
International Journal of Computer Applications (0975 – 8887)

Volume 103 – No.3, October 2014

13

Advanced Feedback Encryption Standard Version-1

(AFES-1)

Debdeep Basu

Department of Computer
Science

St. Xavier’s
College(Autonomous)

Kolkata, India

Ankita Bose
Department of Computer

Science
St. Xavier’s

College(Autonomous)
Kolkata, India

Surajit Bhowmik
Department of Computer

Science
St. Xavier’s

College(Autonomous)
Kolkata, India

 Saptarshi Chatterjee Asoke Nath
 Department of Computer Department of Computer
 Science Science
 St. Xavier’s St. Xavier’s
 College(Autonomous) College(Autonomous)
 Kolkata, India Kolkata, India

ABSTRACT

In this paper, Advanced Feedback Encryption Standard

Version 1 (AFES-1), Nath et al have combined both bit-level

and byte level operations on the plain text. Nath et al had

recently published Multi Way Feedback Encryption Standard

Ver-3 MWFES-3[5]. MWFES-3 is a byte level encryption

algorithm. The authors have capitalized on the strength of

MWFES-3[5] by introducing a bit-shuffling operation at the

beginning of each iteration. At the beginning of each iteration,

the plain text bits of that iteration are shuffled by using 24

different shuffling functions. Now, the order in which the 24

different functions are called, changes at each iteration, and

that order is taken as a function of the key. After the initial

shuffling of the bits, the bits are converted back to bytes and

MWFES-3 is applied on the bytes. This process goes on

Encryption Number (EN) times, where EN is also taken as a

function of the key. So, at the beginning of each iteration, the

bits obtained from the last iteration are shuffled in a different

way. This method has been tested on standard plain texts such

as ASCII ‘0’, ASCII ‘1’ and the results are quite satisfactory.

This method is immune to any classical form of attacks.

General Terms

Encryption, Decryption.

Keywords

MWFES-I, MWFES-2, MWFES-3, Encryption Number.

1. INTRODUCTION
Due to the tremendous development in internet technologies it

is essential to encrypt any kind of confidential message before

sending the message from one computer to another computer.

Data security is an extremely important issue and many

algorithms have been developed which are almost impossible

to break. The intention of the trespasser is to break the cipher

and to retrieve unauthorized information. It is the job of the

cryptographers to restrict the trespassers from achieving

unauthorized access. Nath et al had recently proposed

MWFES-1[1], Modified MWFES-1[2], MWFES-2[3],

Modified MWFES-2[4], MWFES-3[5].

In MWFES-1, the plain text character is added with the

corresponding key character, the forward feedback and

backward feedback and then the total sum (modulo 256) is

taken as the corresponding cipher text character. The cipher

text character is taken as the forward feedback value for the

next byte (in case of forward operation) or backward feedback

value for the previous byte (in case of backward operation).

Forward and Backward operations are carried out on all the

bytes starting from their respective ends.

In MWFES-2, the process is a little more general. Instead of

propagating the feedback to the next byte (in case of forward

feedback) and to the previous byte (in case of backward

feedback) the feedback is propagated to the nth byte where n is

the ‘skip factor’. In MWFES-2 the forward skip is kept equal

to the backward skip (equal to n) and the initial forward

feedback value and the backward feedback value was kept 0.

In MWFES-3, the authors introduced several changes in the

algorithm. The plain text is broken into blocks and the

encryption method is applied on each block separately. Each

block has different Forward Skip (FS), Backward Skip (BS),

initial Forward Feedback (FF) and initial Backward Feedback

(BF) which are determined from the keypad counterpart of the

block. These four important variables would decide the nature

of the cipher text. The block size is different in every round of

processing, causing these four important variables to change

in every round. The total number of rounds (encryption no),

and the block size value were also taken as a function of the

key.

In the present algorithm, i.e. AFES-1 the Plain Text is

converted to its corresponding bits and stored in a square

matrix of size equal to the integral square root of the number

of bits. The residual bits remain untouched. Then the bits are

arranged by calling 24 different shifting functions. Now, the

order of calling the 24 functions change at each iteration and

International Journal of Computer Applications (0975 – 8887)

Volume 103 – No.3, October 2014

14

that order is taken as a function of the keypad. These 24

functions can be extended to ‘n’ functions as long as each of

the functions is reversible. After this is done, the bits are

converted back to bytes and then MWFES-3[5] is applied on

those bytes. This entire process happens Encryption Number

(EN) times. Therefore, in each iteration, the bits are permuted

in a different way and then MWFES-3 is applied on the

resultant bytes. Thorough tests were conducted on some

standard plain text files and it was found that it is absolutely

impossible for any intruder to extract any plain text from the

generated encrypted text using any brute force method. The

results show that the present method is free from any kind of

classical attacks.

The present method is an extremely strong method as all

controlling parameters change at every round. The present

method may be applied in any Corporate sector, Defense

sector, Government sector etc. The entire encryption and

decryption software have been developed using MATLAB.

2. ALGORITHM FOR AFES-1
In the present section the encryption algorithm, key

generation algorithm as well as decryption algorithm will be

discussed.

2.1 Algorithm for function encryption()

Step 1: Start

Step 2: Input PlainText , User Provided Seed and Cipher Text

filenames

Step 3: length=length(pt) /*pt is the PlainText*/

Step 4: seed[]=Stores content of seed given by User

Step 5: n=16

Step 6: If n*n<length, the go to Step 7,otherwise go to Step 8

Step 7: n=n+1 and go to Step 6

Step 8: key[]=Call key_generation(seed[],n)

Step 9: encryption_no=key[fix((n*n)/2)]

Step 10: encryption_no=mod(encryption_no,64)

Step 11: if encryption_no=0 then encryption_no=1

Step 12: e=1

Step 13: If e<=encryption_no then go to Step 14 otherwise go

to Step 64

Step 14: Initialise sum,ff[length],bf[length],ct[length] with

zeros /*ct=CipherText,ff=Forward Feedbacks,bf=Backward

Feedbacks*/.

Step 15: Call pt= pt_Shift(key[e]).

