed some of the 

techniques presented for literature. Md. Mostofa Ali Patwary 

et al [5] have presented a scalable parallel OPTICS algorithm 

(POPTICS) designed using graph algorithmic concepts. To 

break the data access sequentiality, POPTICS exploits the 

similarities between the OPTICS algorithm and PRIM’s 

Minimum Spanning Tree algorithm. Li and Fang [6] are 

among the pioneer groups on studying parallel clustering. 

They proposed a parallel algorithm on a single instruction 

multiple data (SIMD) architecture. Dhillon and Modha [7] 

proposed a distributed k-means that runs on a multiprocessor 

environment. Kantabutra and Couch [8] proposed a master-

slave single program multiple data (SPMD) approach on a 

network of workstations to parallel the k-means algorithm. 

Tian and colleagues [9] proposed the method for initial cluster 

center selection and the design of parallel k-means algorithm. 

Prasad [11] parallelized the k-means algorithm on a 

distributed memory multi-processors using the message 

passing scheme. Farivar and colleagues [12] studied 

parallelism using the graphic coprocessors to reduce energy 
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consumption of the main processor. Inderjit S et al. [13] 

presented a parallel implementation of the k-means clustering 

algorithm based on the message passing model. Jiabin Deng et 

al., [14] proposed an improved fuzzy clustering-text clustering 

method based on the fuzzy C-Means clustering algorithm and 

the edit distance algorithm, however, FCM is sensitive to 

noise and outliers because of its constraint of probabilistic 

type. A possibilistic approach called possibilistic c-means 

(PCM) was proposed by Krishnapuram and Keller to solving 

these problems of FCM [10]. PCM successfully solves the 

noise sensitivity problem of FCM. In the meanwhile, some 

new problems are also brought about by the PCM clustering 

model. PCM is sensitive to the initializations ，it tends to 

generate coincident clusters and the clustering results of PCM 

heavily depend on the parameter of its clustering model and 

so on. Possibilistic C-Means (PCM) has been shown to be 

advantageous over Fuzzy C-Means (FCM) in noisy 

environments, it has been reported that the PCM has an 

undesirable tendency to produce coincident clusters. This 

approach combines the partitioning property of the FCM with 

the robust noise insensibility of the PCM. In 1997, Pal et al., 

[15] proposed the fuzzy-possibilistic C-Means (FPCM) 

technique and algorithm that generated both membership and 

typicality values when clustering unlabeled data. FPCM 

constrains the typicality values so that the sum over all data 

points of typicality’s to a cluster is one. For large data sets the 

row sum constraint produces unrealistic typicality values. In 

this approach, a new model is presented called Possibilistic-

Fuzzy C-Means (PFCM) model. PFCM produces 

memberships and possibilities simultaneously, along with the 

usual point prototypes or cluster centers for each cluster. 

PFCM is a hybridization of possibilistic c-means (PCM) and 

fuzzy c-means (FCM) that often avoids various problems of 

PCM, FCM and FPCM. PFCM produces memberships and 

possibilities concurrently, along with the usual point 

prototypes or cluster centers for each cluster. 

3. METHODOLOGY 
The aim of the proposed method is to cluster a large dataset 

efficiently. Here a scalable parallel clustering algorithm is 

used to overcome the problem in clustering large dataset with 

high dimension. The clustering is the Possibilistic Fuzzy C-

Means (PFCM) clustering algorithm which is applied to the 

each randomly divided set of input data. Then finally the 

resultant cluster is obtained at the output. The fig.1 shown 

below represents the architecture of the proposed scalable 

parallel clustering algorithm. The initial stage of the proposed 

method is dividing the input large dataset in to n number of 

dataset according to the n number of cores available in the 

system. 

 
Fig. 1. Parallel architecture of the proposed algorithm 

 

 

3.1 Partitioning the Input Large Dataset 
Let the input be the large dataset with a size of NM  . In this 

processing, input large dataset using Possibilistic fuzzy c-

means clustering algorithm is difficult. So dividing the input 

dataset randomly in to small subsets of data with equal size 

will make system better. So further in this proposed system 

the input large data set is divided into N number of subset, 

based on number of cores available in the system, 

 NSSSSS .............3,21,  , where N is the total number of 

sets with equal size. Here the each subset of data is clustered 

in to clusters using a standard and efficient clustering 

algorithm called Possibilistic Fuzzy C-Means (PFCM). 

