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ABSTRACT 

The paper presents novel approaches to solving the dynamic 

economic load dispatch (DELD) problem with valve-point 

loading effects. In dynamic environments, optimization 

problems change over time. They are also called time 

dependent or dynamic time-linkage problems, where 

decisions made at a given time may affect output obtained in a 

later time. It is therefore expected of algorithms solving 

dynamic optimization problems to both locate optimal 

solutions of the given problem and keep track of such 

solutions as they change with time. An investigation was 

made of three optimization methods in conjunction with three 

smart mutation variants, on benchmark problem cases 

involving 5 and 10 generating units, the major test cases in the 

literature with comparative results for other algorithms. The 

results suggest that the third approach which exploits the 

dynamic nature of the problem was capable of superior to the 

other two approaches. Comparisons with all approaches so far 

in the literature that have addressed these problems show that 

these evolutionary computation approaches are superior to 

other algorithms.  
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1. INTRODUCTION 
A great majority of problems in real-world applications are 

very complex and adaptive, as well as ways and methods used 

in solving them. The solutions are obtained by balancing 

several (and sometimes) conflicting multiple criteria in 

dynamic environments. Artificial intelligent techniques 

present powerful machine learning and nature-inspired 

approaches to investigate ways of solving problems in such 

dynamic environments which pose great challenges. This is 

the case of electrical power system optimization problems 

with multiple objectives, challenging constraints and dynamic 

demands. Here, there are constant changes affecting the power 

variables, various problem scenarios, with lots of operational 

constraints, resulting in the optimal solutions changing over 

time, and across dispatch periods.  

The Economic Load Dispatch (ELD) problem is concerned 

with the determination of the optimal combination of 

electrical power output for generating units in power stations 

on a near-real time basis, and with respect to a predicted load 

demand. The aim is to minimize the cost of producing power 

among those units (basically fuel cost), while obeying all 

operational constraints.  

The Dynamic Economic Load Dispatch (DELD) problem 

extends the traditional, also called Static Economic Load 

Dispatch (SELD) problem. It exists in practical systems 

involving ramp-rate limits (which constrain the changes that 

can be made to the settings of an individual generator between 

periods), where operational decisions at a given hour will 

affect the decision at a later hour [1]. This is one of several 

optimization problems that need repeatedly to be solved in the 

electricity industry. Formulation of DELD addresses two 

major issues: (1) the changes caused by ramp-rate limits, 

which makes the power generation to be periodically adjusted 

to meet targeted demands; and (2) the dynamic costs involved 

in changing from one output level to another [2]. This makes 

it a more applicable formulation of the economic load 

dispatch problem, but also a more difficult and complex 

optimization problem. Until now, the DELD has been treated 

as a series of unconnected static problems.  

Evolutionary computation (EC) is one of the four main 

paradigms of computational intelligence, a branch of artificial 

intelligence.  Others are: Artificial Neural Network (ANN), 

Fuzzy Logic (FL) and Swarm Intelligence (SI) [3].  EC 

consists of the following algorithms/techniques: Genetic 

Algorithms (GA), Genetic Programming (GP), Evolutionary 

Programming (EP), Simulated Annealing (SA), Evolution 

Strategies (ES), Differential Evolution (DE), and Estimation 

of Distribution Algorithms (EDA).  All EC approaches are 

based on Charles Darwin’s theory of natural evolution [4]. 

GA is the basis of all evolutionary algorithms, and models 

genetic evolutions, based on the concept of natural selection 

(survival of the fittest). Others are resemblance, with 

variations in structure and implementation. GP is a 

specialization of GA, but each individual is a computer 

program (represented as trees) that performs a user-defined 

task. EP is similar to GP, but the structure of the programs is 

fixed, whereas the parameters are allowed to gradually evolve. 

SA originated from the annealing process found in the 

thermodynamics and metallurgies. It involves a controlled 

heating and cooling of materials in order to increase the sizes 

of their crystals and reduce unwanted defects. ES do not 

implement crossover, with its results primarily dependent on 

mutation and selection. DE uses few control parameters and 

like ES, relies mainly on genetic mutation to achieve its 

solutions. EDA is also known as Probabilistic Model Building 

Genetic Algorithms, and motivated by the idea of discovering 

and exploiting interactions between variables in the solution, 
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estimate a probability distribution from population of 

solutions, and sample it to generate the next population.  

