
International Journal of Computer Applications (0975 – 8887)

Volume 103 – No.9, October 2014

24

Scalable Parallel Clustering Approach for Large Data

using Possibilistic Fuzzy C-Means Algorithm

Juby Mathew
Dept.of MCA, Amaljyothi College of Engg.

Kanjirapally, Kerala

 R Vijayakumar, Ph. D.
Professor and Dean, Faculty of Engg.

Mahatma Gandhi University, Kottayam, Kerala

ABSTRACT

Clustering is an unsupervised learning task where one seeks to

identify a finite set of categories termed clusters to describe

the data. The proposed system, try to exploit computational

power from the multicore processors by modifying the design

on existing algorithms and software. However, the existing

clustering algorithms either handle different data types with

inefficiency in handling large data or handle large data with

limitations in considering numeric attributes. Hence, parallel

clustering has come into picture to provide crucial

contribution towards clustering large data. In this paper a

scalable parallel clustering algorithm called Possibilistic

Fuzzy C-Means (PFCM) clustering to cluster large data is

introduced. In order to harvest the full power of a multi-core

processor the software application must be able to execute

tasks in parallel utilizing all available CPUs. To achieve this

aim, it use fork/join method in java programming. It is the

most effective design techniques for obtaining good parallel

performance. The experimental analysis will be carried out to

evaluate the feasibility of the scalable Possibilistic Fuzzy C-

Means (PFCM) clustering approach. The experimental

analysis showed that the proposed approach obtained upper

head over existing method in terms of accuracy, classification

error percentage and time.

Keywords

Clustering, parallel k-means, Fuzzy C-Means, Possibilistic

Fuzzy C-Means, Fork/Join

1. INTRODUCTION
Since 40 years ago, clustering, which is one of the renowned

data mining techniques, is being extensively studied and

applied in numerous applications [1, 2]. Clustering can be

defined as a process of allocating data objects into a specific

disjoint group, which is called as a cluster; in such a way that

the data objects belong to same cluster should be similar to

each other, while the data objects of different cluster should

be different from each other. Numerous clustering algorithms

have been reported in the literature for clustering the

subjected data in an efficient way. They can be classified as

fuzzy clustering, partitional clustering, hierarchical clustering,

artificial neural network - based clustering, statistical

clustering algorithms, density-based clustering algorithm, etc.

Despite varieties of algorithm classes prevail, partitional

clustering algorithms and hierarchical clustering algorithms

grab great attention from the researchers. Generally,

hierarchically clustering algorithms produce satisfactory level

of clustering performance. However, these algorithms do not

provide options for reallocation of entities. This may lead to

poor classification at the initial stage. Moreover, majority of

the hierarchical algorithms consumes high computational time

and memory [3].

The proposed method tries to implement the algorithm using

Fork/Join method in JAVA. Fork/Join parallelism [4] is

among the simplest and most effective design techniques for

obtaining good parallel performance. Fork/join algorithms are

parallel versions of familiar divide− and−conquer algorithms,

taking the typical form:

Result solve (Problem problem)

{

If (problem is small)

directly solve problem

else

{

Split problem into independent parts

Fork new subtasks to solve each part

Join all subtasks

Compose result from sub results

}

}

The fork operation starts a new parallel fork/join subtask. The

join operation causes the current task not to proceed until the

forked subtask has completed. Fork/join algorithms, like other

divide−and−conquer algorithms, are nearly always recursive,

repeatedly splitting subtasks until they are small enough to

solve using simple, short sequential methods. The rest of the

paper is organized as follows. Section 2 describes Literature

review. Section 3 presents the proposed methodology. Section

4 shows experimental results and evaluations. Finally, the

conclusions and future work are presented in Section 5.

2. LITERATURE REVIEW
Clustering is a task of assigning a set of objects into groups

called clusters. In general the clustering algorithms can be

classified into two categories. One is hard clustering; another

one is soft (fuzzy) clustering. Hard clustering, the data’s are

divided into distinct clusters, where each data element belongs

to exactly one cluster. In soft clustering, data elements belong

to more than one cluster, and associated with each element is

a set of membership levels. To obtain acceptable

computational speed on huge datasets, most researchers turn

to parallelizing scheme. Here, reviewed some of the

techniques presented for literature. Md. Mostofa Ali Patwary

et al [5] have presented a scalable parallel OPTICS algorithm

(POPTICS) designed using graph algorithmic concepts. To

break the data access sequentiality, POPTICS exploits the

similarities between the OPTICS algorithm and PRIM’s

Minimum Spanning Tree algorithm. Li and Fang [6] are

among the pioneer groups on studying parallel clustering.

