
International Journal of Computer Applications (0975 – 8887)

Volume 103 – No.4, October 2014

7

An Efficient Gradient based Algorithm for Improving

Performance of Image Edge Detection

Majid Reza Vahidi

Department of Engineering,
North Tehran branch, Islamic
Azad University, Tehran, Iran

Mohammad Mansour
Riahi Kashani

Department of Engineering,
North Tehran branch, Islamic
Azad University, Tehran, Iran

Alireza Bagheri

ABSTRACT

Quality and execution time are two important factors for

evaluation of edge detection algorithms. In these algorithms,

there is a trade-off between quality and execution time. Some

algorithms only concentrate on quality and some of them are

fast and low quality. Efficient methods try to achieve high

quality in a low time. This research concentrates on

improvement of gradient based edge detection that is fast

method and appropriate for real-time processing. The

proposed algorithm reduces execution time by removing

many pixels from computations. It calculates gradient and

angle class of remaining pixels in a very efficient way so that

it reinforces quality and locality of edges. The results of this

algorithm indicated improvement of performance in

comparison to Canny and LOG algorithms.

General Terms

Computer Vision, Image segmentation, Edge detection.

Keywords

Edge detection algorithm, Gradient of image, Angle Class of

pixel, Non-Maximum Suppression, Post reduction of noise,

Edge detector evaluation, Locality of edges, Quality of edges.

1. INTRODUCTION
Edge detection in images has been considered from the

beginning of image processing and machine vision history.

Edges can be defined as boundaries between objects or

boundaries between objects and background image and are

represented by continuous lines and curves.

The main reason of using edge detection is to exploit its

output for next further processing. After this pre-processing,

an image is extracted containing only important information

of main image. Therefore, inconsiderable information of main

image is removed so that firstly the processing effort and

execution time are reduced and secondly the content of image

can be processed by the algorithms which operate only on

lines and curves.

In researches based on cellular learning automata [1-2]

performance measures have not been considered and the focus

has been on the quality of edges. In Methods based on cellular

automata [3-4] execution time has not been considered.

Methods based on Morphology [5-6] need many computations

for gray scale images. Furthermore methods based on wavelet

[7-8] have multiple scales and need to measure Lipschitz

regularity, that makes them time consuming.

Gradient based algorithms are fast and appropriate for real-

time processing. In addition to gradient based algorithms,

many other algorithms use gradient values to achieve better

results in edge detection [9-13]. For example, [11] offered

parametric membership functions to transform the gradients

into fuzzy membership degrees for edge detection. Canny

presented a gradient based algorithm for edge detection [14]

that has been the base for many researches. In recent years,

improvements have been made on it. One of the improved

versions of Canny’s algorithm was specially designed for

images distorted by Gaussian noise [15]. Another improved

version of Canny’s algorithm based on type-2 fuzzy sets

operates better in vague region boundaries [16]. Also [17]

proposed a new fusion algorithm based on wavelet transform

and Canny operator to detect image edges. Although Canny’s

algorithm achieves good quality, its execution is time-

consuming. Unfortunately in edge detection, there is a trade-

off between quality and execution time.

Quality in edge detection is quite important. Extraction of

blurred, broken or thick edges makes the following processing

steps difficult. That is why one of researches’ aims has been

to find ways that can help obtain high quality edges in a

smaller amount of time. This research’s purpose is to obtain

the same results.

The proposed algorithm does not suffer from some practical

limitations [18] of gradient based edge detection. In the

proposed algorithm, image is smoothed by a small filter and

remaining noise is removed after edge detection. Also

calculating gradient is different from that in Sobel and Prewitt

methods. These operators generally calculate gradient by

combining horizontal and vertical directions while in the

proposed algorithm, maximum of gradients is calculated

regarding horizontal, vertical and diagonal directions.

Although in this quality related step, the number of

comparisons in each pixel is at most eight, not checking the

pixels which are brighter than average value of their

neighboring pixels in the following steps, reduces processing

effort and execution time. In common implementation of

Canny’s algorithm, for finding direction of each pixel, tangent

is calculated and angle of pixel is determined and then the

angle class is used. Due to the fact that calculating Arctangent

takes time, in this algorithm instead of calculating angle of

each pixel, angle class is determined directly. Finally, angle

class is used for Non-Maximum suppression that leads to thin

edges. In Canny’s algorithm Non-Maximum suppression is

run on all the pixels of image while in the proposed algorithm,

this process is only run on the remaining edges.