Step 16: block_size=key[e]

Step 17: If block_size>length, then go to Step 18, otherwise

go to Step 19

Step 18: block_size=block_size-4

Step 19: If block_size<4,then block_size=4

Step 20: Initialise k, low and no_of_block with 1

Step 21: high=block_size

Step 22: If k>=block_size, go to Step 23,otherwise go to Step

36

Step 23: k=k-block_size

Step 24: forward_next=mod(key[low]+1,block_size)

Step 25: backward_next=mod(key[high]+1,block_size)

Step 26: If forward_next=0,then forward_next=1

Step 27: If backward_next=0,then backward_next=1

Step 28: forward_feedback=key[low+1]

Step 29: backward_feedback=key[high-1]

Step 30: ff[low]=forward_feedback

Step 31: bf[high]=backward_feedback

Step 32: Call encryption_block(low,high)

Step 33: low=high+1

Step 34: high=high+block_size

Step 35: no_of_block=no_of_block+1 and go to Step 22

Step 36: i=low

Step 37: If i<=length, go to Step 38, otherwise go to Step 40

Step 38: ct[i]=pt[i]

Step 39: i=i+1 and go to Step 37

Step 40: If k>0, go to Step 41,otherwise go to Step 62

Step 41: i=length-k

Step 42: If i>=1,go to Step 43,otherwise go to Step 45

Step 43: ct[i+k]=ct[i]

Step 44: i=i-1 and go to Step 42

Step 45: j=low

Step 46: i=1

Step 47: If i<=k,go to Step 48,otherwise go to Step 51

Step 48: ct[i]=pt[j]

Step 49: j=j+1

Step 50: i=i+1 and go to Step 47

Step 51: pt[]=ct[]

Step 52: forward_next=mod((key[1]+1),256)

Step 53: backward_next=mod((key[block_size]+1),256)

Step 54: If forward_next=0,then forward_next=1

Step 55: If backward_next=0,then backward_next=1

Step 56: forward_feedback=key[2]

Step 57: backward_feedback=key[block_size-1]

Step 58: Initialise ff[length] and bf[length] with zeros

Step 59: ff[1]=forward_feedback

Step 60: bf[block_size]=backward_feedback

Step 61: Call encryption_block(1,block_size)

Step 62: pt[]=ct[] /*Copying converted PlainText into

CipherText array */

Step 63: e=e+1 and go to Step 13

Step 64: End

 2.2 Algorithm for function

encryption_block (low,high)

Step 1: Initialize i=low

Step 2: sum[i]=pt[i]+key[i]+ff[i]+bf[i]

Step 3: ct[i]=mod(sum[i],256);

Step 4: if i+forward_next>high go to step 5,else go to step 6

Step 5: ff[low+(i+forward_next-high)-1]=ct[i]

Step 6: ff[i+forward_next]=ct[i];

International Journal of Computer Applications (0975 – 8887)

Volume 103 – No.3, October 2014

15

Step 7: index=high-(i-low)

Step 8: sum[index] = pt[index] + key[index] + ff[index] +

bf[index]

Step 9: ct[index]=mod(sum(index),256)

Step 10: If index-backward_next<low go to step 11,else go to

step 12

Step 11: bf[high-(low-(index-backward_next))+1]=ct[index]

Step 12: Return control to the calling function

2.3 Algorithm for function

key_generation(seed[],n)

From secret_key(seed) the program will generate an enlarged

keypad. This keypad is stored in a square matrix having

dimensions equal to the nearest greater perfect square of the

Plain Text length. The first element of this keypad is taken to

be sum of the ASCII codes of the characters in the seed. Now

the next elements are simply values that are linearly

multiplied with the sum, i.e k*sum for k=1,2,3 etc. If there is

any repetition, then the program will modify the initial sum to

be sum=sum+1 and the process will continue. The value of

sum and its subsequent multiplications are kept within the

boundaries of 0-255 by applying the modulo operations on the

numbers at every iteration and only after that the numbers are

added to the keypad matrix. This way an initial matrix is

created. The elements of the matrix were reshuffled using

some simple operations such as upshift(),

leftshift(),diagonal1_shift(),downshift(),rightshift(),diagonal2

_shift() etc. The final key was developed using various

properties of the seed as well as intrinsic properties of the

keypad. Any other appropriate key expansion algorithm can

also be used for encryption and decryption.

Step 1: seed_l=length(seed)

Step 2: sum=0

Step 3: i=1

Step 4: If i<=seed_l,then go to Step 5,otherwise go to Step7

Step 5: sum=sum+seed[i]

Step 6: i=i+1 and go to Step 4

Step 7: sum=mod(sum,256)

Step 8: Initialise array key[] with all zeros

Step 9: sum1=sum

Step 10: i=1

Step 11: If i<=n,go to Step 12,otherwise go to Step 21

Step 12: j=1

Step 13: If j<=n,go to Step 14,otherwise go to Step 20

Step 14: key[i][j]=mod(sum1,256)

Step 15: sum1=sum1+sum

Step 16: If mod(sum1,256)=mod(sum,256),go to Step

17,otherwise go to Step 19

Step 17: sum=mod(sum+1,256)

Step 18: sum1=mod(sum,256)

Step 19: j=j+1 and go to Step 13

Step 20: i=i+1 and go to Step 11

Step 21: i=1

Step 22: If i<=seed_l,go to Step 23,else go to Step 31

Step 23: key[][]=Call left_shift(key[][],n)

Step 24: key[][]=Call down_shift(key[][],n)

Step 25: key[][]=Call circular(key[][],n)

Step 26: key[][]=Call right_shift(key[][],n)

Step 27: key[][]=Call up_shift(key[][],n)

Step 28: key[][]=Call diagonal1_shift(key[][],n)

Step 29: key[][]=Call diagonal2_shift(key[][],n)

Step 30: i=i+1 and go to Step 22

Step 31: sum=0

Step 32: i=1

Step 33: If i<=n,go to Step 34,otherwise go to Step 36

Step 34: sum=sum+key[i][i]

Step 35: sum=sum+key[i][n-i+1]

Step 36: randomization_number=mod(sum,256)

Step 37: i=1

Step 38: If i<=randomization_number,go to Step 39,else go to

Step 47

Step 39: key[][]=Call left_shift(key[][],n)

