
International Journal of Computer Applications (0975 – 8887) 

Volume 103 – No.4, October 2014 

24 

A Clustering Algorithm in Complex Social Networks 

 
Veera Nagaiah Maddikayala 
Cambridge Institute of Technology  

Bangalore, Karnataka, India 

 

R Chandrasekhar 
Atria Institute of Technology 
Bangalore, Karnataka, India 

 

 

ABSTRACT 

Complex networks are real graphs (networks) with non-trivial 

topological features. The empirical study of real-world 

networks like computer networks and social networks gives 

insights into the structures and properties of such networks. 

Identification of community structure is one of the important 

problems in social networks. Tightly knit group of nodes 

(Cluster) characterized by a relatively high density of ties 

(links) tend to be greater than the nodes that have average 

probability of ties randomly established [8][16]. In this paper 

a novel clustering algorithm is developed in complex social 

networks to detect the communities with close relations where 

in, everybody is aware of every other in their group called 

cluster. Determining such groups is the main concern of this 

paper. Some of the social networks are online Facebook, 

LinkedIn, Twitter and day today socializing. Graph Theoretic 

approach is followed for finding the clusters. Perfect graph 

structures are investigated in the complex social networks. 

General Terms 

Networks, Clusters, Graphs 

Keywords 
Complex social networks, scale-free networks, perfect graphs, 

social clusters, independent set, and cliques. 

1. INTRODUCTION 
Complex networks are not formally defined but are 

characterized by dynamically changing big networks which 

are backbones of complex systems. The origin of complex 

networks can be looked back with the remarkable work on 

random graphs by Erdős and Rènyi [6][7]. The inspiration to 

the domain of complex networks is from the real world 

networks like social networks, information networks, 

Technological networks and biological networks. The 

important properties seen in the complex networks [4] are 

small world effect [15], transitivity, degree distribution, 

network resilience, degree correlations, community structure 

and mixing pattern and network navigation. 

Social networks are modeled in various ways. Among these 

models, the random graph model of Paul Erdős and  Rènyi 

(ER), the Small-World Model of Watts and Strogatz (WS), 

and Scale-free networks of Barabàsi and Albert (BA) [3] are 

nearer to the real world phenomenon.  

 

 

Fig. 1 Erdős and Rènyi graph with nodes n = 15, 

probability p = 0.3. 

ER graph (network) is defined by the number of vertices n 

and the probability p that an edge between two given vertices 

exists (Figure.2). The expected degree of a vertex in the 

network is 

                         <k> = p (n - 1)                   

Watts and Strogatz [14] have shown that the degree 

distribution for small-world networks is similar to that of 

random networks (Figure.2) with a peak at 

                       <k> = 2 l 

where l is the neighborhood. According to of Barabàsi and 

Albert, instead of the vertices of these networks having a 

random pattern of connections, some vertices are highly 

connected while others have few connections exhibiting scale 

free behaviour [9]. The degree distribution P follows a power 

law for large k, P (k) = k-γ where γ is an integer which 

depends on the type of the network. 

2. CLUSTERS IN COMPLEX SOCIAL 

NETWORKS 
Let G (V, E) be a complex network with V nodes and E 

edges. In this paper G in particular is an online Social 

Network like Facebook, LinkedIn, Twitter or any Social 

network of daily face to face interactions. Being complex, the 

social network has very large number of nodes in terms of 

thousands or even in millions. 

This network can be divided into the induced subnets (sub-

networks) with nodes having common interest called social 

clusters.   . 
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Fig 2. Watts and Strogatz graph with nodes n = 20, 

probability p = 0.7. 

 

Fig  3. Barabàsi and Albert graph with nodes n = 20, 

number of edges to attach from a new node to existing 

nodes m = 12. 

 

A social cluster C is a subnet of G i.e C ⊆ G with at least one 

common property. Now a Social network G can be 

represented as G = C1 ∪ C2 ∪ C3 ∪ . . . ∪ Cr, where r is the 

number of clusters in G. One of the typical problems is to find 

various clusters in a given complex social network. Graph 

theoretically social clusters can be represented as complete 

sub-graphs (cliques) of a complex random graph. 

A local graph clustering algorithm finds a solution to the 

clustering problem without looking at the whole graph [17]. 