They proposed a parallel algorithm on a single instruction

multiple data (SIMD) architecture. Dhillon and Modha [7]

proposed a distributed k-means that runs on a multiprocessor

environment. Kantabutra and Couch [8] proposed a master-

slave single program multiple data (SPMD) approach on a

network of workstations to parallel the k-means algorithm.

Tian and colleagues [9] proposed the method for initial cluster

center selection and the design of parallel k-means algorithm.

Prasad [11] parallelized the k-means algorithm on a

distributed memory multi-processors using the message

passing scheme. Farivar and colleagues [12] studied

parallelism using the graphic coprocessors to reduce energy

International Journal of Computer Applications (0975 – 8887)

Volume 103 – No.9, October 2014

25

consumption of the main processor. Inderjit S et al. [13]

presented a parallel implementation of the k-means clustering

algorithm based on the message passing model. Jiabin Deng et

al., [14] proposed an improved fuzzy clustering-text clustering

method based on the fuzzy C-Means clustering algorithm and

the edit distance algorithm, however, FCM is sensitive to

noise and outliers because of its constraint of probabilistic

type. A possibilistic approach called possibilistic c-means

(PCM) was proposed by Krishnapuram and Keller to solving

these problems of FCM [10]. PCM successfully solves the

noise sensitivity problem of FCM. In the meanwhile, some

new problems are also brought about by the PCM clustering

model. PCM is sensitive to the initializations ，it tends to

generate coincident clusters and the clustering results of PCM

heavily depend on the parameter of its clustering model and

so on. Possibilistic C-Means (PCM) has been shown to be

advantageous over Fuzzy C-Means (FCM) in noisy

environments, it has been reported that the PCM has an

undesirable tendency to produce coincident clusters. This

approach combines the partitioning property of the FCM with

the robust noise insensibility of the PCM. In 1997, Pal et al.,

[15] proposed the fuzzy-possibilistic C-Means (FPCM)

technique and algorithm that generated both membership and

typicality values when clustering unlabeled data. FPCM

constrains the typicality values so that the sum over all data

points of typicality’s to a cluster is one. For large data sets the

row sum constraint produces unrealistic typicality values. In

this approach, a new model is presented called Possibilistic-

Fuzzy C-Means (PFCM) model. PFCM produces

memberships and possibilities simultaneously, along with the

usual point prototypes or cluster centers for each cluster.

PFCM is a hybridization of possibilistic c-means (PCM) and

fuzzy c-means (FCM) that often avoids various problems of

PCM, FCM and FPCM. PFCM produces memberships and

possibilities concurrently, along with the usual point

prototypes or cluster centers for each cluster.

3. METHODOLOGY
The aim of the proposed method is to cluster a large dataset

efficiently. Here a scalable parallel clustering algorithm is

used to overcome the problem in clustering large dataset with

high dimension. The clustering is the Possibilistic Fuzzy C-

Means (PFCM) clustering algorithm which is applied to the

each randomly divided set of input data. Then finally the

resultant cluster is obtained at the output. The fig.1 shown

below represents the architecture of the proposed scalable

parallel clustering algorithm. The initial stage of the proposed

method is dividing the input large dataset in to n number of

dataset according to the n number of cores available in the

system.

Fig. 1. Parallel architecture of the proposed algorithm

3.1 Partitioning the Input Large Dataset
Let the input be the large dataset with a size of NM . In this

processing, input large dataset using Possibilistic fuzzy c-

means clustering algorithm is difficult. So dividing the input

dataset randomly in to small subsets of data with equal size

will make system better. So further in this proposed system

the input large data set is divided into N number of subset,

based on number of cores available in the system,

 NSSSSS3,21, , where N is the total number of

sets with equal size. Here the each subset of data is clustered

in to clusters using a standard and efficient clustering

algorithm called Possibilistic Fuzzy C-Means (PFCM).