Step 40: key[][]=Call down_shift(key[][],n)

Step 41: key[][]=Call circular(key[][],n)

Step 42: key[][]=Call right_shift(key[][],n)

Step 43: key[][]=Call up_shift(key[][],n)

Step 44: key[][]=Call diagonal1_shift(key[][],n)

Step 45: key[][]=Call diagonal2_shift(key[][],n)

Step 46: i=i+1 and go to Step 38

Step 47: Initialise array key1[] containing (n*n) elements with

all zeros

Step 48: k=1

Step 49: i=1

Step 50: If i<=n,go to Step 51,otherwise go to Step 57

Step 51: j=1

Step 52: If j<=n,go to Step 53,otherwise go to Step 56

Step 53: key1[k]=key[i][j]

Step 54: k=k+1

Step 55: j=j+1 and go to Step 52

Step 56: i=i+1 and go to Step 50

Step 57: Return array key1[] to calling function

2.4 Algorithm for function decryption()

Step 1: Start

Step 2: Input the CipherText,User Provided Seed and

decrypted PlainText(Output) filenames.

Step 3: len=length(CipherText)

Step 4: seed[]=User Provided Key

Step 5: n=16

Step 6: Is (n*n)<len?

Step 7: If Step 6=True, then n=n+1 and go to Step 6.

Step 8: If Step 6=False, then go to Step 9

Step 9: key=Call key_generation(seed,n)

Step 10: encryption_no=key[fix((n*n)/2)]

Step 11: e=encryption_no

International Journal of Computer Applications (0975 – 8887)

Volume 103 – No.3, October 2014

16

Step 12: block_size=key[e]

Step 13: Is block_size>len?

Step 14: If Step 12=True, then block_size=block_size-4 and

go to Step 13.

Step 15: If Step 12=False,then go to Step 16.

Step 16: Is block_size<4?

Step 17: If Step 16=True, then block_size=4

Step 18: If Step 16=False, then go to Step 20.

Step 19: remainder=mod(len,block_size);

Step 20: initialise the array ct_temp[block_size] with all

zeros;

Step 21: initialise the array key_temp[block_size] with all

zeros;

Step 22: Is remainder!=0?

Step 23: If Step 22=True,go to Step 24,else go to Step 44.

Step 24: t=1

Step 25: ct_temp[t]=ct[t]

Step 26: key_temp[t]=key[t]

Step 27: If t>block_size,go to step 28,else t=t+1 and go to

Step 25.

Step 28: forward_next=key_temp[1]

Step 29: backward_next=key_temp[block_size]

Step 30: forward_feedback=key_temp[2]

Step 31: backward_feedback=key_temp[block_size-1]

Step32: pt=Call decryption_block (ct_temp, key_temp

forward_next,backward_next,forward_feedback,backward_fe

edback,block_size)

Step 33: j=len-remainder+1

Step 34: i=1

Step 35: pt_main[j]=pt[i]

Step 36: j=j+1

Step 37: If i>remainder, then go to Step 38,else i=i+1 and go

to Step 35.

Step 38: i=1

Step 39: ct[i]=pt[i]

Step 40: If i>block_size, then go to Step 41 else i=i+1 go to

Step 39.

Step 41: i=remainder+1

Step 42: ct[i-remainder]=ct[i]

Step 43: If i>len,then go to Step 44,else i=i+1 and go to Step

42.

Step 44: begin=1

Step 45: tot_div=floor(len/block_size)

Step 46: i=1

Step 47: set all elements of ct_temp[block_size] by zero

Step 48: set all key_temp[block_size] with all zeros

Step 49: j=1

Step 50: t=begin

Step 51: ct_temp[j]=ct[t]

Step 52: key_temp[j]=key[t]

Step 53: j=j+1

Step 54: If t>begin+block_size-1 then go to Step 55 else t=t+1

, go to Step 51.

Step 55: forward_next=key_temp[1]

Step 56: backward_next=key_temp[block_size]

Step 57: forward_feedback=key_temp[2]

Step 58: backward_feedback=key_temp[block_size-1]

Step59: pt = Call decryption_block (ct_temp, key_temp,

forward_next,backward_next,forward_feedback,bacward_fee

dback,block_size)

Step 60: j=1

Step 61: k=begin

Step 62: pt_main[k]=pt[j]

Step 63: j=j+1

Step 64: If k>begin+block_size-1, then go to Step 65,else

k=k+1 and go to Step 62.

Step 65: begin=begin+block_size

Step 66: If i>tot_div,then go to Step 67,else i=i+1 and go to

Step 46.

Step 67: ct[]=pt_main[]

Step 68: ct=Call ct_shift(pt_main[],key[e])

Step 69: If e<1,then go to Step 70,else e=e-1 and go to Step

12.

Step 70: Write contents of pt_main into output file.

Step 71: End.

2.5 Algorithm for function

decryption_block(ct[],key[],forward_next,b

ackward_next,ff[],bf[],block_size)

Step-1: forward_next=forward_next+1

Step-2: forward_next=mod(forward_next,block_size)

Step-3: if forward_next=0 then forward_next=1 otherwise go

to Step-4

Step-4: backward_next=backward_next+1

Step-5: backward_next=mod(backward_next,block_size)

Step-6: if backward_next=0 then backward_next=1 otherwise

go to Step-7

Step-7: (u,v)= Call generateList (block_size, forward_next,

backward_next);

Step-8: initialise the array pt[block_size] with all zeros

Step-9: k=2*block_size

Step-10: if k > block_size+1 then go to Step-45 otherwise go

to Step-11

Step-11: (i,j) = Call whatIsIn (u[k], block_size, forward_next

,backward_next, v[])

Step-12: if i!=j then go to Step-13 otherwise Step-25

Step-13: if i=0 then go to Step-14 otherwise Step-15

Step-14: pos_i=0

Step-15: if v[Call oldPosition(i,block_size)]=u[k] then go to

Step-16 otherwise go to Step-17

Step-16: pos_i=Call oldPosition(i,block_size)

Step-17: pos_i=Call lastPosition(i,block_size)