Eventually in this algorithm, post processing is run on

extracted edge image. In post processing step of Canny’s

algorithm, edge restoration is done while in the proposed

algorithm, remaining noise is removed. That is done by

considering the isolated pixels which do not have a path to

other edge pixels.

Department of Computer
Engineering and IT,

Amirkabir University of
Technology, Tehran, Iran

International Journal of Computer Applications (0975 – 8887)

Volume 103 – No.4, October 2014

8

2. STEPS OF THE PROPOSED

ALGORITHM

2.1 Smoothing and computational

complexity
First step of gradient based edge detection is to remove noise.

Gaussian filter uses n×n mask where n is an odd value and

must be equal to three or greater. Not only do high n values

lead to edge displacements and faded edges, but they also

increase running cost. So, smallest n can be considered. For

example, for the average filter (3×3), no multiplication, only

eight summations and one division are required. Considering

less computation in these filters, at the first step of this

algorithm, a small filter is used and remaining noises are

removed in the “Post reduction of noise” step.

2.2 Average of neighborhood
This step is one of the key parts of this algorithm which

reduces the execution time. Assuming existence of edge

environs the central pixel, if the value of central pixel is

higher (brighter) than the average value of its neighboring

pixels, the central pixel cannot be an edge, because there are

pixel(s) in the neighborhood of this pixel, which are boundary

of intensity; so there is no necessity to carry out calculations

on the central pixel. The proposed algorithm limits

calculations to the pixels which are darker or equal to average

of their neighboring pixels that leads to reduce the processing

effort. Pixels which match the equation 1 are selected for the

next steps.

9

1

1
9central i

i

P P



  (1)

Fig 1: Determining gradient value and angle class. Angle

class of: a) zero and 180, b) 45 and 225, c) 90 and 270, d)

135 and 315 degrees

2.3 Thresholding and calculating gradient

value
Steps 2.3 and 2.4 are mixed to reduce the processing effort.

The part of algorithm (Algorithm 1) indicates that the

proposed algorithm does not use blind convolution on whole

image. In the proposed algorithm, neighborhood of 3×3 pixels

are considered and followed by determining that the pixel is

darker or equal to the average value of its neighboring pixels,

at most eight directions of the pixel are checked. For each

direction, the value of summed pixels is subtracted from the

opposite side’s summed pixels. If this value is upper than

threshold, the pixel is recognized as primary edge.

Figure 1 shows summed pixels with the same set. For

calculating gradient in each of these eight directions, summed

pixels of s1 or s3 minus summed pixels of s2 is considered as

the gradient value of that direction (equation 2).

i k n i j

P P Threshold Gradient P P        (2)

1, 2, 3, 1 8

3, 2, 1, 1 8

i j k

i j k

P S P S P S n OR

P S P S P S n

      

    

2.4 Finding the direction of gradient
Angle class is used for grouping angles of pixels. There is a

gradient value for each angle class in Figure1. For each of

them in Figure1, gradient value of angle class is compared to

the maximum gradient value of its previous angle classes, and

maximum value is assigned to main gradient (equation 3) and

along with it, main angle class of pixel is determined. In each

direction that a gradient value has been detected to have a

maximum, its direction is assigned to angle class of central

pixel (equation 4).

 
1 2
, , .., 8

n
G Max G G G n  (3)

C(C))(
G

  (4)

Calculating gradients in at most eight directions can map the

status of central pixel to one of the angle classes like shown in

Figure 2. For example, in Figure 1b, if s1s minus s2s is

maximum among other directions (Figure 1 a, b, c, d), it

means that in gray scale image, values of s1 region are

brighter than values of s3 region; and according to the

dominance of this direction to other directions, this status can

be mapped to Figure 2 which its angle class is 45 degree.

Algorithm 1 (2.3 And 2.4)

Main gradient =0;
For each of the states (a, b, c, d) in Figure 1{
If (difference of neighborhood> Threshold) {
Mark pixel as primary edge;
If (gradient of angle class > main gradient) {main
gradient= gradient of angle class; main angle class= this
angle class ;}
}
Else if (difference of neighborhood< - Threshold) {
Mark pixel as primary edge;
If (gradient of opposite angle class > Main gradient)
{main gradient =gradient of opposite angle class; main
angle class = opposite angle class ;}
}
}

Fig 2: 45 degree class

2.5 Non-maximum suppression (thinning)
Until this step, thick edges that may have multiple pixels

width are remained. Now with having angle class, Non-

maximum pixels which belong to determined edges, are

removed. So edges are thinned with one pixel width. Gradient

of each pixel is compared to gradient of pixel which is

perpendicular to angle class. Figure 3 shows how to select the

pixel for comparing to the central pixel based on angle class.