Programmatically used in fork method in Java. The each

single data subset S consist of a vector of d measurements,

where dxxxxX ,........,, 321 . The attribute of an individual

data set is represented as ix and d represents the

dimensionality of the vector. The Possibilistic Fuzzy C-Means

(PFCM) is applied to the each subset of dataset for clustering

the input dataset dn in to k-clusters.

Possibilistic Fuzzy C-Means (PFCM) clustering method [29]

is applied to divided subset of data. The PFCM is one of the

most efficient parallel clustering methods.

Let the unlabelled data set is NSSSSS3,21, which is

further clustered in to a group of k-clusters using PFCM

clustering method. This proposed PFCM is based on the

minimization of the objective function given below,

nn

k

ik

c

i

iAik

n

k

c

i

n

ik

m

ikm

VTU

tvxbtauXVTUJ
11

2

1 1

,

,,

1;,,min

Subject to the constraints,
ku

c

i

ik

1
1

, and 1,0 ikik tu .

Here ,1,1,0,0 mba where m is any real number

greater than 1, iku is the degree of membership of xi in the

cluster j, xi is the ith of d-dimensional measured data, iv is the

d-dimension center of the cluster, and ||*|| is any norm

expressing the similarity between any measured data and the

center,where, AvXD ikikA and
it

n

k

ik

1
1

The PFCM clustering or partitioning is carried out through an

iterative optimization of the objective function shown above,

with the update of membership iku and the cluster

centers iv by,

nkci
D

D
u

c

j

m

jkA

ikA
ik

 1,;1,

1

1

)1/(2

nkci

D
b

t

ikA

i

ik

1,;1,

1

1
1/1

2

,

.1,

1

1 ci

btau

Xbtau

v
n

k

ik

m

ik

k

n

k

ik

m

ik

i

This iteration will stop when)()1(max k

ik

k

ikik uu

Where, is a termination criteria between 0 and 1, whereas k

are the iteration steps. This procedure converges to local

minimum of
,mJ .

International Journal of Computer Applications (0975 – 8887)

Volume 103 – No.9, October 2014

26

The PFCM clustering algorithm contains various steps;

Algorithm 1:

Finally for subset of input data, a group of K-clusters is

obtained after applying the PFCM clustering method.

3.2 Parallel k-means
The pseudo code of parallel k-means is shown in Algorithm 2.

Algorithm 2. Parallel k-means (PKM)

Input: a set of data points and the number of clusters, K

Output: K-centroids and members of each cluster

Steps

1. Set initial global centroid C = <C1, C2, …, CK>

2. Partition data to P subgroups, each subgroup has equal size

3. for each P,

4. Create a new process

5. Send C to the created process for calculating distances and

assigning cluster members

6. Receive cluster members of K clusters from P processes

7. Recalculate new centroid C‟

8. If difference(C, C‟)

9. Then set C to be C‟ and go back to step 2

10. Else stop and return C as well as cluster members

Fork/Join Framework adds two main classes to the

java.util.concurrent package:

 ForkJoinPool

 ForkJoinTask

The execution of ForkJoinTask takes place within a

ForkJoinPool, which manages the execution of the tasks.

ForkJoinTask objects support the creation of subtasks and

waiting for the subtasks to complete. Advantage of the

ForkJoinPool, is that it can 'steal' work. It means that it allows

one thread that has finished a task to immediately execute

another task with much less overhead than the Executor

Service. This work stealing enables efficient load balancing.
The number of worker threads in a fork/join pool is generally

upper-bounded by the number of cores in the system. Work

stealing automatically corrects unequal distribution of work

without central coordination [16].

The RecursiveAction and RecursiveTask are the only two

direct, known subclasses of ForkJoinTask. The only

difference between these two classes is that the

RecursiveAction does not return a value while RecursiveTask

does have a return value and returns an object of specified

type.

