
International Journal of Computer Applications (0975 – 8887)

Volume 103 – No.5, October 2014

5

Notes on “A Novel Conversion Scheme from a

Redundant Binary Number to Two’s Complement

Binary Number for Parallel Architectures” proposed

by Choo et.al.

M S Chakraborty
Asst Prof in Comp Sc
Indas Mahavidyalaya

Bankura 722205

T Ghosh
Asst Prof in Comp Sc

Sammilani College
Bankura 722102

A C Mondal
Asso Prof in Comp Sc

Burdwan University
Burdwan 713104

ABSTRACT

In this article, it is shown that although the reverse conversion

scheme for binary signed-digit number system proposed by

Choo et. al. can not support full parallelism; the rules on

which it is based are correct. In this connection, a

mathematical induction technique is used to validate the

decomposition rules. Accordingly, it can be inferred that the

reverse conversion scheme for binary signed-digit number

system proposed by Veeramachaneni et. al. works correctly

and performs reverse conversion in Ω (log n) time, where, n is

the input size. As a consequence, the scheme by

Veeramachaneni et. al. need to be considered as a potential

contender of the more recent schemes for the same.

General Terms

Unconventional Number System, Computer Arithmetic

Algorithm.

Keywords

Reverse conversion scheme, binary signed-digit number

system, parallelism, validation, comparative study.

1. INTRODUCTION
Signed-digit number system [1][2] is still an active area of

study [3][4]. Reverse conversion (RC) of a signed-digit

number system means converting signed-digit numbers of the

system back into the conventional form, such as, sign-

magnitude representation, radix-complement representation.

RC, particularly, RC of binary signed-digit number (BSDN)

system is an important research problem [5][6] because, the

accustomed bus architectures for the digital signal processing

and also operations of standard peripheral devices are still

based on the two’s complement representation. But, yet, the

available algorithms for the same involve significant

overheads in form of time, area and power.

In the literature of RC for BSDN system, Choo et. al. [7]

claimed a breakthrough by proposing a so-called fully-parallel

RC scheme (RCS) for BSDN system. In [7], the basic concept

is to decompose given n-digit BSDN input, F, into two

separate BSDNs (components), X and Y, along with the status

output, SO, in such a way that X and SO●Y (i.e. SO is

prefixed to Y) can be added without any carry propagation

chain to produce the output in correct two’s-complement

form. In this connection, typical rules were proposed for

decomposition and addition. Suppose that F = fn-1fn-2….. f0, X =

xn-1xn-2……x0, Y = yn-1yn-2….y0, where, f0, x0 any y0 represent

the LSD of F, X and Y respectively.

The decomposition rules state that:

 = 1, (1)

SO = 0, if fn-1 = 1; otherwise, SO = . (2)

Set, yn = SO

y0 = 1, if f0 = 0; otherwise, y0 = 0. (3)

Rules for computing , are given by

table 1.

Table 1. Computing , [7]

The projected addition rules for summing up the decomposed

components are given by table 2, where, D/C means DON’T

CARE condition. The rules presented in table 2 are a subset of

the rules originally presented in [7], subjected to the condition

that xi = 1, for all xi ϵ [0, n – 1]. In table 2, si is the

intermediate sum digit at to (i+1)th position and ci the

intermediate carry-out from the same position. Obviously, ci

acts as the status signal for the computing intermediate

outputs corresponding to the next higher significant position.

Table 2. Projected Addition Rules [7]

Inputs Output

 (yi) fi fi-1

 0

 1 0

0 0

0 0 0

0 1 1

1

1 0

1 1 0

Type xi yi ci-1 ci si

1 1 0 1 1

 , 0 0 1

2 1 1 D/C 1 0

3 1 D/C 0 0

International Journal of Computer Applications (0975 – 8887)

Volume 103 – No.5, October 2014

6

Although, Choo et. al. [7] claimed to achieve full parallelism,

no proof for the correctness of its rules and their

interoperability were given in the original paper. The claim

for achieving full parallelism in [7] was invalidated by the

computer arithmetic community [5][6][8] straightly due to

non-compliance with [9]. But, none of the authors pointed out

the root cause of the incorrectness of [7]: whether some

rule(s) is incorrect or their inter-operability fails to ensure full

parallelism. Although, in [10] the decomposition rules of [7]

exploited with a parallel prefix network and the outcome of

the study was found to be significant; again, no proof for

correctness of the underlying rules was given.