In Figure 3 only three angle classes are illustrated. Selecting

pixel for other angle classes is similar. If gradient of central

pixel is lower than gradient of neighboring pixel, central pixel

is removed from edge.

International Journal of Computer Applications (0975 – 8887)

Volume 103 – No.4, October 2014

9

Fig 3: Selecting the pixel for comparing to the central pixel

based on angle class

2.6 Post reduction of noise
Now, edges are obtained with one pixel width and it is likely

that there are pixels in image which are not along the edges.

This is related to selecting threshold. When a threshold is

lower than its proper value, although more edges are obtained,

noisy points increase. In fact, this step is designed for making

flexibility to select threshold and also completing the

smoothing step of this algorithm.

Fig 4: Post reduction of noise. a) The pattern which is

removed, b) The pattern which is not removed

In this step, isolated pixels or the pixels which do not have a

path to edges are removed. For each selected pixel, four areas

including row, column and two diameters are traced and in

each direction, maximum of radius until non edge pixels is

calculated. Then based on these four numbers, surroundings

of pixel are checked. If there is not any pixel all-around of the

pixels, these pixels are removed. Generally length of these

noisy points is not more than four or five pixels. So if more

than this length is checked, it is possible to remove actual

edges. Therefore, trace limitation is two pixels in each

direction. There are also some other noise patterns. Since

selecting proper threshold removes noise, increasing

execution time for these noise patterns is not reasonable. In

Figure 4a, the area surrounding the pixels is empty, so these

pixels are removed. But in 4b, there is one pixel which breaks

the condition. Example in Figure 4b can be discontinuous

edge. So not removing them is correct.

3. PERFORMANCE EVALUATION
All edge detection papers use classic algorithms for evaluating

edge detectors. That is because of:

1. Availability of their source code and their MATLAB

implementation.

2. Coordination of comparison between papers.

3. Canny is the prominent algorithm at the present time.

Three separate evaluating programs were written in C# for

comparing the algorithms. These are programs for evaluating

statistical measures, locality and execution time. For

evaluating the proposed algorithm, multiple images in the

dataset of Berkeley University were tested [19] and results of

comparing to them were similar. Result of one of these

images is presented in this paper. This image and its ground

truth are illustrated in Figure 5. Figure 5.b has been edited to

be complete. Also for well-known algorithms, output images

of MATLAB were used. All parameters for performance

evaluation of algorithms were selected similarly.

Fig 5: The image and its ground truth for evaluation of the

proposed algorithm. a) The image in the dataset of

Berkeley University. b) Ground truth of this image

3.1 Statistical evaluation of the proposed

algorithm
In the presence of ground truth, the pixels in the candidate

edge image can be classified in to four different categories:

True Positive (TP), False Positive (FP), True Negative (TN)

and False Negative (FN) [20]. For statistical evaluation of this

algorithm, we need to select an algorithm which produces

edges with one pixel width. Otherwise, pixels of thick edges

match the ground truth with more than one pixel, leading to

increase of True Positives incorrectly. Fortunately Canny’s

algorithm like the proposed algorithm produces thin edges.

So, at first we use this well-known algorithm to compare with

the proposed algorithm.

3.1.1 Comparing to Canny and LOG algorithms
Since the smoothing filter for this algorithm should be a small

filter, for making more similar conditions in both algorithms,

Canny’s algorithm was also run with small Gaussian filter.

This is because, bigger filters blur images and affect locality

more.

tn

True Negative rate

tn fp





 (5)

fp

False Positive rate

tn fp





 (6)

.
2.

Precision Recall
F

Precision Recall





 (7)

 . .
tp tn

Rosin Venkatesh tpr tnr

tp fn tn fp

  

 

 (8)

The threshold domain for this test was ranged from 10 to 50.

But Canny’s algorithm has two thresholds. For each first

threshold, best second threshold in results was selected. For a

more precise evaluation, in addition to four statistical

measures, equations 5-8 were used. Each of the outcome

measures in these equations evaluates a special aspect of

statistical measures. For better comparing of the outcome

measures of this algorithm to Canny and LOG algorithm, a

diagram for each of these equations is illustrated.

In Precision-Recall diagram, whatever there is more tendency

toward up and right, performance is higher. Therefore

Precision-Recall diagram (Figure 6) shows that the

performance of the proposed algorithm is higher.