ForkJoinTask objects feature two specific methods:

The fork () method allows a new ForkJoinTask to be launched

from an existing one. In turn, the join () method allows a

ForkJoinTask to wait for the completion of another one. A

ForkJoinTask instance is very light weight when compared to

a normal Java thread. [4]

Following code can be used to perform parallel operations.

public class FJoin extends RecursiveTask<Integer>

{

public static ArrayList<ArrayList<String>> input=new

ArrayList<ArrayList<String>();

private static final int size=130;

public FJoin(int data,int start,int end)

{

this.data=data;

this.start=start;

this.end=end;

}

public FJoin(int data)

{

this(data,0,data);

}

@override

protected Integer compute()

{

final int length=end-start;

if(length<size)

{

return computeDirectly();

}

final int split=length/2;

final FJoin first=new FJoin(data,start,start+split);

first.fork();

final FJoin second=new FJoin(data,start+split,end);

return Math.max(second.compute(),first.join());

}

Following code can be used to find accuracy

public class Accuracy

{

 public static void findaccuracy (ArrayList <ArrayList

<Integer>> cluster,ArrayList<Integer> cls)

 {

 ArrayList<Integer> uni=new ArrayList<Integer>();

 for(int i=0;i<cls.size();i++)

 if(!uni.contains(cls.get(i)))

 uni.add(cls.get(i));

 int sum=0,totsum=0;

 for(int i=0;i<cluster.size();i++)

 {

 int a[]=new int[uni.size()];

 for(int j=0;j<a.length;j++)

 a[j]=0;

 for(int j=0;j<cluster.get(i).size();j++)

 {

 int v=cls.get(cluster.get(i).get(j));

 a[v-1]=a[v-1]+1;

 }

 System.out.println(a[0]+" "+a[1]);

 int v=a[0];

 totsum=totsum+v;

 for(int j=1;j<a.length;j++)

 {totsum=totsum+a[j];

 if(v<a[j])

 v=a[j];

 }

 sum=sum+v;

 }

Step 1: Initialize 0,UmatrixuU ik

Step 2: At k step: calculate the centers vectors

 k

i

k withUvC)(

.1,

1

1 ci

tu

xtu

v
n

k

ik

m

ik

k

n

k

ik

m

ik

i

Step 3: Update

 1, kk UU

1

1

)1/(2

c

j

m

jkA

ikA
ik

D

D
u

Step 4: If ,1 kk UU
then stop; otherwise

return to step 2.

International Journal of Computer Applications (0975 – 8887)

Volume 103 – No.9, October 2014

27

 System.out.println("Accuracy ::

 "+((double)sum/(double)totsum));

 }

 }

Fork/join parallelism is implemented by means of a fixed pool

of worker threads. This is achieved by setting the number of

worker threads in the fork/join pool to a maximum of four,

which is the number of cores in a node in the system. Each

worker thread can execute one task at a time. Tasks waiting to

be executed are stored in a queue, which is owned by a

particular worker thread. Currently executing tasks can

dynamically generate (i.e. fork) new tasks, which are then

enqueued for subsequent execution.

4. EXPERIMENTAL RESULTS AND

DISCUSSION
The experimental result of the proposed approach is furnished

in this section. The experimental evaluation is conducted in

order to evaluate the proposed approach. The method is

implemented by using JAVA language. The code is executed

on dell inspiron N4030 Laptop, Intel(R) Core(TM) i5

Processor 2.67 GHz, 2 MB cache memory, 3GB RAM, 64-bit

Windows 7 Home and NetBeans IDE 8.0.

4.1 Dataset Description
In this proposed method two kinds of datasets are used for

evaluation. The Iris data set consists of three varieties of

flowers—setosa, virginica and versicolor. There are 150

instances and 4 attributes that make up the 3 classes.

The Second data set contains thyroid data set. The Thyroid

data set is based on the diagnosis of thyroid whether it is

hyper or hypofunction. The data set contains 215 patterns, 5

attributes and 3 classes.

4.2. Evaluation Metrics
The proposed scalable parallel clustering algorithm uses

mainly three evaluation matrices, the clustering accuracy,

Classification Error Percentage (CEP) and computation time.

4.2.1. Clustering Accuracy
The clustering accuracy is measured by counting the number

of correctly assigned documents and dividing by N, which is

given the equation below

jk

k
j

CB
N

Accuracy max
1

Where,
kB is the set of clusters kBBBBB,, 321 and

jC is the set of classes kCCCCC ,......., 321 .It interpret
kB

 as the set of documents in
kB and

jC as the set of

documents in
jC .