EC remains an active area of research in the entire field of 

computational intelligence. Other recent approaches are: 

Expert System, Tabu Search, Shuffled Frog Leaping 

Algorithm and Artificial Immune System [5].  Expert System, 

first proposed by Feigenbaum et al in the early 1970s [6], is a 

knowledge-based method, which uses the knowledge and 

interface procedure to solve problems that are difficult enough 

to require human expertise for their solution. Tabu Search is 

an iterative gradient-descent search algorithm with memory 

and response exploration [7]. The memory stores a number of 

previously visited states, along with a number of unwanted 

states in a Tabu list. Shuffled Frog Leaping Algorithm 

(SFLA), proposed by Eusuff and Lansey in 2003 [8], involves 

a set of frogs that co-operate with each other to achieve a 

unified behavior for the whole system. Artificial Immune 

System, inspired by the works of Farmer, Packard and 

Perelson in 1986 [9], is a class of computationally intelligent 

systems based on the principles and processes of the immune 

system. It combines the characteristics of learning and 

memory of the system to solve a problem. 

This paper is organized as follows: Section 2 reviews previous 

DELD solution approaches in the literature, Section 3 shows 

the problem formulation; Section 4 describes the proposed 

optimization algorithm; Section 5 details the experimental 

design, results and discussions; while Section 6 concludes the 

findings of the work. 

2. REVIEW OF PREVIOUS DELD 

OPTIMIZATION APPROACHES 
All The development of DELD formulations and approaches 

is a dynamic research area, due to the dynamic nature of 

power systems and large variations of load demands. A 

number of methods have been adopted in solving DELD 

problems with non-smooth and non-convex cost functions. A 

major common difficulty with all the methods is choosing 

control parameters. In [10], General Algebraic Modelling 

System (GAMS) was proposed for different cases of DELD 

problems involving six generating units with a consideration 

of cost, losses and emissions. GAMS consist of a collection of 

statements in high-level language used to represent problem 

models. It performs the required data transformation to 

instantiate the model, which could be applied to linear, non-

linear as well as mixed-integer optimization problems. The 

various components of the system are: sets, data, variables, 

equations, model/solution, and output statements. The 

solution approach is analytic in nature with good 

computational efficiency, high accuracy and environment 

friendly, but it will be very cumbersome for solving large, 

complex and adaptive DELD systems. Maclaurin Series-

Based Lagrangian Method was proposed in [2], where the 

sinusoidal component of the cost function is represented by a 

series of Maclaurin approximation, solved using Lagrangian 

method to realise an optimal or near optimal solution in a 

single run. The approach is simple and easy to implement, 

with a fast convergence rate, low computational time 

demands, and produces a unique solution. However, it is 

mainly applicable to relatively simple functions. A simple and 

direct Sequential Approach with Matrix Framework was 

developed in [11]. The aim is to determine optimal generation 

dispatches across the entire periods in a single execution. 

While the effectiveness of the approach was validated in some 

benchmark cases involving fewer test systems, for large 

power systems, it suffers from the curse of dimensionality due 

to the matrix size and coupled with the sequentiality of the 

algorithm. Evolutionary and other stochastic methods such as: 

Genetic Algorithm (GA) [12], Fuzzy Logic (FL) [13], 

Artificial Neural Network (ANN) [7], Particle Swarm 

Optimization (PSO) [4], Differential Evolution [14], 

Simulated Annealing (SA) [15], their hybrids and variants 

including: Hopfield Neural Network/Quadratic Programming 

[16], Harmony Search Algorithm [17], Evolutionary 

Programming/Sequential Quadratic Programming [18], Fuzzy 

Logic/Simulated Annealing [19], etc, have attracted great 

interest in the recent past for realising optimal solutions, and 

applied to solve DELD problems. These algorithms are 

population-based search methods, with random control 

parameters, and use probabilistic rules to update the positions 

of their potential solutions in the search space. But in most 

often times, there is no guarantee of finding global optimum 

solutions, only feasible solutions are realised within a 

reasonable time frame. However, where the number of the 

search variables and parameters are large and highly 

correlated, realising global optimal solutions becomes a 

problem due to the large dimensionality of the dynamic 

dispatch. In [12], a calculus of variations and GA were jointly 

applied to optimize the DELD problem, with the GA 

focussing on penalty weighting parameters. However, a 

problem involving only 3 generating units was considered and 

they were not sure of its applicability to larger systems. 