International Journal of Computer Applications (0975 – 8887)

Volume 103 – No.4, October 2014

10

Fig 6: Precision-Recall diagram for comparison to

Canny’s algorithm and LOG algorithm having similar

parameters

Accuracy is ratio of total number of correct detection to total

number of correct and incorrect detection. Accuracy diagram

(Figure 7) shows higher values in all the thresholds for the

proposed algorithm.

Fig 7: Accuracy diagram for comparison to Canny’s

algorithm and LOG algorithm having similar parameters

ROC diagram [21] shows the relationship between True

Positive rate and False Positive rate. In ROC diagram both

axes are in percent and whatever there is more tendency

toward up and left, performance is higher. Therefore, ROC

diagram (Figure 8) shows better values for the proposed

algorithm.

F-Measure is the harmonic average of Precision and Recall. F-

Measure diagram (Figure 9) shows higher values of the

proposed algorithm in all the thresholds.

Rosin-Venkatesh [22] is multiplication of True Positive rate

(Recall) and True Negative rate. Rosin-Venkatesh diagram

(Figure 10) shows higher values of the proposed algorithm in

all the thresholds.

Fig 8: ROC diagram for comparison to Canny’s algorithm

and LOG algorithm having similar parameters

Fig 9: F-Measure diagram for comparison to Canny’s

algorithm and LOG algorithm having similar parameters

Fig 10: Rosin-Venkatesh diagram for comparison to

Canny’s algorithm and LOG algorithm having similar

parameters

3.2 Evaluation of locality
There are three reasons that illustrate why the proposed

algorithm does not displace edges.

1. Selecting the pixels which are darker or equal to the

average of their neighborhood, leads to edges not

moving.

International Journal of Computer Applications (0975 – 8887)

Volume 103 – No.4, October 2014

11

2. Selecting pixels with gradients that are greater than

gradients of their neighborhood, leads to selecting pixels

that are located in more intensity changes. So for them,

probability of being edge is higher.

3. The proposed algorithm uses small smoothing filter that

keeps displacements low.

Fig 11: Applied image for evaluation of locality

For evaluation of locality of edges, a separate evaluating

program was implemented in C# and one of the famous

images in edge detection field was used. Figure 11 illustrates

this image that contains types of straight, diagonal and curve

lines. So this is appropriate for evaluation of locality.

Fig 12: Evaluated area of the outputs with similar

parameters compared to the white area in the main image.

Results of: a) The proposed algorithm with average filter,

b) The proposed algorithm with Gaussian filter, c)

Canny’s algorithm

Figure 12 shows the output of edge detectors. The area of

white pixels in Figure 11 must be close to the area of shaded

pixels in Figure 12. Whatever this area is closer to the area of

white pixels in the main image (Figure 11), edge detector

keeps locality better. Moreover, calculating the area of objects

in images is one of the goals of edge detection.

Shaded area in Figure 12 and white area in Figure 11 were

calculated by evaluating program. For determining influence

of Average and Gaussian filters on the measure of

displacements, the proposed algorithm was implemented with

each of these filters, and the results were evaluated. Results of

this evaluation are presented in Table 1.

Results in Table1 show that the shaded area in output of the

proposed algorithm is close to the white area in the main

image while there is larger difference for shaded area of the

output of Canny’s algorithm. Thus Canny’s algorithm makes

edges closer together.

This difference for the proposed algorithm is 395 pixels while

this difference for Canny’s algorithm is 1050 pixels. Also the

difference for the proposed algorithm with Gaussian filter is

one pixel. Thus, Gaussian filter is more precise in locality

than the Average filter. According to these results, Gaussian

filter and Average filter are both acceptable for the proposed

algorithm, but the Average filter is a bit faster.

Table 1. Evaluation of edge displacements from its correct

location using the area of the specified region

Images

Area of

the

specified

region
Main image 3031px

Image of the proposed algorithm using

Average filter 2636px

Image of the proposed algorithm using

Gaussian filter 3030px

Image of Canny’s algorithm 1981px

Therefore we can conclude that in this algorithm, there are

fewer displacements of edges compared to Canny’s algorithm.

3.3 Evaluation of execution time
There are different reasons for higher speed of the proposed

algorithm compared to speed of Canny’s algorithm.

1. Removing many pixels using average of their

neighborhood values and not calculating them in the

following steps.

2. Early comparing of threshold against late comparing of

threshold in Canny’s algorithm. This leads to removing

many other pixels from the following calculations.