Table 1: Accuracy of Iris Dataset

Final
Clusters PKM PFCM

2 65.2 66.7

3 72.5 78.6

4 80.3 88.9

5 83.7 90.5

6 85.1 92.3

In the figure 2, shows the accuracy of the proposed approach

by varying the clusters of the parallel clustering system. The

final clusters are varied from 2 to 6. The analysis from the

Table 1 shows that the proposed approach has upper hand

over the existing method. In the case of proposed approach,

the accuracy increases as the number of final cluster increases.

Fig.2.Iris Dataset

The maximum accuracy attained by the proposed approach is

92%, which is very better figure as compared to the existing

method, for which the maximum accuracy obtained is 85%.

All these experiments are conducted in same environment.

Table 2: Accuracy of Thyroid Dataset

Final
Clusters PKM PFCM

2 58.1 60.8

3 65.6 68.2

4 68.4 78.1

5 75.6 85.4

6 80.8 91.7

In the figure 3, it presented the accuracy of the proposed

approach by varying the final clusters of the parallel

clustering system in thyroid dataset. The final clusters are

varied from 2 to 6. The analysis from the Table 2 shows that

the proposed approach has upper hand over the existing

method. In the case of proposed approach, the accuracy

attained by the proposed approach is very better as compared

to the existing method.

Fig. 3.Thyroid Dataset

4.2.2. Classification Error Percentage (CEP)

One of the most important characteristics of a clustering

method is the ability of it in deceasing clustering error. The

given data set, 75% of the data set is randomly selected to

obtain the cluster centers using Algorithm 1. In this way to

obtain the cluster centers for all the classes. The remaining

25% of data set is used (called test data set) to obtain the

classification error percentage (CEP).The classification of

each pattern is done by assigning it to the class whose

distance is closest to the center of the clusters. Then, the

classified output is compared with the desired output and if

they are not exactly the same, the pattern is separated as

misclassified. Let n be the total number of elements in the

dataset and m be the number of elements misclassified after

finding out the cluster center using the above algorithms.

Then classification error percentage is given by [17]

0
20
40
60
80

100

2 3 4 5 6

A
cc

u
ra

cy

Final Clusters

PKM

PFCM

0

20
40

60
80

100

2 3 4 5 5

A
cc

u
ra

cy

Final Clusters

PKM

PFCM

International Journal of Computer Applications (0975 – 8887)

Volume 103 – No.9, October 2014

28

CEP=
m

n
 ∗ 100

Here use two dataset for calculating CEP. Table 3 shows that

classification error percentage of two data set like Iris and

Thyroid.

Table 3: Classification error percentage

 PKM PFCM

Iris 0.34 0

Thyroid 1.23 0.12

From the training data set the knowledge in the form of

cluster centers is obtained using the algorithm 1.For these

cluster centers the testing data sets are applied and the CEP

values are obtained. As can be seen from Table 3, the PFCM

outperforms the existing method.

4.2.3. Time Comparison
The time analysis based on the data size is shown in the figure

4 and figure 5. The computation time which is measured

based on the starting and ending time of the program. From

this analysis found that the proposed approach and existing

approach is clearly different from each other. PFCM

algorithm enables improving the time performance of

clustering on large scale data sets and Java F/J is quite

appropriate for the parallel computing environment.

Fig.4.Iris Dataset

Fig. 5.Thyroid Dataset

 As considering all scenarios, assess that proposed algorithm

is efficient in compared with parallel k means algorithm.

5. CONCLUSION
In this paper, proposed the design and implementation of

scalable PFCM algorithm. Here used fork and join model for

the Java programming concurrently on multi-cores machine.

Fork/join method overcomes deficiencies of multithreaded

execution. Large data clustering plays crucial and related

processes in various domains. However, most of the clustering

algorithms are compatible only with small data. The solution

to address large scale clustering problem is exploiting parallel

algorithm. The proposed approach is designed to address

mainly for the difficulty to cluster large data sets. The

proposed approach used a PFCM algorithm to handle the

large data set. The proposed method is compared with the

performance of the existing parallel k-means clustering

algorithm. The performance analysis and experimental result

showed that proposed method provide better result. Finally,

solution utilizes maximum hardware capabilities of multi-core

systems for faster execution by processing multiple tasks in

parallel. Also the experimental analysis showed that the

proposed approach obtained upper head over existing method

in terms of accuracy and time. In future work it will apply

different cores in different cluster size.