Step-18: if j=0 the go to Step-19 otherwise go to Step-20

International Journal of Computer Applications (0975 – 8887)

Volume 103 – No.3, October 2014

17

Step-19: pos_j=0

Step-20: if v(Call oldPosition(j,block_size))=u[k] then go to

Step-21 otherwise go to Step-22

Step-21: pos_j=Call oldPosition(j,block_size)

Step-22: pos_j=Call lastPosition(j,block_size)

Step-23: sub1=Call isChanged(i,pos_i)

Step-24: sub2=Call isChanged(j,pos_j) go to Step-27

Step-25: sub1=Call isChanged(i,oldPosition(i,block_size))

Step-26: sub2=Call isChanged(i,lastPosition(i,block_size))

Step-27: check1=ct[u[k]]-sub1-sub2-key[u[k]]

Step-28: if i=0 and j=0 then go to Step-29 otherwise go to

Step-34

Step-29: if u[k]=block_size then go to Step-30 otherwise

Step-31

Step-30: check=check1-bf

Step-31: if u[k]=1 then go to Step-32 otherwise go to Step-33

Step-32: check=check1-ff go to Step-39

Step-33: check=check1 go to Step-39

Step-34: if u[k] = block_size and (Call conditionCheck

(u[k],i,j,block_size,v) =1) then go to Step-35 otherwise go to

Step-36

Step-35: check=check1-bf

Step-36: if u[k]=1 and (Call conditionCheck

(u[k],i,j,block_size,v)=2) then go to Step-37 otherwise go to

Step-38

Step-37: check=check1-ff

Step-38: check=check1

Step-39: if (check < 0) then go to Step-40 otherwise go to

Step-42

Step-40: check=check+256

Step-41: go to Step-39

Step-42: check=mod(check,256)

Step-43: pt[u[k]]=check

Step-44: k=k+1 and go to Step-10

Step-45: return pt[] to the calling function

2.6 Algorithm for function condition_check

(number,i,j,block_size,v[])

Step 1: if i*j!=0, go to step 2, else go to step 2,else go to step

3

Step 2: flag=0

Step 3: if i!=0 go to Step 4,else go to step 8

Step 4: if v[Call oldPosition(i,block_size)]==number, go to

step 5, else go to step 6

Step 5: pos=Call oldPosition(i,block_size)

Step 6: pos=Call lastPosition(i,block_size)

Step 8: if v[Call oldPosition(j,block_size)]==number, go to

step 9,else go to step 10

Step 9: pos=Call oldPosition(j,block_size)

Step 10: pos=Call lastPosition(j,length)

Step 11: flag1=mod(pos,2)

Step 12: if flag1=0, go to step 13,else go to step 14

Step 13: flag=2

Step 14: flag=flag1

Step 15: Return flag to the calling function

2.7 Algorithm for function is_changed

(number,position,forward_next,backward_

next,block_size,u[],v[],ct[],ff[],bf[])

Step 1: is number==0?

Step 2: if Step 1=TRUE,then go to sub=0 else go to Step 3

Step 3: if position=Call lastPosition(number,block_size) then

sub=ct[number] else go to Step 4

Step4: [i,j] = Call whatIsInBetween

(number,length,v,next1,next2)

Step 5: if i!=j go to step 6, else go to step 24

Step 6: if i=0 then set position_i=0 else go to step 7

Step 7: if v[Call lastPosition(i,block_size)]=number then set

position_i=Call lastPosition(i,block_size) else go to Step 8

Step 8: set position_i=Call oldPosition(i,block_size)

Step 9: if j==0,set position_j=0,else go to step 10

Step 10: if v[Call lastPosition(i,block_size)]=number, set

position_j=Call lastPosition(j,block_size),else go to step 11

Step 11: set position_j=Call oldPosition(j,block_size)

Step12: sub1= ct[number]- isChanged

(i,position_i,next1,next2,block_size,u,v,ct,ff,bf)-

isChanged(j,position_j,next1,next2,block_size,u,v,ct,ff,bf)

Step13:[a,b]=Call whatIsIn (number,block_size,next1,next2,

v)

Step 14: if a=0 and b=0 then go to step 15,else go to step 18

Step 15: if number=block_size,set sub=sub1+bf else go to

step 16

Step 16: if number=1 then set sub=sub1+ff else go to step 17

Step 17: sub=sub1

Step18:flag= Call conditionCheck (number,a,b,block_size,v)

Step 19: if number=block_size and position=Call

oldPosition(number) and flag!=1 go to Step 20, else go to step

21

Step 20: sub=sub1+bf

Step 21: if number=1 and position=Call oldPosition(number)

and flag!=2 go to Step 22, else go to step 23

Step 22: sub=sub1+ff

Step 23: sub=sub1

Step24:sub1=ct[number]-isChanged

(i,oldPosition(i),next1,next2, block_size,u,v,ct,ff,bf)-

isChanged(i,lastPosition(i),next1,next2,block_size,u,v,ct,ff,bf)

Step 25: [a,b]=whatIsIn(number,block_size,next1,next2,v)

Step 26: if a=0 and b=0 then go to step 27,else go to step 30

Step 27: if number==block_size,set sub=sub1+bf else go to

step 28

Step 28: if number==1,set sub=sub1+ff,else go to step 29

Step 29: sub=sub1

Step30: flag = Call conditionCheck (number,a,b,block_size,v)

International Journal of Computer Applications (0975 – 8887)

Volume 103 – No.3, October 2014

18

Step 31: if number==block_size and position==Call

oldPosition(number,block_size) and flag!=1 go to Step 32,

else go to step 33

Step 32: sub=sub1+bf

Step 33: if number==1 and position==Call

oldPosition(number,block_size) and flag!=2 go to Step 34,

else go to step 35

Step 34: sub=sub1+ff

Step 35: sub=sub1

Step 36: Return sub to the calling function

2.8 Algorithm for function what_is_in

(number,block_size,forward_next,backwar

d_next,v[])

Step-1: if number+backward_next<=block_size, then go to

Step-2,otherwise Step-3

Step-2: i=number+backward_next

Step-3: i=number+backward_next-block_size,

Step-4: if number-forward_next>=1 then go to Step-

5,otherwise go to Step-6

Step-5: j=number-forward_next

Step-6: j=number-forward_next+block_size,

Step-7: lastPos_number = Call lastPosition (number,

block_size)