3. Not calculating the angle of each pixel based on tangent.

Obtaining angle class directly for pixels which are

candidate for being edge until that step.

4. Running Non-Maximum suppression only on pixels

which are candidate for being edge until that step.

5. In Non-Maximum suppression of Canny’s algorithm,

the number of comparisons for each pixel is two, while

that is one in the proposed algorithm.

6. In the proposed algorithm, there is computational

overlapping for calculating rows and columns in

thresholding, and also for calculating gradient and

average of neighborhood.

For evaluation of execution time, this algorithm should be

compared to Canny’s algorithm which is high quality

algorithm much like the proposed algorithm.

For this purpose, Method of the proposed algorithm and

Canny’s algorithm were put in “For loop” with 100 repetitions

in each threshold and average of execution time was

extracted. Lenna image and the computer with 2.8 GHz CPU

and 3G RAM were used for this test.

As Table 2 shows, because Canny’s algorithm checks

threshold at the end of the algorithm, changing thresholds

does not change the execution time. The subject that affects

the speed of Canny’s algorithm is to trace pixels between two

thresholds in order to find a path to the edges.

Table 2. Comparison of the execution time of two

algorithms using 512*512 Lenna image

Algorithm

Threshold

Time of the

Proposed

algorithm (Second)

Time of Canny’s

algorithm

(Second)

10 0.1560002 0.2184003

20 0.1404002 0.2028004

30 0.1404002 0.2028004

40 0.1404002 0.2028004

50 0.1248002 0.2028004

International Journal of Computer Applications (0975 – 8887)

Volume 103 – No.4, October 2014

12

The proposed algorithm, in thinning and reduction of noise

steps, only works on pixels which are darker or equal to

average of their neighborhood and subtraction of their

neighboring pixels is greater than threshold as well. Upper

thresholds remove more pixels from the following

calculations. That is why the value of threshold is efficient for

execution time. Whatever a threshold is higher, speed is also

higher. A more important result is that the speed of the

proposed algorithm is higher in all thresholds. Figure 13

shows the comparison of execution time in both algorithms.

3.4 Visual evaluation of the proposed

algorithm results
Visual evaluation is not easy and needs more attention.

Figures 14-17 illustrate comparison of the proposed algorithm

to Canny’s algorithm. Figure14 shows that the continuity on

the back wing, left wing and right wing for output of the

proposed algorithm (Figure 14.b) is better than the output of

Canny’s algorithm.

Also Figure 15 shows the difference of quality in two

algorithms. Both images are outputs with similar parameters.

Lenna’s eyelashes in the output of the proposed algorithm are

clear while they are somehow distorted in the output of

Canny’s algorithm. Similar cases are found in Figure 16. Also

Figure 17.b shows more details on the windows of building.

4. CONCLUSIONS
Execution time and quality are two challenges for edge

detectors. The proposed algorithm achieved good quality in

lower time. In many researches, only some aspects of edge

detectors evaluation are investigated and some of the

researches only concentrate on visual evaluation which is not

so precise. This research investigated more aspects of the edge

detectors evaluation.

This research tried to overcome some practical limitations of

gradient based algorithms. As the diagrams illustrated,

statistical evaluation of the output pixels confirmed a

considerable accuracy of the proposed algorithm results.

Visual evaluation also confirmed statistical evaluation results.

Evaluation of locality of edges indicated that displacements of

edges in the proposed algorithm are low. Execution time

diagram illustrated that the speed of this algorithm is higher

than the speed of Canny’s high quality algorithm. Thus this

algorithm can be used for real-time programs.

Fig 13: Comparison of the execution times of two

algorithms having similar parameters using Lenna image

Fig 14: Visual comparison of the output results of two

algorithms having similar parameters. a) Result of the

proposed algorithm, b) Result of Canny’s algorithm

Fig 15: Visual comparison of the output results of two algorithms having similar parameters.

b) Result of the proposed algorithm, c) Result of Canny’s algorithm

International Journal of Computer Applications (0975 – 8887)

Volume 103 – No.4, October 2014

13

Fig 16: Visual comparison of the output results of two algorithms having similar parameters.

b) Result of the proposed algorithm, c) Result of Canny’s algorithm

Fig 17: Visual comparison of the output results of two algorithms having similar parameters.

b) Result of the proposed algorithm, c) Result of Canny’s algorithm

5. REFERENCES
[1] Enayatifar, R., Meybodi, M. R. 2009. Adaptive Edge

Detection via Image Statistic Features and Hybrid Model

of Fuzzy Cellular Automata and Cellular Learning

Automata. Proceedings of 2009 International Conference

on Information and Multimedia Technology (ICIMT).