Unless used as a hybrid tool with other approaches, the 

application of Fuzzy Logic to active power generation is very 

limited. For complex problems ANNs need to have many 

inputs and/or several layers of inputs; with consequently many 

parameters, much time is required for training, and good 

results are far from guaranteed. Although PSO has the ability 

of quick convergence through exploration, but it is very slow 

in exploitation, and when stuck, it encounters a problem while 

escaping from local optima. DE converges too quickly, and 

may not be a good approach for large scale optimization tasks. 

Setting of control parameters using SA is a very cumbersome 

task, leading to slow execution speed. In this paper, an 

investigation is made of novel adaptive algorithms involving 

three optimization approaches in conjunction with three 

variants of a smart mutation operator on bench mark dynamic 

problems with valve-point loading effects.  

3. DELD FORMULATION 
The main objective of the DELD is to simultaneously 

minimize the generation cost and meet the consumers’ load 

demand over a given period of time while satisfying three 

major constraints: load balance, generation limit and ramp-

rates constraints. For non-smooth cost function with valve-

point loading effects, the objective function is represented as 

the sum of the smooth quadratic function and the absolute 

value of the sinusoidal function (1): 
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Considering the ramp-rate limit constraint, there are three 

possible cases in actual operation of the generating units: 

steady state condition, increasing generation and decreasing 

generation conditions, as shown in (5) to (7).  

1,,  titi PgPg
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                         (6) 
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Therefore the constraint of (2) due to the ramp-rate limits of 

(6) and (7) is modified as: 
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Where:  

FT =Total operating cost over the whole dispatch period; 

T = Number of time periods;  

N = Number of generating units; 

ai, bi, ci = Cost coefficients of ith unit with quadratic function;  

ei, fi   = Cost coefficients of ith unit with sinusoidal function; 

Pgi,t   = Power output of ith unit; 

Pgi, t-1 = Power generation of ith unit at the previous period; 

PD,t  = Total power demand at period, t; 

PL,t   = Power losses at period, t; 

Pgi
min  = Lower limit of the ith unit; 

Pgi
max = Upper limit of the ith unit; 

URi  = Ramp-up limit of unit i, 

DRi  = Ramp-down limit of unit i. 

 

4. OPTIMIZATION ALGORITHM 
An investigation is made of three dynamic optimization 

approaches (D1, D2 and D3) in conjunction with three smart 

evolutionary algorithms (SEA1, SEA2 and SEA3) from the 

three variants of smart mutation operators developed in a 

previous work of [20], to solve the DELD problem with 

valve-point effects and ramp-rate constraints for a 24-hour 

dispatch period. Assuming there are N generators and T 

dispatch periods, the control variables are represented by an 

array with dimension N x T elements, and output of generator 

i at time t is given by Pgi,t; ranging from Pg11 to PgNT: 

)]()[(, NT2T,1T,N131,21,11,ti PgPgPgPgPgPgPgPg 
         (9) 

 

D1 is a baseline dynamic optimization method that solves the 

dynamic form of the problem in sequence of static problems; 

D2 solves the static problems together, treated as a single 

multi-part problem with suitably adjusted constraints; while 

D3 extends D2, with the final population of previous periods 

being used to initialise the populations of subsequent periods. 

SEA1 uses tournament selection based on the penalty values 

to decide which gene to mutate; SEA2 introduces a mutation 

probability, whereby a smart mutation is done when the 

probability is met, otherwise, a standard random mutation is 

done; SEA3 extends SEA2, but the value of the mutation 

probability starts at 0, and gradually moves to 1 in a linear 

fashion towards the probability is met, the maximum number 

of generations. 