Step-8: if(i=j and i!=0) then go to Step-9,otherwise go to Step-

13

Step-9: if(Call lastPosition(i,block_size)>lastPos_number)

then go to Step-10,otherwise go to Step-11

Step-10: i=0

Step-11: if(Call oldPos(i,block_size)>lastPos_number) then

go to Step-12,otherwise go to Step-23

Step-12: j=0

Step-13: if(i!=0) then go to Step-14 otherwise go to Step-18

Step-14: if(Call lastPosition(i,block_size)>lastPos_number

and v(Call lastPosition(i,block_size))=number) then go to

Step-15,otherwise go to Step-16

Step-15: i=0

Step-16: if(Call oldPos(i,block_size,)>lastPos_number and

v(Call oldPos(i,block_size,))=number) then go to Step-

17,otherwise go to Step-18

Step-17: i=0

Step-18: if(j!=0) then go to Step-19 otherwise go to Step-23

Step-19: if(Call lastPosition(j,block_size,)>lastPos_number

and v(Call lastPosition(j,block_size,))=number) then go to

Step-20,otherwise go to Step-21

Step-20: j=0

Step-21: if(Call oldPos(j,block_size)>lastPos_number and

v(Call oldPos(j,block_size))=number) then go to Step-

22,otherwise go to Step-23

Step-22: j=0

Step-23: Return i and j to the calling function

2.9 Algorithm for function

what_is_in_between

(number,block_size,forward_next,backwar

d_next,v[])

Step-1: (i,j) = Call whatIsIn

(number,block_size,,forward_next,backward_next,v[])

Step-2: if i=j and i!=0 and j!=0 then go to Step-3,otherwise go

to Step-10

Step-3: condition=(Call lastPosition(i,block_size,)>Call

oldPos(number,block_size,) and Call

lastPosition(i,block_size,)<Call

lastPosition(number,block_size,) and v(Cal

lastPosition(i,block_size,))=number)

Step-4: if condition=0 then go to Step-5,otherwise go to Step-

6

Step-5: i=0

Step-6: condition=(Call oldPosition(j,block_size,)>Call

oldPosition(number,block_size,) and Call

oldPosition(j,block_size,)<Call

lastPosition(number,block_size,) and v(Call

oldPosition(j,block_size,))=number)

Step-7: if condition=0 then got to Step-8, otherwise go to

Step-9

Step-8: j=0

Step-9: go to Step-20

Step-10: if i!=0 then go to Step-11,otherwise go to Step-15

Step-11: condition1=Call lastPosition(i,block_size,)>Call

oldPosition(number,block_size,) and Call

lastPosition(i,block_size,)<Call

lastPosition(number,block_size,) and v(Call

lastPosition(i,block_size,))=number

Step-12: condition2=Call oldPosition(i,block_size,)>Call

oldPos(number,block_size,) and Call

oldPosition(i,block_size,)<Call

lastPosition(number,block_size,) and v(Call

oldPosition(i,block_size,))=number

Step-13: if condition1=0 and condition=0 then go to Step-

14,otherwise go to Step-15

Step-14: i=0

Step-15: if j!=0 then go to Step-16,otherwise go to Step-20

Step-16: condition1=Call lastPosition(j,block_size,)>Call

oldPosition(number,block_size,) and Call

lastPosition(j,block_size,)<Call

lastPosition(number,block_size,) and v(Call

lastPosition(j,block_size,))=number

Step-17: condition2=Call oldPosition(j,block_size,)>Call

oldPosition(number,block_size,) and Call

oldPosition(j,block_size,)<Call

lastPosition(number,block_size,) and v(Call

oldPosition(j,block_size,))=number

Step-18: if condition1=0 and condition=0 then go to Step-

19,otherwise go to Step-20

Step-19: j=0

Step-20: Return i and j to the calling function

International Journal of Computer Applications (0975 – 8887)

Volume 103 – No.3, October 2014

19

2.10 Algorithm for function

generate_list(block_size,forward_next,back

ward_next)

Step 1:-source=1.

Step 2:- i=1.

Step 3:-u[i]=source. /*u contains the source of the Feedback

Transfers.*/

Step 4:-if (u[i]+mod(next,length)) >length,then v[i]=u[i]+

mod(next,length) – length.

Step 5:- if (u[i]+mod(next,length)) <= length, then v[i]=u[i]+

mod(next,length).

Step 6:- source=source+1;

Step 7:- if i < (2*length); then i=i+2 and go to Step 3.

Step 8:-source= length.

Step 9:- i =2.

Step 10:-u[i]=source.

Step 11:-if (u[i]-mod(next,length)) < 1,then v[i]=u[i]-

mod(next,length) + length.

Step 12:- if (u[i]-mod(next,length)) >= 1, then v[i]=u[i] -

mod(next,length).

Step 13:- source=source-1;

Step 14:- if i < (2*length); then i= i+2 and go to Step 10.

Step 15:- Return Control to calling function, also return u[]

and v[] to the calling function.

2.11 Algorithm for function

old_position(number,block_size)

Step 1:-current_pos = Call last_Position_of (number, length);

Step 2:- first_pos = 2*length - current_pos+1;

Step 3:-Return Control to calling function, and return

first_pos to the calling function.

2.12 Algorithm for function

last_position(Number,Block_Size)

Step 1:-if number <= ceil (length/2); go to Step 3

Step 2:- if number >ceil (length/2); go to Step 4

Step 3:-last_ pos = 2*length - 2*(number-1);’

Step 4:- last_pos = 2*(number-1);

Step 5:- Return Control to calling function,and return last_pos

to the calling function.

2.13 Algorithm for function pt_shift(num)

Step 1:- seq=Call generate_sequence(num)

Step 2:-pt_bits=Call convertToBits(pt)

Step 3:-shifted_pt_bits=Bit_Rotation(pt,bits,seq[],0)

Step 4:- shifted_pt_bytes=convertToBytes(shifted_pt_bits)

Step 5:-Return shifted_pt_bytes to calling function.