The remainder of this paper is organized as follows: The

correctness of the decomposition rules and addition rules will

be verified followed by an example to invalidate the claim for

full parallelism in [7]. Then, scheme [10] will be reviewed as

a derivative of [7].

2. DECOMPOSITION RULES [7]: ON

THE CORRECTNESS
Since Y = F – X and X is a string of 1s’, yi should be

computed in such a way ci●yi = fi-1+ci-1, where, SO = cn-1.

Let, SO be denoted as SOn-1 onwards for simplicity. The

correctness of decomposition rules will be proved next by

means of mathematical induction.

2.1 Basic of Induction
Suppose that n = 1. The decompositions of f0 for its different

values using rule (2) and rule (3) are shown in table 3:

Table 3. Decomposition of f0

Since for all inputs listed in table 3, f0 = SO●y0+1, it is

concluded that for n = 1 the decomposition is correct.

2.2 Inductive Step
Suppose that the decomposition rules can work correctly for n

= k. It means yk and SOk can be computed using fk and fk-1 as

shown in table 4.

Table 4. Computing yk and SOk using fk and fk-1

Inputs Outputs

fk fk-1 yk SOk

 0

 1 0

0 0

0 0 0

0 1 1

1 0

1 0 0

1 1 0 0

The relationship shown in table 4 can be extended for n = k +

1 considering three consecutive BSDs fk+1, fk, fk-1 as presented

in table 5, where, SOk+1●yk+1 = fk+1+SOk (corresponding to the

same values of fkfk-1 as in table 4) – 1.

Table 5. Computing yk+1 and SOk+1 using fk+1, fk and fk-1

Inputs Outputs

fk+1 fk fk-1 yk+1 SOk+1

 0

 1

0 0

0 0 0

0 1 0

1 0

1 0 0

1 1 0

 0

 0 0

 0 1

0 0 0

0 0 0 0

0 0 1 0

1 0 0

1 0 0 0

1 0 1 0

 1 0

 1 0 0

 1 1 0

0 1 0

0 1 0 0

0 1 1 0

1 1 0 0

1 1 0 0 0

1 1 1 0 0

In table 5 it is found that the decomposition is independent of

LSD for any group of three BSDs. Then, on eliminating the

redundancy table 5 becomes resemble to table 4 with k = k +

1. Therefore, it can be concluded that the decomposition rules

work correctly for all input sizes.

3. ADDITION RULES [7]: ON THE

CORRECTNESS
Addition rules are immediately found to be correct.

4. FULL PARALLELISM [7]: ON THE

CLAIM
Type 1 addition rule as listed in table 2 indicates that in some

situation (where xi = 1 and yi = 0) the intermediate sum-digit

at (i+1)th position as well as the carry-out from the same

position depend on the intermediate carry-out from ith

position. It may generate a chain of dependencies causing the

carry to propagate. The point is elaborated with example 1,

where, F = 100 as presented in Fig. 1. Example 1 shows that

situation may occur where the type 1 additions are to be

performed repeatedly at adjacent positions. Yet, full-

parallelism can be achieved if it is ensured that in the

underlying situation only one specific carry value (0 or 1 or)

always propagates regardless of the overall input pattern. But,

this criterion also does not hold. Suppose that, F = 000 0000.

Input

 (f0)

Outputs

y0 SO0

 0

0 1

1 0 0

International Journal of Computer Applications (0975 – 8887)

Volume 103 – No.5, October 2014

7

Here, c0 = 1 and the carry with the same value is propagated

up to the 5th position (i.e. i = 4). However, then, c4 = 0 and the

carry with the same value is propagated up to the 8th position

(i = 7). It can be concluded that the propagation delay for the

reverse conversion of a BSDN input may even be proportional

to its length. Accordingly, [6] cannot achieve full parallelism.