Starting with initial feasible solution vectors of (9), the 

following is the procedural description of the flow of work 

towards the realization of the solution to the DELD problem. 

i. Read system data, dispatch period, and predicted load 

demand for each period. 

ii. Initialise randomly at the first period, the population of 

chromosome within the generating units’ range, 

according to the specifications of D1, D2 and D3. 

iii. Uniform gene distribution ensures that the generators’ 

outputs are within the legal minimum and maximum 

limits defined in (10), through the following rules: 
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      Where: α is a scaling factor (user-defined small 

positive number less than one).  

iv. With additional dynamic constraints involved (load 

balance and ramp rate limits) across the dispatch 

periods, processing constraints violation becomes a 

harder task.  There exists also a complexity in realising 

an optimum solution in this formulation due to the 

presence of valve-point loading effects, which creates 

additional ruggedness in the cost curve and is likely to 

increase the density of local optima.  

v. In a given dispatch period, the population of 

chromosomes contains feasible genes (outputs for each 

generating unit) which must be within the minimum and 

maximum generation limits according to (10). Checks 

are made to ensure that violations in power balance and 

ramp-rate limits constraints are handled. Violation of 

either or both of them constitutes the penalty in this 

case. 

vi. Compute costs of individual genes using the objective 

function of (1). 

vii. The genes with the highest cost, including those that 

violate load balance and/or ramp-rates constraints are 

subject of the smart mutation, see [20] for details. 

viii. The penalties augment the objective function to form 

the generalised fitness function of equation (4.15), used 

in a similar problem case of [101, 108]. 
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Where: μ and β are penalty terms which reflect the 

violation of the power balance and ramp-rates 

constraints respectively, assigning a high cost of penalty 

to affected ones far from the feasible region [14], and 

the outputs of the generating units due to the dynamic 

ramp-rate limits are defined by: 
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ix. Output the best compromising solution vector for each 

of the dispatch periods: 
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5. EXPERIMENTAL DESIGN AND 

ANALYSIS OF RESULTS  
The performances of the dynamic optimization approaches 

D1, D2 and D3 in conjunction with three smart evolutionary 

algorithms (SEA1, SEA2 and SEA3) were tested in two 

different experimental cases involving 5 and 10 units systems, 

the major test cases in the literature for which there are 

comparative results for other algorithms. 

5.1 Five (5) Generating Units 
The generators’ data, loss coefficients matrix and load 

demand in each hour were taken from [2, 14]. The dispatch 

period is an arbitrary 24 hours and losses were considered. 

Simulation of the algorithm was made for 30 runs, with the 

hourly costs for SEA1, SEA2 and SEA3 in each of D1, D2 and 

D3 given in Table I, while Table II compares the results with 

other approaches in the literature using the same set of data.  

 

Table I. Hourly costs of the 9 dynamic approaches, averaged over 30 runs on the 5-unit problem 