Such algorithms are useful for handling massive graphs, like 

social networks and web-graphs [13] in linear time. In this 

paper a clustering algorithm with perfect graph structure of a 

given probability is considered. Once the clusters in the social 

networks are identified through the proposed algorithm they 

can be interpreted and analyzed in studying the social 

behaviour online and offline. 

Terminology: 

G: A complex social network. 

H: An induced network of G 

 
Fig  4. Watts Strogatz small world network n = 10, k = 4, 

p =  0.7 

 

χ(G): The minimum independent set needed to cover the    

           nodes of G. 

ϴ(G): The cluster cover number of G, the minimum number    

            of complete sub-networks of G needed to cover the   

            nodes of G  

 ω(G): The cluster number, the maximum number of     

             mutually adjacent nodes, that is the size of the largest   

             complete cluster of G. 

α(G):  The size of the largest independent (stable) set of    

            nodes.  

      S:   Stable set which meets all the maximal cliques in G. 

 N(v):  Set of neighbours of v. 

Definition: A complex social network G is said to be perfect 

network if and only if the following conditions (i) and (ii) 

hold 

good [12]. 

(i) α(G) = ϴ(G) and 

(ii) ω(G) = χ(G) 

Examples of perfect social networks are Complete networks, 

Bipartite networks, Triangulated networks, Meyniel Network. 

Meyniel Network is a network with every odd cycle of atleast 

length five have atleast two chords [11]. A network is called 

strongly perfect if each of its induced subnet H contains a 

stable set of nodes which meets all the maximal clusters in H. 

3. THE PROPOSED CLUSTERING 

ALGORITHM  
Given a random social network, the clusters as cliques 

(maximally complete sub-graphs or sub-networks) can be 

found [5]. Clusters of a given network graph G can be 

identified as an induced set of nodes (vertices) of G. The 

Watts Strogatz small world network of size n = 10, k = 4,        

p = 0.7 as shown in Figure 4 is a good example for the social 

network. G Ravindra [11] obtained an efficient algorithm to 

find either a starter in some induced sub-network of a network 

or an independent set of nodes which meets all the maximal 

cliques in the network. If independent set is found then the 

network is a strongly perfect and perfect network [2] as well. 
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Here starter in a network means, in any complex network, a 

cycle w v0 v1 . . . vk such that: 

(i) v0 is adjacent to none of the vertices v2,v3, ... vk 

(ii) w is not adjacent to v1 

(iii) there exists some stable set of nodes S, containing v1  and        

vk that meets all the maximal clusters in G - v0.  

Definition: A Complex network G is called strongly perfect if 

each of its induced sub-networks H contains an independent 

set which meets all the cliques (clusters) in H. 

Given a complex network, a K1,3 free network is always a 

strongly perfect network and there is always a maximum 

independent set of nodes. 

The maximum independent set of nodes for the Barabàsi and 

Albert graph [1] with nodes n = 30, edges m = 10 (Figure 5) 

and The Watts Strogatz complex social network (Figure 4) are 

found. 

 

 
Fig 5.  Barabàsi and Albert graph with nodes n = 30, 

number of edges to attach from a new node to existing 

nodes m = 10. 

 
Algorithm to find clusters in a given complex social 

network 
 

Input: Complex social network G 

Output: The cluster heads of the complex social network S 

             (Independent set) 

Step1: START 

Step2: Read the complex social network G 

Step3: Find starter 

Step4: If (starter found) 

            print “The Complex Network is not a Strongly 

       Perfect one” 

Step5: else 

            Find an induced sub-network H of G 

Step6: Choose a node t in G and find H = G - t - N(t) 

Step7: If H = Φ ; then S = { t } 

            print S 

           else 

choose v0 in H 

S = { v0 } 

         for each x in G - v0  

         Begin 

F = G - v0 – N(v0) ∪ { t } 

H = H - v0 - N(v0) 

S = S ∪ { x } 

if nodes v1, v2 ε G - v0 are not found such that 

                  v1 ε  N(v0) ∩ S and v2 ε  N(v1) ∩ F   

                then 

output “ S - N(v0) meets all maximal clusters in G” 

               else if nodes w, z ε G – { v0 v1 v2 } are not found       

                  such that  w ε N(v0) - N(v1) and  z ε  N(w) ∩ F ∩ S 

output “The stable set S meets all maximal clusters        

              in G” 

              else 

         continue 

            End 

Step8:  Print the stable set S which meets all the clusters in the 

            Complex Network. 

