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ABSTRACT 

In this article, it is shown that although the reverse conversion 

scheme for binary signed-digit number system proposed by 

Choo et. al. can not support full parallelism; the rules on 

which it is based are correct. In this connection, a 

mathematical induction technique is used to validate the 

decomposition rules. Accordingly, it can be inferred that the 

reverse conversion scheme for binary signed-digit number 

system proposed by Veeramachaneni et. al. works correctly 

and performs reverse conversion in Ω (log n) time, where, n is 

the input size. As a consequence, the scheme by 

Veeramachaneni et. al. need to be considered as a potential 

contender of the more recent schemes for the same.  
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Algorithm. 
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1. INTRODUCTION 
Signed-digit number system [1][2] is still an active area of 

study [3][4]. Reverse conversion (RC) of a signed-digit 

number system means converting signed-digit numbers of the 

system back into the conventional form, such as, sign-

magnitude representation, radix-complement representation. 

RC, particularly, RC of binary signed-digit number (BSDN) 

system is an important research problem [5][6] because, the 

accustomed bus architectures for the digital signal processing 

and also operations of standard peripheral devices are still 

based on the two’s complement representation. But, yet, the 

available algorithms for the same involve significant 

overheads in form of time, area and power.  

In the literature of RC for BSDN system, Choo et. al. [7] 

claimed a breakthrough by proposing a so-called fully-parallel 

RC scheme (RCS) for BSDN system. In [7], the basic concept 

is to decompose given n-digit BSDN input, F, into two 

separate BSDNs (components), X and Y, along with the status 

output, SO, in such a way that X and SO●Y (i.e. SO is 

prefixed to Y) can be added without any carry propagation 

chain to produce the output in correct two’s-complement 

form. In this connection, typical rules were proposed for 

decomposition and addition. Suppose that F = fn-1fn-2….. f0, X = 

xn-1xn-2……x0, Y = yn-1yn-2….y0, where, f0, x0 any y0 represent 

the LSD of F, X and Y respectively.  

The decomposition rules state that: 

     = 1,               (1)  

SO = 0, if fn-1 = 1; otherwise, SO =  .   (2) 

Set, yn = SO 

y0 = 1, if f0 = 0; otherwise, y0 = 0.  (3) 

Rules for computing    ,               are  given by 

table 1. 

Table 1.  Computing   ,             [7] 

 

  

   

 

 

 

 

 

 

 

 

 

 

 

 

The projected addition rules for summing up the decomposed 

components are given by table 2, where, D/C means DON’T 

CARE condition. The rules presented in table 2 are a subset of 

the rules originally presented in [7], subjected to the condition 

that xi = 1, for all xi ϵ [0, n – 1]. In table 2, si is the 

intermediate sum digit at to (i+1)th position and ci the 

intermediate carry-out from the same position. Obviously, ci 

acts as the status signal for the computing intermediate 

outputs corresponding to the next higher significant position.  

 

Table 2. Projected Addition Rules [7] 

 

 

 

 

Inputs Output 

  (yi) fi fi-1 

         

   0    

   1 0 

0    0 

0 0 0 

0 1 1 

1       

1 0    

1 1 0 

Type xi yi ci-1 ci si 

1 1 0 1 1    

  , 0 0 1 

2 1 1 D/C 1 0 

3 1    D/C 0 0 
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Although, Choo et. al. [7] claimed to achieve full parallelism, 

no proof for the correctness of its rules and their 

interoperability were given in the original paper. The claim 

for achieving full parallelism in [7] was invalidated by the 

computer arithmetic community [5][6][8] straightly due to 

non-compliance with [9].  But, none of the authors pointed out 

the root cause of the incorrectness of [7]: whether some 

rule(s) is incorrect or their inter-operability fails to ensure full 

parallelism. Although, in [10] the decomposition rules of [7] 

exploited with a parallel prefix network and the outcome of 

the study was found to be significant; again, no proof for 

correctness of the underlying rules was given.  

The remainder of this paper is organized as follows: The 

correctness of the decomposition rules and addition rules will 

be verified followed by an example to invalidate the claim for 

full parallelism in [7].  Then, scheme [10] will be reviewed as 

a derivative of [7]. 

2. DECOMPOSITION RULES [7]: ON 

THE CORRECTNESS  
Since Y = F – X and X is a string of 1s’, yi should be 

computed in such a way ci●yi = fi-1+ci-1, where, SO = cn-1. 

Let, SO be denoted as SOn-1 onwards for simplicity. The 

correctness of decomposition rules will be proved next by 

means of mathematical induction.  

2.1 Basic of Induction 
Suppose that n = 1. The decompositions of f0 for its different 

values using rule (2) and rule (3) are shown in table 3:  

Table 3. Decomposition of f0 

 

 

 

Since for all inputs listed in table 3, f0 = SO●y0+1, it is 

concluded that for n = 1 the decomposition is correct. 