2.14 Algorithm for function

ct_shift(ct[],num)

Step 1:- seq=Call generate_sequence(num)

Step 2:-ct_bits=Call convertToBits(ct)

Step 3:-shifted_ct_bits=Bit_Rotation(ct,bits,seq[],1)

Step 4:- shifted_ct_bytes=convertToBytes(shifted_pt_bits)

Step 5:-Return shifted_ct_bytes to calling function.

2.15 Algorithm for function

convert_to_bits(a[])

Step 1:- k=1

Step 2:- i=1 to length of a[] Step=1 do

Step 3:-j=8 to 1 step=-1 do

Step 4:-aux[k]=Call bitget(a[i],j)

Step 5:=k=k+1;

Step 6:-If j>1 then go to Step 4 else go to Step 7

Step 7:-If i<length of a[] then go to Step 3 else go to Step 8

Step 8:-Return aux[] to the calling function.

2.16. Algorithm for function

convert_to_bytes(a[])

Step 1:- k=1

Step 2:- i=1 to (length of a[])/8 Step=1 do

Step 3:-sum=0

Step 4:- j=7 to 0 step=-1 do

Step 5:-sum= sum+a[k]*2^j

Step 6:-k=k+1

Step 7:-If j>0 then go to Step 5 else go to Step 8

Step 8:-b[i]=sum

Step 9:-If i<(length of a[])/8 then go to Step 3 else go to Step

10

Step 10:-Return b[] to the calling function.

2.17. Algorithm for function

generate_sequence(num)

This function simply generates a sequence array according to

the generated keypad in order to make sure that the bits are

rotated in a dynamic fashion rather than in the same way

every round, which would render the rotation of bits

impractical.

2.18. Algorithm for function

bit_rotation(b[],seq[],flag)

Step 1:- len= length of b[] array

Step 2:- n=Integral part of square root of len.

Step 3:-Array a[n][n] is filled row-major wise with the bits in

b[] array.

Step 4:-If flag=1(signifying Decryption), the seq[] array is

reversed.

Step 5:- The 24 different bit shifting functions are called in a

sequence given by the seq[] array.

Step 6:- Jumbled bits are copied back into the b[] array.

Step 7:- b[] array is returned to the calling function.

 2.18.1) Diagonal1_Down_Shift

 In this function, the major diagonal is shifted one place

downwards, the shifting being cyclic.

 2.18.2) Diagonal2_Down_Shift

International Journal of Computer Applications (0975 – 8887)

Volume 103 – No.3, October 2014

20

In this function, the second diagonal is shifted one place

downwards, the shifting being cyclic.

 2.18.3) Diagonal1_Up_Shift

In this function, the major diagonal is shifted one place

upwards, the shifting being cyclic.

 2.18.4) Diagonal2_Up_Shift

In this function, the second diagonal is shifted one place

upwards, the shifting being cyclic.

 2.18.5) Exchange_Diagonals_ColumnWise

 In this function, the two diagonals in the bit matrix are

exchanged with each other column wise.

 2.18.6) Exchange_Diagonals_RowWise

 In this function, the two diagonals in the bit matrix are

exchanged with each other row wise.

 2.18.7) Flip_Diagonal1

In this function, the order of the major diagonal elements is

reversed.

 2.18.8) Flip_Diagonal2

In this function, the order of the second diagonal elements is

reversed.

 2.18.9) Up_Shift_Even

 In this function, Even rows are shifted upwards by one.

 2.18.10) Down_Shift_Even

 In this function, Even rows are shifted downwards by one.

 2.18.11) Up_Shift_Odd

In this function, Odd rows are shifted upwards by one.

 2.18.12) Down_Shift_Odd

In this function, Odd rows are shifted downwards by one.

 2.18.13) Exchange_Even_Column

In this function, Even columns are exchanged with each other.

 2.18.14) Exchange_Odd_Column

 In this function, Odd columns are exchanged with each other.

 2.18.15) Exchange_Even_Row

 In this function, Even rows are exchanged with each other.

 2.18.16) Exchange_Odd_Row

In this function, Odd rows are exchanged with each other.

 2.18.17) Left_Shift_Even

 In this function, Even rows are shifted one place to the left.

 2.18.18) Left_Shift_Odd

In this function, Odd rows are shifted one place to the left.

 2.18.19) Right_Shift_Even

 In this function, Even rows are shifted one place to the right.

 2.18.20) Right_Shift_Odd

In this function, Odd rows are shifted one place to the right.

 2.18.21) Rotate_Even_AntiClockwise

 In this function, Even interior circles are rotated

AntiClockwise.

 2.18.22) Rotate_Odd_AntiClockwise

 In this function, Odd interior circles are rotated

AntiClockwise.

 2.18.23) Rotate_Even_Clockwise

 In this function, Even interior circles are rotated Clockwise.

 2.18.24) Rotate_Odd_Clockwise:

In this function, Odd interior circles are rotated Clockwise.

3. RESULTS AND DISCUSSIONS

3.1 Encryption of small plain texts with

given seed
In the table given on the Left Hand Side of the next page

(Table-I), there are many instances where it is observed that

for the same seed, almost similar Plain Texts in SL. NO 1 , 2

and 3, NO. 4 ,5 and 6, NO. 9 and 10, the Cipher Texts are

totally haphazard thus rendering the Plain Text irretrievable.

Therefore, for slightly bigger Plain Texts the retrieval of the

Plain Text becomes almost impossible for any machine as

well unless the key, i.e. seed is known.

Table-1. Small test cases

SL.

NO.

PLAIN

TEXT

SEED CIPHER TEXT

1 AAAAAA

Xaviers 3(¦@·ñ

2 BAAAAA

Xaviers _´»¶__

3 CAAAAA Xaviers †_¼Â_Ç

4 ABABAB

A

Xaviers Ú#²Ÿ_}ÿ

5 ACACAC

A

Xaviers __;I.ay

6 BCBCBC

B

Xaviers ®§d

¿z7

7 AAABAA

A

Xaviers ðš7õƒ4Ý

8 AAACAA

A

Xaviers]MŸa‘ý_

9 AABAAB

A

Xaviers _/J¶aš_

10 AACAAC

A

Xaviers 8É1ßYµ0

International Journal of Computer Applications (0975 – 8887)

Volume 103 – No.3, October 2014

21

3.2 Encryption of a paragraph with given

seed
In the encrypted Cipher Text shown on the Right Hand Side, a

better example of the efficiency of the algorithm can be

observed since the size of each block in every iteration of the

encryption process plays an important role in completely

diffusing the Plain Text into a seemingly random and

completely incomprehensible Cipher Text.