Step9:  STOP 

 

4. SIMULATION RESULTS 
The algorithm is run on various types of social networks to 

find the maximum independent set and the results are listed in 

the Table-1. The first column shows the type of social 

network, second shows number of nodes and the third shows 

the maximum independent set of respective type of social 

network. the numbers shown in the independent set column 

represent the nodes in the network that form the stable set. 

After finding such a set, strongly knitted groups of 

communities are identified in the Network. Given a node 

(member) in the complex network, it can be found in one of 

the clusters of that network. Usually the maximum 

independent set and related problems are formulated as 

nonlinear programs. It is observed that as the growth of the 

cardinality of the independent set is linear with the number of 

growing nodes in the network (Figure 6). 

 

 

Fig 6. Relation between the independent set and the 

growing nodes in complex network 

 

Simulation results of the algorithm are tabulated in Table-1, 

Table-2  and Table-3. The plot of the independent 

sets(number of clusters) verses the growing nodes is shown in 

Figure 6 and the relations between the independent sets and 

the growing links are shown in Figure 7.  
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Table 1. Maximum Independent Sets for different Social Networks 

 

Type of Social Network Number of Nodes Maximum Independent Sets 

Erdős and RènyiNetwork  50 { 12, 27, 46, 37 } 

Barabàsi Albert Network 70 { 42, 63, 35, 29 } 

Newman Watts Strogatz Network 60 { 51, 39, 33, 3, 6, 36, 54, 15, 24, 43, 48, 59, 29, 12, 19 } 

Random Regular Network  40 { 2, 34, 11, 31, 0, 19, 33, 5, 20, 10, 35, 6 } 

Karate Club Network 30 
{ 18, 4, 30, 13, 27, 16, 29, 20, 22, 12, 21, 15, 25, 19, 17, 9, 14, 

7, 28, 11 } 

 

Table 2. The cluster number for two types of networks 

 

Growing Links 
Scale Free 

Networks 

Random 

Networks 

50 38 457 

90 26 430 

120 35 416 

150 77 408 

180 119 400 

220 220 393 

250 250 353 

300 300 329 

350 350 322 

400 400 306 

499 499 282 

 

Table 3. Effect of Scaling on Clusters 

Number of Nodes Number of Clusters 

50 26 

100 49 

150 78 

200 105 

250 132 

300 151 

500 275 

1000 546 

5000 2741 

 

It can be observed that the identification of the clusters 

depends on the type of the social network. In scale free 

networks the clusters grow as the links grow, where as the 

number reduces in random networks.  

 

 

Fig. 7. Clusters with growing links in the Complex Social 

Network 

5. APPLICATIONS OF THE 

ALGORITHM 
A complex social network can be treated as a perfect network, 

if there exists a stable set of nodes which meets all the 

maximal clusters in the network. There are many areas [10] in 

which this algorithm can be applied. Some of the examples 

are in finding the peer groups on the Facebook, LinkedIn, 

Twitter and Blogs in the internet of common interest like 

research groups, developers on a particular domain, web 

pages of on specific information etc. The leaders in the 

society can be identified with their clusters. Departments in an 

organization, food webs make clusters in their respective 

networks. The algorithm can also be applied in many more 

areas like information retrieval, classification theory, 

economics, scheduling, experimental design and computer 

vision. 

6. CONCLUSION 
An algorithm to find the clusters in Complex Social Networks 

like Facebook, LinkedIn, Twitter etc., who are connected 

through web links is developed. A graph theoretic approach is 

followed using perfect graphs to build the algorithm. The 

information in clusters can be used to interpret the dynamics 

of the group. A cluster of computers in data communication 

networks participate in processing the data packets and 

messages. Computer clusters are deployed to improve cost-

effectiveness, performance and availability compared to 

sparsely connected computers. They have a wide range of 

applicability and deployment, ranging from small business 

clusters with a handful of nodes to the computer clouds. 
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