2.2 Inductive Step 
Suppose that the decomposition rules can work correctly for n 

= k. It means yk and SOk can be computed using fk and fk-1 as 

shown in table 4.  

Table 4. Computing yk and SOk using fk and fk-1 

 

Inputs Outputs 

fk fk-1 yk SOk 

            

   0       

   1 0    

0    0    

0 0 0    

0 1 1    

1       0 

1 0    0 

1 1 0 0 

 

 

The relationship shown in table 4 can be extended for n = k + 

1 considering three consecutive BSDs fk+1, fk, fk-1 as presented 

in table 5, where, SOk+1●yk+1 = fk+1+SOk (corresponding to the 

same values of fkfk-1 as in table 4) – 1. 

Table 5. Computing yk+1 and SOk+1 using fk+1, fk and fk-1 

Inputs Outputs 

fk+1 fk fk-1 yk+1 SOk+1 

               

      0       

      1       

0       0    

0    0 0    

0    1 0    

1          0 

1    0    0 

1    1    0 

   0          

   0 0       

   0 1       

0 0    0    

0 0 0 0    

0 0 1 0    

1 0       0 

1 0 0    0 

1 0 1    0 

   1    0    

   1 0 0    

   1 1 0    

0 1       0 

0 1 0    0 

0 1 1    0 

1 1    0 0 

1 1 0 0 0 

1 1 1 0 0 

 

In table 5 it is found that the decomposition is independent of 

LSD for any group of three BSDs. Then, on eliminating the 

redundancy table 5 becomes resemble to table 4 with k = k + 

1. Therefore, it can be concluded that the decomposition rules 

work correctly for all input sizes. 

3. ADDITION RULES [7]: ON THE 

CORRECTNESS 
Addition rules are immediately found to be correct. 

4. FULL PARALLELISM [7]: ON THE 

CLAIM  
Type 1 addition rule as listed in table 2 indicates that in some 

situation (where xi = 1 and yi = 0) the intermediate sum-digit 

at (i+1)th position as well as the carry-out from the same 

position depend on the intermediate carry-out from ith 

position. It may generate a chain of dependencies causing the 

carry to propagate. The point is elaborated with example 1, 

where, F = 100   as presented in Fig. 1. Example 1 shows that 

situation may occur where the type 1 additions are to be 

performed repeatedly at adjacent positions. Yet, full-

parallelism can be achieved if it is ensured that in the 

underlying situation only one specific carry value (0 or 1 or  ) 

always propagates regardless of the overall input pattern. But, 

this criterion also does not hold. Suppose that, F = 000  0000. 

Input 

  (f0) 

Outputs 

y0 SO0 

   0    

0 1    

1 0 0 
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Here, c0 = 1 and the carry with the same value is propagated 

up to the 5th position (i.e. i = 4). However, then, c4 = 0 and the 

carry with the same value is propagated up to the 8th position 

(i = 7). It can be concluded that the propagation delay for the 

reverse conversion of a BSDN input may even be proportional 

to its length. Accordingly, [6] cannot achieve full parallelism.  

 
X      1 1 1 1 

Y 0(SO)    0 0 0 

 0 (s4)    0(s3) 1(s2) 1(s1) 1(s0) 

                     0(c-1)  

    0 (c0) 

0(c1)        initialization 

  0(c2) 

 0(c3) 

F-SUM   0 0 1 1 1 

Fig. 1: Tracing the execution sequence for the reverse 

conversion of 100   using [7] 

5. A NOTE ON [10] AS A DERIVATIVE    

     OF [7]  
The decomposition rules presented in [7] were exploited in 

[10] with a typical parallel prefix network [2] and the outcome 

was found to be significant. As the decomposition rules [7] 

have been found to be correct, [10] is also correct. The time 

complexity of [10] is Ω (log n) and later, some other RCSs for 

BSDN system ([5][6]) claimed to have the same time 

complexity following different approaches. But, so far, no 

unified study has been reported in the literature for the 

comparative merit assessment of [5][6][10] for RC of BSDN 

system as well as higher radix signed-digit number system (if 

extensible) in terms of area, delay, power and regularity of 

design as the parameters for investigation. 

6. CONCLUSION 
It has been shown that the rules on which [7] is based are 

correct, but, yet, they are not interoperable in such a way to 

ensure full-parallelism. This observation is compliant with the 

concept provided in [9]. As the decomposition rules presented 

in [7] are correct, [10] can be validated for achieving partial 

parallelism. Although, the asymptotic time requirement of 

[5][6][10] has been found to be the same; the full-fledged 

comparative study of their performances for RC of BSDN 

system and extensibilities for the RC of high-radix signed-

digit numbers has not been reported in the literature. These 

problems will be studied as a part of the future research work 

of the authors.  
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