Table 2.Encryption of a paragraph with seed Xaviers

3.3 Graphs and frequency analysis charts
The graphs given below give us a good estimate of the

randomness of the occurrence frequencies of the different

ASCII characters. In the ASCII ‘0’, ASCII ‘1’ charts varied

results are obtained even when the same character is

encrypted over and over again.

Fig 1: Frequency spectral graph for ASCII ‘0’ for AFES

Version-1

Fig 2: Frequency spectral graph for ASCII ‘1’ for AFES

Version-1

4. CONCLUSION AND FUTURE SCOPE
The present method has been tested on various types of files

such as .doc, .jpg, .bmp, .exe, .com, .dbf, .wav, .avi and the

results were quite satisfactory. The encryption and decryption

methods work smoothly. In the present method the encrypted

text cannot be decrypted without knowing the exact initial

keypad. The results show that, the set of strings where there is

a difference in only one character in the plain text, the

encrypted texts are coming totally different from each other.

The present method is free from any kind of brute force attack

or known plain text attack. The present AFES Ver-1 may be

applied to encrypt any short message, password, confidential

key and even images and other file types as well. One can

apply this method to encrypt data in sensor networks as well.

5. ACKNOWLEDGMENTS
The authors are extremely grateful to the Department of

Computer Science for providing the opportunity to work on

Symmetric Key Cryptography. A.N sincerely expresses his

gratitude to Fr. Dr. Felix Raj, Principal of St. Xavier’s College

(Autonomous) for giving constant encouragement regarding

research in the field of Cryptography.

6. REFERENCES
[1] Purnendu Mukherjee, Prabal Banerjee, AsokeNath,

“Multi Way Feedback Encryption Standard Ver-

I(MWFES-I)”, International Journal of Advanced

Computer Research(IJACR), Volume-3, Number-3,

Issue-11, September 2013, Pages:176-182.

[2] Prabal Banerjee, Purnendu Mukherjee, AsokeNath,

“Modified Multi Way Feedback EncryptionStandard :

Ver-I (MMWFES-I)”, International Journal of Advanced

Computer Research(IJACR),Vol-3, No.1, Issue-13, Page

352-360, Dec(2013).

[3] Asoke Nath, Debdeep Basu, Ankita Bose, Saptarshi

Chatterjee, Surajit Bhowmik,, “Multi Way Feedback

Encryption Standard Ver-2(MWFES-2),” International

Journal of Advanced Computer Research(IJACR), Vol-3,

Number-1, Issue-13, Page-29-35, Dec(2013).

[4] Saptarshi Chatterjee, Debdeep Basu, Ankita Bose, Surajit

Bhowmik, Asoke Nath,, “Modified Multi Way Feedback

Encryption Standard Ver-2(MMWFES-2),” JGRCS,

Vol-4, No. 12, December, 2013, Page 8-13(2013).

[5] Asoke Nath, Debdeep Basu, Ankita Bose, Saptarshi

Chatterjee and Surajit Bhowmik “Multi Way Feedback

Encryption Standard Ver-3(MWFES-3),” published in

IEEE conference proceedings: WICT-2013 held at Hanoi

in Dec 14-18(2013), page 318-325(2013).

Plain text Cipher text

St. Xavier's has always

been known for his

cosmopolitan and

national character. Much

before the expression

"national integration"

gained currency, St.

Xavier's had tried to

foster among its students

the spirit and practice of

it. Coming as they do

from all over India and

from various

communities, they live

in complete harmony,

understanding and

mutual respect. Thus

they are encouraged to

develop beyond local

and group affinities,

loyalties to the country

and the society at large.

v_AS_\µíÝÛ÷eYá_²dT ˆ—·°Œ—

Q¿‡ù2!o_Ì+ˆ÷_Î|_ÂÑ[ÂÒ?b_d–

Ùè;:1„OP“ÊJ?Që_@?_úqû?_•õ“½ª

?&å`?¢bÔn²¶ï_Jý_D­ðéG§Ì/á%½Ò

lD_?Ž:_Ê¾ˆ3Â®'?AB·Ô_Ä_¶_“í§

__j™–Š’_3

?"+_¤_V—

°_B__ÏôCs~HU®_7HËL^_%S?_<Ï

e__Âvi†_³^òÈ"(#“r_àø¥”¯Àì_?÷q

• Qÿ÷ã·õð?,¬JÈÕŽ.84Ùo

Ø_ø€ßçÁ$›v_m“"À_#¥ƒé%¤_=î)Ë

÷‘_.2`ä©Ùó@wÓ:_·]©_2ÿi_ª†)ÌO

ÕØÚ%PN`uô±«mH±__¢+CØ• ð_‘

Œ«UdÂh©4‘IÄ6• íûû‰?X¡¾’•?

y5@_F¸¤î"±u¢Sl¯ñéÐ_¦íÖ&·Õ†é_

Ë›’æ_:ÆÓèýÆÞ°9#

eî» p“8ˆ?;²Ob0–Kä_lö±f_‹ø_

3__ôÝ¯þqx˜Ö9àãû’të˜ò_éo@GÄ_2

‹A²þ• x2iz36 ¤4__œw

ä

y1ÔNR_ŽCÌN›b­½\¼__Õ¬]°tJÒ)_

æ

International Journal of Computer Applications (0975 – 8887)

Volume 103 – No.3, October 2014

22

[6] Asoke Nath, Payel Pal, “Modern Encryption Standard

Ver-IV(MES-IV),” International Journal of Advanced

Computer Research(IJACR), Volume-3, Number-3,

Issue-11, September 2013, Page:216-223.