Hour D1 D2 D3 

SEA1 SEA2 SEA3 SEA1 SEA2 SEA3 SEA1 SEA2 SEA3 

1 1646.82 1590.39 1480.86 1617.40 1590.78 1611.09 1542.27 1587.03 1508.49 

2 1756.98 1594.84 1528.35 1646.99 1667.11 1658.81 1615.11 1685.58 1579.03 

3 1673.56 1624.81 1604.98 1665.97 1657.17 1789.49 1650.18 1673.40 1663.93 

4 1847.47 1683.50 1662.49 1768.70 1752.72 1848.14 1830.90 1766.13 1726.54 

5 1860.56 1789.59 1757.44 1808.95 1936.41 1835.29 1842.68 1915.13 1782.90 

6 2067.11 1925.39 1943.08 2001.13 1914.91 1901.05 1909.81 1929.46 1849.05 

7 2055.72 1962.25 1933.60 2093.54 1895.70 1930.68 1962.25 1888.83 1838.46 

8 2066.91 2010.32 2003.64 2059.04 1906.76 1920.18 2010.32 1904.95 1911.67 

9 2150.78 2090.26 2096.37 2114.96 1993.82 1899.48 2090.26 1962.76 1892.80 

10 2255.42 2173.67 2121.94 2130.19 2033.66 1932.01 2165.05 2017.54 1950.94 

11 2272.31 2171.65 2140.43 2150.46 2197.13 1836.63 2120.43 1997.92 1790.95 

12 2297.44 2225.73 2280.74 2084.66 2124.66 1844.66 2112.56 2027.72 1827.45 

13 2217.35 2187.57 2130.41 2208.62 2146.13 1867.34 2108.30 2039.44 1850.53 

14 2244.22 2112.98 2103.93 2193.17 2187.55 1916.75 2073.03 1989.88 1922.89 

15 2131.26 2145.01 1978.04 2192.03 2114.59 1907.77 1972.87 1991.86 1893.28 

16 1985.26 1908.59 1924.83 2054.26 1920.37 1911.12 1891.49 1894.66 1867.16 

17 1895.88 1823.78 1744.80 1972.13 1915.78 1917.19 1734.05 1935.75 1831.04 

18 1983.59 1936.27 1923.54 2029.02 1898.46 1976.09 1917.25 1853.46 1874.35 

19 2100.15 2014.84 1979.08 1902.70 1995.21 1910.49 1939.36 1886.44 1896.29 

20 2266.59 2181.62 2134.24 1913.84 2030.30 1918.76 1920.51 1985.91 1914.25 

21 1953.88 1930.19 1902.16 1872.82 1999.92 1873.74 1905.38 1910.93 1832.89 

22 1954.74 1950.85 1975.22 1845.43 1713.15 1919.60 1867.29 1847.69 1901.64 

23 1860.02 1827.82 1773.09 1785.91 1709.48 1879.93 1712.58 1802.90 1782.82 

24 1701.37 1731.69 1583.11 1873.91 1670.39 1878.00 1582.90 1762.05 1701.60 

Total 48,245.39 46,493.59 45,706.37 46,985.80 45,972.22 44,884.35 45,476.82 45,257.42 43,590.76 

 

Table II. Summary of costs of the 9 dynamic approaches, averaged over 30 runs and comparison 

with other approaches on the 5-unit problem 

Approach Min Cost ($/hr) Av  Cost ($/hr) Max  Cost ($/hr) 

PSO [2] 50,124.00 - - 

PSO [1] 49,970.43 50216.59 51803.30 

MSL [2] 49,216.81 - - 

SA [15] 47,356.00 - - 

DE [17] 43,213.00 43,813.00 44,247.00 

HHS[1] 43,154.86 - - 

D1_SEA1 46,985.74 48,245.39 49,417.14 

D1_SEA2 45,414.51 46,493.59 49,711.25 

D1_SEA3 44,810.20 45,706.37 46,655.38 

D2_SEA1 45,680.25 46,985.80 48,104.08 

D2_SEA2 42,125.08 45,972.22 47,379.97 

D2_SEA3 38,638.89 46,884.35 48,437.36 

D3_SEA1 44,325.67 45,476.82 46,451.82 

D3_SEA2 41,704.25 45,257.42 48,280.88 

D3_SEA3 40,837.70 43,590.76 46,395.08 
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Figure 1: Variation of costs of the best two approaches 

(D2_SEA3 and D3_SEA3) on the 5-unit problem 

 

for this problem, with the former having the lowest minimum 

cost and the latter having the lowest average cost, over 30 

runs among the 9 approaches. To further explore the 

differences between the two approaches, a plot of the 

variation of their generation costs across the 24 hours dispatch 

period was made, as shown in Figure 1 (averaged over 30 

runs). From the curve, it is clear that D3_SEA3 outperforms 

D2_SEA3. Figure 2 is a load curve distribution comparing the 

best and worst approaches (D3_SEA3 and D1_SEA1) 

respectively, with the load demand across the entire dispatch. 

Being a smaller problem case, all the 9 dynamic approaches 

performed relatively well, confirming the performance 

efficiency of the approaches.  Table III shows typical (best) 

resources scheduling using the best approach. 

 

 
Figure 2: Load curve comparing the best approach 

(D3_SEA3), worst approach (D1_SEA1), with load 

demand on the 5-unit problem 

 

5.2 Ten (10) Generating Units 
The generators’ data, loss coefficients matrix and load 

demand in each hour were taken from [2, 14]. The dispatch 

period is an arbitrary 24 hours and transmission losses were 

ignored for ease of comparison of results with those of other 

approaches reported in literature.  Table IV shows the hourly 

costs (averaged over 30 runs) for SEA1, SEA2 and SEA3 in 

each of D1, D2 and D3 throughout the entire dispatch period, 

while Table V compares the results with other approaches in 

the literature using the same set of data. Table V reveals 

comparatively lower costs from D1_SEA3, D3_SEA2 and 

D3_SEA3 out of the 9 dynamic approaches for this problem, 

in terms of total minimum and average costs. Figure 3 shows 

the variation of their average total costs across the 24 hours 

dispatch period (over 30 runs), while Figure 4 compares the 

load curve distribution of the best and worst approaches 

across the entire dispatch period. Again, from the two figures, 

D3_SEA3 seems to be the best optimizer for this problem, 

with lower cost (Figure 3), and its load trend (Figure 4).  