Programmatically used in fork method in Java. The each 

single data subset S consist of a vector of d measurements, 

where  dxxxxX ,........,, 321 . The attribute of an individual 

data set is represented as  ix   and d represents the 

dimensionality of the vector. The Possibilistic Fuzzy C-Means 

(PFCM) is applied to the each subset of dataset for clustering 

the input dataset dn  in to k-clusters. 

Possibilistic Fuzzy C-Means (PFCM) clustering method [29] 

is applied to divided subset of data. The PFCM is one of the 

most efficient parallel clustering methods. 

Let the unlabelled data set is  NSSSSS .............3,21,  which is 

further clustered in to a group of k-clusters using PFCM 

clustering method. This proposed PFCM is based on the 

minimization of the objective function given below,  
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Here   ,1,1,0,0  mba where m is any real number 

greater than 1, iku   is the degree of membership of xi in the 

cluster j, xi is the ith of d-dimensional measured data, iv is the 

d-dimension center of the cluster, and ||*|| is any norm 
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The PFCM clustering or partitioning is carried out through an 

iterative optimization of the objective function shown above, 

with the update of membership iku  and the cluster 

centers iv by,  
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This iteration will stop when    )()1(max k
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Where,  is a termination criteria between 0 and 1, whereas k 

are the iteration steps. This procedure converges to local 

minimum of
,mJ . 



International Journal of Computer Applications (0975 – 8887) 

Volume 103 – No.9, October 2014 

26 

The PFCM clustering algorithm contains various steps; 

Algorithm 1: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Finally for subset of input data, a group of K-clusters is 

obtained after applying the PFCM clustering method. 

3.2 Parallel k-means 
The pseudo code of parallel k-means is shown in Algorithm 2. 

Algorithm 2. Parallel k-means (PKM) 

Input: a set of data points and the number of clusters, K 

Output: K-centroids and members of each cluster 

Steps 

1. Set initial global centroid C = <C1, C2, …, CK> 

2. Partition data to P subgroups, each subgroup has equal size 

3. for each P, 

4. Create a new process 

5. Send C to the created process for calculating distances and 

assigning cluster members 

6. Receive cluster members of K clusters from P processes 

7. Recalculate new centroid C‟ 

8. If difference(C, C‟) 

9. Then set C to be C‟ and go back to step 2 

10. Else stop and return C as well as cluster members 

Fork/Join Framework adds two main classes to the 

java.util.concurrent package: 

 ForkJoinPool 

 ForkJoinTask 

The execution of ForkJoinTask takes place within a 

ForkJoinPool, which manages the execution of the tasks. 

ForkJoinTask objects support the creation of subtasks and 

waiting for the subtasks to complete. Advantage of the 

ForkJoinPool, is that it can 'steal' work. It means that it allows 

one thread that has finished a task to immediately execute 

another task with much less overhead than the Executor 

Service. This work stealing enables efficient load balancing. 
The number of worker threads in a fork/join pool is generally 

upper-bounded by the number of cores in the system. Work 

stealing automatically corrects unequal distribution of work 

without central coordination [16]. 

The RecursiveAction and RecursiveTask are the only two 

direct, known subclasses of ForkJoinTask. The only 

difference between these two classes is that the 

RecursiveAction does not return a value while RecursiveTask 

does have a return value and returns an object of specified 

type. 