[7] Asoke Nath, Bidhusundar Samanta, “Modern Encryption

Standard Ver-V(MES-V),” International Journal of

Advanced Computer Research(IJACR), Volume-3,

Number-3, Issue-11, September 2013, Pages:257-264.

[8] Asoke Nath, Saima Ghosh, Meheboob Alam

Mallik,“Symmetric Key Cryptography using Random

Key generator” Proceedings of International conference

on security and management(SAM ’10) held at Las

Vegas, USA July 12-15, 2010), Vol-2, Page: 239-

244(2010).

[9] Dripto Chatterjee, Joyshree Nath, Soumitra Mondal,

Suvadeep Dasgupta, Asoke Nath, “Advanced Symmetric

key Cryptography using extended MSA method: DJSSA

symmetric key algorithm”, Journal of Computing, Vol 3,

Issue-2, Page 66-71,Feb(2011).

[10] Dripto Chatterjee, Joyshree Nath, Suvadeep Dasgupta

and AsokeNath, “A new Symmetric key Cryptography

Algorithm using extended MSA method: DJSA

symmetric key algorithm,” Proceedings of IEEE

International Conference on Communication Systems

and Network Technologies, held at SMVDU(Jammu) 03-

06 June,2011, Page-89-94(2011).

[11] Neeraj Khanna, Joel James, Joyshree Nath, Sayantan

Chakraborty, Amlan Chakrabarti, Asoke Nath, “New

Symmetric key Cryptographic algorithm using combined

bit manipulation and MSA encryption algorithm:

NJJSAA symmetric key algorithm”, Proceedings of

IEEE CSNT-2011 held at SMVDU(Jammu) 03-06 June

2011, Page 125-130(2011).

[12] Dripto Chatterjee, Joyshree Nath, Sankar Das, Shalabh

Agarwal, Asoke Nath, “Symmetric key Cryptography

using modified DJSSA symmetric key algorithm”,

Proceedings of International conference Worldcomp

2011 held at Las Vegas 18-21 July 2011, Page-306-311,

Vol-1(2011).

[13] Debanjan Das, Joyshree Nath, Megholova Mukherjee,

Neha Chaudhury and Asoke Nath, “An Integrated

symmetric key cryptography algorithm using generalized

vernam cipher method and DJSA method: DJMNA

symmetric key algorithm”, Proceedings of IEEE

International conference: World Congress WICT-2011

held at Mumbai University 11-14 Dec, 2011, Page

No.1203-1208(2011).

[14] Trisha Chatterjee, Tamodeep Das, Joyshree Nath,

Shayan Dey and Asoke Nath, “Symmetric key

cryptosystem using combined cryptographic algorithms-

generalized modified vernam cipher method, MSA

method and NJJSAA method: TTJSA algorithm”,

Proceedings of IEEE International conference: World

Congress WICT-2011 t held at Mumbai University 11-14

Dec, 2011, Page No. 1179-1184(2011).

[15] Trisha Chatterjee, Tamodeep Das, Shyan Dey, Joyshree

Nath and Asoke Nath,Symmetric key Cryptography

using two-way updated Generalized Vernam Cipher

method: TTSJA algorithm, International Journal of

Computer Applications (IJCA, USA), Vol 42, No.1,

March, Pg: 34 -39(2012).

[16] Satyaki Roy, Navajit Maitra, Joyshree Nath, Shalabh

Agarwal and Asoke Nath, “Ultra Encryption

Standard(UES) Version-I: Symmetric Key Cryptosystem

using generalized modified Vernam Cipher method,

Permutation method and Columnar Transposition

method”, Proceedings of IEEE sponsored National

Conference on Recent Advances in Communication,

Control and Computing Technology -RACCCT 2012,

29-30 March held at Surat, Page 81-88(2012).

[17] Somdip Dey, Joyshree Nath, Asoke Nath, “An Integrated

Symmetric Key Cryptographic Method – Amalgamation

of TTJSA Algorithm, Advanced Caeser Cipher

Algorithm, Bit Rotation and reversal Method: SJA

Algorithm”, International Journal of Modern Education

and Computer Science, (IJMECS), ISSN: 2075-0161

(Print), ISSN: 2075-017X (Online), Vol-4, No-5, Page 1-

9,2012.

[18] Somdip Dey, Joyshree Nath, Asoke Nath, “An Advanced

Combined Symmetric Key Cryptographic Method using

Bit manipulation, Bit Reversal, Modified Caeser

Cipher(SD-REE), DJSA method, TTJSA method: SJA-I

Algorithm,” International Journal of Computer

Applications(IJCA 0975-8887, USA), Vol. 46, No.20,

Page- 46-53,May, 2012.

[19] Satyaki Roy, Navajit Maitra, Joyshree Nath, Shalabh

Agarwal and Asoke Nath, “Ultra Encryption

Standard(UES) Version-IV: New Symmetric Key

Cryptosystem with bit-level columnar Transposition and

Reshuffling of Bits”, International Journal of Computer

Applications(IJCA)(0975-8887) USA Volume 51-

No.1.,Aug, Page. 28-35(2012)

[20] Neeraj Khanna, Dripto Chatterjee, Joyshree Nath and

Asoke Nath, “Bit Level Encryption Standard(BLES) :

Version-I,” International Journal of Computer

Applications(IJCA)(0975-8887) USA Volume 52-

No.2.,Aug, Page.41-46(2012).

[21] Prabal Banerjee, Asoke Nath, “Bit LevelGeneralized

Modified Vernam Cipher Method with Feedback”,

Proceedings of International Conference on Emerging

Trends and Technologies held at Indore, Dec 15-16,

2012.

[22] Prabal Banerjee, Asoke Nath, “Advanced Symmetric

Key cryptosystem using Bit and Byte Level encryption

methods with Feedback”, Proceedings of International

conference Worldcomp 2013 held at Las Vegas, July

2013.

[23] Ankita Bose, Debdeep Basu, Saptarshi Chatterjee, Asoke

Nath, Surajit Bhowmik, “Bit Level Multi Way Feedback

Encryption Standard Version-1(BLMWFES-1)”, Paper

published at IEEE CSNT 2014 held at Bhopal 7-9th

April.

IJCATM : www.ijcaonline.org