X 1 1 1 1

Y 0(SO) 0 0 0

 0 (s4) 0(s3) 1(s2) 1(s1) 1(s0)

 0(c-1)

 0 (c0)

0(c1) initialization

 0(c2)

 0(c3)

F-SUM 0 0 1 1 1

Fig. 1: Tracing the execution sequence for the reverse

conversion of 100 using [7]

5. A NOTE ON [10] AS A DERIVATIVE

 OF [7]
The decomposition rules presented in [7] were exploited in

[10] with a typical parallel prefix network [2] and the outcome

was found to be significant. As the decomposition rules [7]

have been found to be correct, [10] is also correct. The time

complexity of [10] is Ω (log n) and later, some other RCSs for

BSDN system ([5][6]) claimed to have the same time

complexity following different approaches. But, so far, no

unified study has been reported in the literature for the

comparative merit assessment of [5][6][10] for RC of BSDN

system as well as higher radix signed-digit number system (if

extensible) in terms of area, delay, power and regularity of

design as the parameters for investigation.

6. CONCLUSION
It has been shown that the rules on which [7] is based are

correct, but, yet, they are not interoperable in such a way to

ensure full-parallelism. This observation is compliant with the

concept provided in [9]. As the decomposition rules presented

in [7] are correct, [10] can be validated for achieving partial

parallelism. Although, the asymptotic time requirement of

[5][6][10] has been found to be the same; the full-fledged

comparative study of their performances for RC of BSDN

system and extensibilities for the RC of high-radix signed-

digit numbers has not been reported in the literature. These

problems will be studied as a part of the future research work

of the authors.

7. REFERENCES
[1] Avizienis, A. 1961. Signed - digit number

representation for fast parallel arithmetic, IRE Trans on

Electro Compu; 10(3): 389 – 400.

[2] Parhami, B. 2009. Computer Arithmetic: Algorithms

and Hardware Design. 1st ed. USA: Oxford Univ Press.

[3] Chakraborty, M. S. and Sao, S. K. 2014. Comments on

area-time efficient sign detection technique for binary

signed-digit number system proposed by Srikanthan et.

al. IJCA, USA. 88(15): 38-40.

[4] Ruiz, G. A. and Granda, M. 2011. Efficient Canonic

Signed Digit Recording. Microelect J. 42: 1090 – 1097.

[5] He, Y. and Chang, C-H. 2008. A Power - Delay

Efficient Hybrid Carry - Lookahead/ Carry - Select

Based Redundant Binary to Two's Complement

Converter. IEEE Trans Circuits Syst I Regul Pap;

55(1): 336 – 346.

[6] Sahoo, S. K., Gupta, A., Asati, A. R. and Shekhar, C.

2010. A Novel Redundant Binary Number to Natural

Binary Number Converter. J Signal Process Syst. 59:

297-307.

[7] Choo, I., Deshmukh, R. G. 2001. A novel conversion

scheme from a redundant binary number to two's

compliment binary number for parallel architectures.

Proc IEEE SoutheastCon, Clemson, USA: 196 – 207.

[8] Wang, G. and Tull, M .P. 2004. A new Redundant

Binary Number to two's complement Number

Converter. Proc IEEE Region 5 Conf: ATLW, Norman,

USA: 141-143.

[9] Blair, G. M. 1998. The Equivalence of Two's-

Complement Addition and the Conversion of

Redundant Binary to Two's-Complement Numbers.

IEEE Trans Circuits Syst I Fundam Theory Appl;

45(6): 669-671.

[10] Veeramachaneni, S., Krishna, M. K., Avinash, L.,

Reddy, S. and Srinivas, M. B. 2007. High - Speed

Redundant Binary to Binary Converter using Prefix

Networks. Proc IEEE Intl Symp Circuits and Sys,

Hyderabad, AP, India: 3271-3274

IJCATM : www.ijcaonline.org