Overall, the results indicate that D3_SEA3 is generally the 

choice to be recommended. Table VI shows a best resources 

scheduling using the best approach. 

Table III. Typical resources scheduling in a single run of the best DELD approach on the 5-unit problem 

Hour Unit 1 Unit  2 Unit  3 Unit  4 Unit  5 Total Gen Power Dem Loss 

1 55.95 48.53 102.50 101.75 103.91 412.65 410 2.65 

2 11.68 85.48 38.58 187.98 123.53 447.25 435 12.25 

3 45.66 88.52 45.97 220.10 75.19 475.44 475 0.44 
4 40.29 119.52 121.15 72.43 177.34 530.73 530 0.73 

5 58.37 36.13 129.48 141.09 194.85 559.93 558 1.93 

6 40.16 116.94 72.47 127.07 263.27 619.92 608 11.92 
7 23.99 66.46 154.50 204.16 182.51 631.63 626 5.63 

8 46.61 111.47 123.59 151.18 227.65 660.51 654 6.51 

9 28.99 61.37 143.64 217.51 240.21 691.71 690 1.71 
10 64.02 58.59 115.99 235.61 230.82 705.03 704 1.03 

11 12.67 88.14 157.76 198.53 269.80 726.90 720 6.90 

12 47.36 67.41 164.07 201.92 264.84 745.60 740 5.60 
13 60.73 75.93 142.12 180.72 253.79 713.28 704 9.28 

14 53.89 60.59 150.14 156.54 275.85 697.02 690 7.02 

15 51.94 107.42 118.20 91.55 286.47 655.58 654 1.58 
16 27.48 86.36 62.23 129.23 275.41 580.71 580 0.71 

17 69.00 102.91 93.12 65.13 228.24 558.40 558 0.40 

18 34.09 85.21 86.36 187.22 224.51 617.38 608 9.38 
19 37.20 99.94 93.13 181.54 250.74 662.55 654 8.55 

20 70.59 97.61 102.99 207.10 228.39 706.68 704 2.68 

21 29.48 94.44 44.96 132.89 285.47 587.24 580 7.24 
22 24.29 101.17 142.06 86.52 256.22 610.26 605 5.20 

23 63.41 32.84 55.05 134.67 241.62 527.60 527 0.60 

24 67.26 72.62 127.17 148.95 51.09 467.08 463 4.08 
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Table IV. Hourly costs of the 9 dynamic approaches, averaged over 30 runs on the 10-unit problem 

 

 

 

Table V. Summary of results, over 30 runs and comparison with other approaches on the 10-unit problem 

 

Approach Minimum 

Cost ($/hr) 
Average  Cost 

($/hr) 
Maximum  

Cost ($/hr) 

PSO [1] 1,052,655.81 1,055,963.30 1,046,633.42 

SQP [17] 1.051,163.00 - - 

EP [17] 1,048,638.00 - - 

EP-SQP [18] 1,031,746.00 1,035,748.00 - 

DE [14] 1,019,786.00 - - 

HHS [17] 1,019,019.11 - - 

D1_SEA 1 1,027,664.37 1,038,149.43 1,046,674.90 

D1_SEA 2 1,003,166.34 1,027,291.99 1,217,239.92 

D1_SEA 3 894,893.10 1,021,824.75 1,234,955.97 

D2_SEA 1 930,464.83 1,034,984.93 1,142,581.07 

D2_SEA 2 983,428.21 1,014,319.09 1,055,054.96 

D2_SEA 3 996,122.31 1,012,208.44 1,030,564.23 

D3_SEA 1 959,565.27 1,016,280.95 1,090,724.60 

D3_SEA 2 887,541.23 1,014,592.37 1,088,462.06 

D3_SEA 3 907,838.55 999,832.63 1,021,407.08 

 