6. REFERENCES
[1] JinchaoJi , Wei Pang, Chunguang Zhou, Xiao Han, Zhe

Wang, ―A fuzzy k-prototype clustering algorithm for

mixed numeric and categorical data‖, journal of

Knowledge-Based Systems, vol. 30, pp. 129-135, 2012

[2] Swagatam Das, Ajith Abraham, Amit Konar, "Automatic

Clustering Using an Improved Differential Evolution

Algorithm", IEEE Transactions on Systems, Man, and

Cybernetics—Systems And Humans, Vol. 38, No. 1,

2008

[3] HesamIzakian, Ajith Abraham, Vaclav Snasel, "Fuzzy

Clustering Using Hybrid Fuzzy c-means and Fuzzy

Particle Swarm Optimization", World Congress on

Nature and Biologically Inspired Computing (NaBIC

2009), India, IEEE Press, pp. 1690-1694, 2009.

[4] Doug Lea, A Java Fork/Join Framework, State

University of New York at Oswego,www.developer.com

[5] D. Mostofa Ali Patwary,Diana Palsetia1, Ankit

Agrawal1,Wei-keng Liao1, Fredrik Manne2,

AlokChoudhary, " Scalable Parallel OPTICS Data

Clustering Using Graph Algorithmic Techniques",

International Conference for High Performance

Computing, Networking, Storage and Analysis, ACM,

No. 49, 2013

[6] Li X. and Fang Z., ―Parallel clustering algorithms‖,

Parallel Computing, 1989, 11(3): pp. 275-290.

[7] Dhillon and Modha D., ―A Data-Clustering Algorithm on

Distributed Memory Multiprocessors‖, Proceedings of

ACM Workshop on Large Scale Parallel KDD Systems,

1999, pp. 47-56.

[8] Kantabutra S. and Couch A., ―Parallel k-means clustering

algorithm on NOWs‖, Technical Journal NECTEC,

2000, Vol.1,No.6

[9] Tian J., Zhu L., Zhang S., and Liu L., ―Improvement and

parallelism of k-means clustering algorithm‖, Tsignhua

Science and Technology, 2005

[10] R. Krishnapuram and J. M. Keller, ―A possibilistic

approach to clustering,‖ IEEE Transactions on Fuzzy

Systems, vol. 1, p.10.1109/91.227387, 1993.

[11] Prasad, ―Parallelization of k-means clustering algorithm‖,

Project Report, University of Colorado, 2007.

[12] Farivar R., Rebolledo D., Chan E, ―A Parallel

Implementation of k-means Clustering on GPUs‖,

Proceedings of International Conference on Parallel and

Distributed Processing Techniques and Applications

(PDPTA), 2008, pp. 340-345.

[13] Inderjit S. Dhillon and Dharmendra S. Modha, ―A Data-

Clustering Algorithm On Distributed Memory

0
50000

100000
150000
200000
250000

2 3 4 5 6

Ti
m

e

Final cluster

Proposed

Existing

0

50000

100000

150000

200000

250000

2 3 4 5 6

Ti
m

e

Final cluster

Proposed

Existing

http://www.developer.com/

International Journal of Computer Applications (0975 – 8887)

Volume 103 – No.9, October 2014

29

Multiprocessors‖, Proceedings of KDD Workshop High

Performance Knowledge Discovery, pp. 245-260, 1999.

[14] Jiabin Deng, JuanLi Hu, Hehua Chi and Juebo Wu, ―An

Improved Fuzzy Clustering Method for Text Mining‖,

Second International Conference on Networks Security

Wireless Communications and Trusted Computing

(NSWCTC), Vol. 1, Pp. 65–69, 2010.

[15] Pal N.R, Pal K, Keller J.M. and Bezdek J.C, ―A

Possibilistic Fuzzy c-Means Clustering Algorithm‖,

IEEE Transactions on Fuzzy Systems, Vol. 13, No. 4, Pp.

517–530,

[16] Robert D Blumofe, The University of Texas at Austin,

Scheduling Multithreaded Computations by Work

stealing.

[17] J Senthilnath, S.N.Omkar, Swarm and Evolutionary

Computation 1(2011)164-171.

IJCATM : www.ijcaonline.org