 

 

ForkJoinTask objects feature two specific methods: 

The fork () method allows a new ForkJoinTask to be launched 

from an existing one. In turn, the join () method allows a 

ForkJoinTask to wait for the completion of another one. A 

ForkJoinTask instance is very light weight when compared to 

a normal Java thread. [4] 

Following code can be used to perform parallel operations.  

public class FJoin extends RecursiveTask<Integer> 

{ 

public static ArrayList<ArrayList<String>> input=new 

ArrayList<ArrayList<String>(); 

private static final int size=130; 

public FJoin(int data,int start,int end) 

{ 

this.data=data; 

this.start=start; 

this.end=end; 

} 

public FJoin(int data) 

{ 

this(data,0,data); 

} 

@override 

protected Integer compute() 

{ 

final int length=end-start; 

if(length<size) 

{ 

return computeDirectly(); 

} 

final int split=length/2; 

final FJoin first=new FJoin(data,start,start+split); 

first.fork(); 

final FJoin second=new FJoin(data,start+split,end); 

return Math.max(second.compute(),first.join()); 

} 

Following code can be used to find accuracy 

public class Accuracy  

{ 

 public static void  findaccuracy (ArrayList <ArrayList 

<Integer>> cluster,ArrayList<Integer> cls) 

    { 

       ArrayList<Integer> uni=new ArrayList<Integer>(); 

       for(int i=0;i<cls.size();i++) 

       if(!uni.contains(cls.get(i))) 

       uni.add(cls.get(i)); 

       int sum=0,totsum=0; 

       for(int i=0;i<cluster.size();i++) 

       { 

           int a[]=new int[uni.size()]; 

           for(int j=0;j<a.length;j++) 

           a[j]=0; 

           for(int j=0;j<cluster.get(i).size();j++) 

           { 

             int v=cls.get(cluster.get(i).get(j)); 

             a[v-1]=a[v-1]+1; 

           } 

           System.out.println(a[0]+"  "+a[1]); 

           int v=a[0]; 

           totsum=totsum+v; 

           for(int j=1;j<a.length;j++) 

           {totsum=totsum+a[j]; 

            if(v<a[j]) 

             v=a[j]; 

           } 

        sum=sum+v; 

       } 

Step 1: Initialize    0,UmatrixuU ik  

Step 2:  At k step: calculate the centers vectors
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then stop; otherwise 

return to step 2.
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       System.out.println("Accuracy  ::   

       "+((double)sum/(double)totsum));   

    } 

 } 

Fork/join parallelism is implemented by means of a fixed pool 

of worker threads. This is achieved by setting the number of 

worker threads in the fork/join pool to a maximum of four, 

which is the number of cores in a node in the system. Each 

worker thread can execute one task at a time. Tasks waiting to 

be executed are stored in a queue, which is owned by a 

particular worker thread. Currently executing tasks can 

dynamically generate (i.e. fork) new tasks, which are then 

enqueued for subsequent execution. 

4. EXPERIMENTAL RESULTS AND 

DISCUSSION 
The experimental result of the proposed approach is furnished 

in this section. The experimental evaluation is conducted in 

order to evaluate the proposed approach. The method is 

implemented by using JAVA language. The code is executed 

on dell inspiron N4030 Laptop, Intel(R) Core(TM) i5 

Processor 2.67 GHz, 2 MB cache memory, 3GB RAM, 64-bit 

Windows 7 Home and NetBeans IDE 8.0. 

4.1 Dataset Description 
In this proposed method two kinds of datasets are used for 

evaluation. The Iris data set consists of three varieties of 

flowers—setosa, virginica and versicolor. There are 150 

instances and 4 attributes that make up the 3 classes. 

The Second data set contains thyroid data set. The Thyroid 

data set is based on the diagnosis of thyroid whether it is 

hyper or hypofunction. The data set contains 215 patterns, 5 

attributes and 3 classes. 

4.2. Evaluation Metrics 
The proposed scalable parallel clustering algorithm uses 

mainly three evaluation matrices, the clustering accuracy, 

Classification Error Percentage (CEP) and computation time.  

4.2.1. Clustering Accuracy 
The clustering accuracy is measured by counting the number 

of correctly assigned documents and dividing by N, which is 

given the equation below 

jk

k
j

CB
N

Accuracy  max
1  

Where, 
kB  is the set of clusters  kBBBBB ..........,, 321 and 

jC is the set of classes  kCCCCC ,......., 321 .It interpret
kB

  as the set of documents in 
kB  and 

jC  as the set of 

documents in
jC .  