Hour D1 D2 D3 

SEA1 SEA2 SEA3 SEA1 SEA2 SEA3 SEA1 SEA2 SEA3 

1 38313.31 39447.60 41574.58 37978.41 36083.14 32690.97 38772.73 34796.03 31651.14 

2 37833.66 41988.94 41389.04 42475.48 37035.72 32482.32 37247.33 35422.78 32846.53 

3 39415.11 42466.12 41667.97 42264.87 38227.26 33128.10 43202.17 39002.20 33042.93 

4 38348.55 41762.94 41697.76 44254.34 37168.62 35559.17 43224.84 42183.15 34291.91 

5 46739.43 43303.06 43288.42 42427.66 35848.01 37250.11 51973.64 41984.53 37207.67 

6 45113.18 43604.58 42986.19 45029.90 41895.95 44609.36 42489.33 44285.52 43035.50 

7 40002.55 43790.85 43256.59 40195.71 41477.43 43819.79 41115.17 43247.89 44537.43 

8 44843.25 42568.29 42022.86 49444.02 40029.04 43484.71 36637.04 39568.58 43058.17 

9 46233.03 44030.63 43013.12 47704.65 47371.31 42199.89 37420.92 43374.70 42055.26 

10 50229.33 44517.13 43916.68 41945.22 49310.68 51361.63 36158.64 49869.40 51640.30 

11 49902.08 44624.73 43810.38 38092.73 50804.44 50962.26 46018.19 49215.63 51154.60 

12 49592.99 44498.43 43803.11 36142.29 51006.72 50947.07 47630.11 49105.43 52197.39 

13 50929.33 44807.00 43883.21 43492.44 49520.47 51486.81 43677.24 41263.10 51573.64 

14 40490.97 42843.23 42302.61 43761.07 47495.42 42280.53 43314.59 38577.28 42221.92 

15 39802.55 42545.08 41951.01 47698.34 40057.86 43340.43 44862.99 38854.36 43091.51 

16 38999.82 42408.81 41596.97 46354.95 39667.70 41075.00 41665.71 42872.50 39006.07 

17 39228.40 42231.53 42431.22 44650.54 36081.35 37216.78 42619.52 42431.22 37474.33 

18 46213.18 43887.67 43093.84 42317.32 41962.62 44673.83 42405.33 43093.84 42925.24 

19 38820.45 42094.32 41421.31 39986.82 40162.38 43618.04 42575.22 41421.31 43358.17 

20 50629.33 44696.57 44116.68 44534.58 49477.35 51461.63 43847.04 44116.68 51806.97 

21 45133.03 44115.38 42849.77 44691.47 47537.98 42566.24 43059.67 42849.77 42155.26 

22 43413.18 43751.03 42439.76 40200.68 42229.29 44491.83 42940.73 42439.76 43068.84 

23 38846.08 42448.25 41661.37 44076.25 37959.39 36116.77 42844.65 43484.71 34097.31 

24 39121.64 34859.84 41650.29 45265.22 35908.52 35385.16 40551.13 41075.00 32334.55 

Total 1038149.4 1027292.0 1021824.8 1034984.9 1014319.1 1012208.4 1016281.0 1014592.4 999832.6 
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Figure 3: Variation of costs of the best 3 dynamic 

approaches, in the entire dispatch on the 10-unit problem 

 

Figure 4 Load curve comparing the best and worst 

approaches, with load demand on the 10-unit problem 

 

Table VI. Best resources scheduling in a single run of the best DELD approach on the 10-unit problem 