IEEE Computer Society, Jeju Island, South Korea. 273-

278.

[2] Patel, D.K., More S.A. 2013. Edge Detection Technique

by Fuzzy Logic and Cellular Learning Automata using

Fuzzy Image Processing. International Conference on

Computer Communication and Informatics (ICCCI). 1 -

6.

[3] Sato, S., Kanoh, H. 2010. Evolutionary Design of Edge

Detector Using Rule Changing Cellular Automata.

Second World Congress on Nature and Biologically

Inspired Computing, in Kitakyushu, Fukuoka, Japan. 15-

17.

[4] Priego, B., Bellas, F., Souto, D., López-Peña, F., Duro,

R.J. 2012. Evolving Cellular Automata for Detecting

Edges in Hyperspectral Images. IEEE World Congress

on Computational Intelligence June, Brisbane, Australia.

1-6.

[5] Qu, G. 2001. Directional Morphological Gradient Edge

Detector. PHD Thesis, Santa Clara University.

[6] Li, T., G., Wang, S.P., Zhao, N. 2009. Gray-scale edge

detection for gastric tumor pathologic cell images by

morphological analysis. Computers in Biology and

Medicine. 39(11), 947—952.

[7] Li, J. 2003. A wavelet approach to edge detection. Sam

Houston State University.

[8] Wenchang, S., Song, J., Lin Z. 2009. Wavelet Multi-

scale Edge Detection Using Adaptive threshold. IEEE.1-

4.

[9] Guo, F., Yang, Y., Chen, B., Guo, L. 2010. A novel

multi-scale edge detection technique based on wavelet

analysis with application in multiphase flows. Powder

Technology. 202 (1-3), 171–177.

[10] Liu, H., Zou, Y., Jin, R. 2011. An effusion–evaporation

model for image edge detection. Optics and Lasers in

Engineering. 49 (7), 946–953.

International Journal of Computer Applications (0975 – 8887)

Volume 103 – No.4, October 2014

14

[11] Lopez-Molinaa, C., De Baets, B., C., Bustince, H. 2011.

Generating fuzzy edge images from gradient magnitudes.

Computer Vision and Image Understanding. 115(11),

1571–1580.

[12] Oram, J.J., McWilliams, J.C., Stolzenbach, K.D. 2008.

Gradient-based edge detection and feature classification

of sea-surface images of the Southern California Bight,

Remote Sensing of Environment. 112 (5), 2397–2415.

[13] Yu, J., Wang, Y., Shen, Y. 2008. Noise reduction and

edge detection via kernel anisotropic diffusion. Pattern

Recognition Letters. 29 (10), 1496–1503.

[14] Canny, J. 1983. Finding edges and lines in image. M. S.

thesis. MIT.

[15] Xiao W., Hui X. 2010. An Improved Canny Edge

Detection Algorithm Based on Predisposal Method for

Image Corrupted by Gaussian Noise. IEEE World

Automation Congr. 113–116.

[16] Biswas, R., Sil, J. 2012. An Improved Canny Edge

Detection Algorithm Based on Type-2 Fuzzy Sets.

Procedia Technology. 4, 820 – 824.

[17] Xue, L.Y., Pan, J.J. 2009. Edge detection combining

wavelet transform and Canny operator based on fusion

rules. IEEE Proceedings of the 2009 international

conference on wavelet analysis and pattern recognition.

324-328.

[18] Kim, D.S., Lee W.H., Kweon, I.S. 2004. Automatic

edge detection using 3 • 3 ideal binary pixel patterns and

fuzzy-based edge thresholding. Pattern Recognition

Letters. 25 (1), 101–106.

[19] "Boundary Detection Benchmark: Image Ranking"

[Online]. Available:

http://www.eecs.berkeley.edu/Research/Projects/CS/visi

on/bsds/bench/html/images.html.

[20] Lopez-Molinaa, C., De Baets, B., C., Bustince, H. 2013.

Quantitative error measures for edge detection, Pattern

Recognition. 46(4), 1125–1139.

[21] Fawcett, T. 2006. An introduction to ROC analysis.

Pattern Recognition Letters. 27(8), 861–874.

[22] Venkatesh, S., Rosin, P.L. 1995. Dynamic threshold

determination by local and global edge evaluation.

Graphical Models and Image Processing. 57(2), 146–

160.

IJCATM : www.ijcaonline.org