Table 1: Accuracy of Iris Dataset 

Final 
Clusters PKM PFCM 

2 65.2 66.7 

3 72.5 78.6 

4 80.3 88.9 

5 83.7 90.5 

6 85.1 92.3 

In the figure 2, shows the accuracy of the proposed approach 

by varying the clusters of the parallel clustering system. The 

final clusters are varied from 2 to 6. The analysis from the 

Table 1 shows that the proposed approach has upper hand 

over the existing method. In the case of proposed approach, 

the accuracy increases as the number of final cluster increases. 

 
Fig.2.Iris Dataset 

The maximum accuracy attained by the proposed approach is 

92%, which is very better figure as compared to the existing 

method, for which the maximum accuracy obtained is 85%. 

All these experiments are conducted in same environment.  

Table 2: Accuracy of Thyroid Dataset 

Final 
Clusters PKM PFCM 

2 58.1 60.8 

3 65.6 68.2 

4 68.4 78.1 

5 75.6 85.4 

6 80.8 91.7 

In the figure 3, it presented the accuracy of the proposed 

approach by varying the final clusters of the parallel 

clustering system in thyroid dataset. The final clusters are 

varied from 2 to 6. The analysis from the Table 2 shows that 

the proposed approach has upper hand over the existing 

method. In the case of proposed approach, the accuracy 

attained by the proposed approach is very better as compared 

to the existing method. 

 
Fig. 3.Thyroid Dataset 

4.2.2. Classification Error Percentage (CEP) 

One of the most important characteristics of a clustering 

method is the ability of it in deceasing clustering error. The 

given data set, 75% of the data set is randomly selected to 

obtain the cluster centers using Algorithm 1. In this way to 

obtain the cluster centers for all the classes. The remaining 

25% of data set is used (called test data set) to obtain the 

classification error percentage (CEP).The classification of 

each pattern is done by assigning it to the class whose 

distance is closest to the center of the clusters. Then, the 

classified output is compared with the desired output and if 

they are not exactly the same, the pattern is separated as 

misclassified. Let n be the total number of elements in the 

dataset and m be the number of elements misclassified after 

finding out the cluster center using the above algorithms. 

Then classification error percentage is given by [17] 
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CEP=    
m

n
 ∗ 100  

Here use two dataset for calculating CEP. Table 3 shows that 

classification error percentage of two data set like Iris and 

Thyroid. 

Table 3: Classification error percentage 

 PKM PFCM 

Iris 0.34 0 

Thyroid 1.23 0.12 

From the training data set the knowledge in the form of 

cluster centers is obtained using the algorithm 1.For these 

cluster centers the testing data sets are applied and the CEP 

values are obtained. As can be seen from Table 3, the PFCM 

outperforms the existing method. 

4.2.3. Time Comparison 
The time analysis based on the data size is shown in the figure 

4 and figure 5. The computation time which is measured 

based on the starting and ending time of the program. From 

this analysis found that the proposed approach and existing 

approach is clearly different from each other. PFCM 

algorithm enables improving the time performance of 

clustering on large scale data sets and Java F/J is quite 

appropriate for the parallel computing environment. 

 
Fig.4.Iris Dataset 

 
Fig. 5.Thyroid Dataset 

 As considering all scenarios, assess that proposed algorithm 

is efficient in compared with parallel k means algorithm.  

5. CONCLUSION 
In this paper, proposed the design and implementation of 

scalable PFCM algorithm. Here used fork and join model for 

the Java programming concurrently on multi-cores machine. 

Fork/join method overcomes deficiencies of multithreaded 

execution. Large data clustering plays crucial and related 

processes in various domains. However, most of the clustering 

algorithms are compatible only with small data. The solution 

to address large scale clustering problem is exploiting parallel 

algorithm. The proposed approach is designed to address 

mainly for the difficulty to cluster large data sets. The 

proposed approach used a PFCM algorithm to handle the 

large data set. The proposed method is compared with the 

performance of the existing parallel k-means clustering 

algorithm. The performance analysis and experimental result 

showed that proposed method provide better result. Finally, 

solution utilizes maximum hardware capabilities of multi-core 

systems for faster execution by processing multiple tasks in 

parallel. Also the experimental analysis showed that the 

proposed approach obtained upper head over existing method 

in terms of accuracy and time. In future work it will apply 

different cores in different cluster size. 
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