Hour Unit 

1 

Unit 

2 

Unit 

3 

Unit 

4 

Unit 

5 

Unit 

6 

Unit 

7 

Unit 

8 

Unit 

9 

Unit  

10 

Total 

Gen 

Power 

Dem 

1 125.2 150.2 160.1 120.3 122.2 117.2 107.2 85.1 20.4 55 1063.0 1036 

2 226.3 149.9 164.9 121.8 122.1 120.3 119.1 85.1 20.3 55 1184.9 1110 

3 300.4 135.5 184.2 114.6 173.1 129.4 118.1 85.1 20.6 55 1315.9 1258 

4 380.0 232.9 188.5 169.7 133.9 118.0 119.1 85.1 25.1 55 1507.5 1406 

5 370.8 321.6 85.3 235.0 117.5 117.8 117.1 81.1 40.1 55 1541.3 1480 

6 387.4 326.5 195.1 192.1 110.6 117.4 124.2 115.2 26.9 55 1650.5 1628 

7 450.8 326.6 200.6 192.4 114.1 118.8 128.3 110.1 26.2 55 1722.9 1702 

8 455.8 328.1 307.8 193.1 118.5 115.8 129.1 85.1 27.3 55 1815.6 1776 

9 455.2 451.8 307.2 231.2 117.7 113.2 115.2 85.1 30.2 55 1961.9 1924 

10 459.8 452.5 337.2 233.2 217.8 119.8 117.2 85.1 39.0 55 2116.6 2072 

11 459.6 446.9 338.1 227.9 223.2 133.6 129.7 85.1 49.3 55 2148.4 2146 

12 459.1 443.0 339.9 279.8 234.7 159.1 129.1 85.1 49.1 55 2233.9 2220 

13 460.8 447.9 333.7 229.7 234.0 124.8 129.0 47.0 20.0 55 2091.9 2072 

14 454.8 348.8 279.8 229.4 237.7 124.8 129.5 47.4 20.0 55 1927.1 1924 

15 380.4 396.7 224.9 225.0 234.2 127.4 127.2 47.5 20.1 55 1838.4 1776 

16 303.9 316.6 317.4 130.5 116.6 120.9 129.9 47.0 20.8 55 1558.5 1554 

17 307.0 229.9 343.8 124.9 115.2 120.0 118.8 47.5 26.0 55 1488.1 1480 

18 379.2 396.2 286.8 123.1 146.7 129.2 117.5 48.2 29.0 55 1711.0 1628 

19 379.4 396.9 285.8 129.0 230.1 129.4 119.2 47.2 26.1 55 1798.1 1776 

20 456.0 458.0 330.7 127.0 226.4 123.0 119.1 87.7 97.1 55 2080.0 2072 

21 457.1 396.9 315.3 123.1 227.7 123.1 122.0 87.2 28.3 55 1935.7 1924 

22 399.0 324.1 306.6 80.2 175.6 119.0 119.4 85.4 21.0 55 1685.4 1628 

23 303.1 236.1 198.9 67.1 122.7 125.1 115.1 86.9 28.2 55 1338.1 1332 

24 227.3 222.0 197.5 67.1 207.7 123.3 89.1 47.0 21.0 55 1256.8 1184 

 

6. CONCLUSION 
The paper presented novel approaches to solving DELD 

problem with non-smooth objective cost functions with valve- 

point loadings effect, consisting of quadratic function and the 

absolute value of the sinusoidal function. Guided by a smart 

evolutionary algorithm (which combines a standard GA with 

smart mutation operator that focuses mutation on genes that 

contribute mostly to cost and penalty violations), and 

approaches that provided superior results on in the case of 

static ELD problems, an attempt was made to adapt these for 

the dynamic context. In the experimental design, an 

investigation was made of three optimization methods in 

conjunction with three smart mutation variants, on benchmark 

cases involving 5 and 10 generating units, the major test cases 

in the literature with comparative results for other algorithms. 

They are: (1) treating the DELD simply as a series of static 

problems, (2) treating them as a single many-parameter 

problem, and (3) a basic dynamic optimization approach, in 

which the final population of one part of the DELD became 

the initial population for the next. From the results, the 

performance of the third approach (D3), which was superior 

to the other two approaches (D1 and D2). Comparisons with 

all approaches so far in the literature that have addressed these 

problems show that these EC-based approaches, especially 

D3_SEA3 is superior to other algorithms (see Tables II and 

V). In both test cases, the best average and minimum costs are 

better than those of the published approaches whenever the 

comparative figure is obtainable.  
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The contributions in this paper are partly in the area of applied 

computer science and partly in regard to the specific 

application area (electrical power system optimization). Areas 

of future work similarly align with these two areas of 

contribution. The results of this paper showed that the third 

optimization approach seems promising in this application.  

However, there are so many possibilities that could be tried 

here, such as using elitism, i.e., by keeping the best 

percentage of the population unchanged, and randomly 

generating the rest, or keeping the best population unchanged, 

and generate the rest through mutations applied to these best 

populations.   
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