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ABSTRACT 

Visual cryptography and random grids are forms of visual 

secret sharing that encrypt a secret image into indecipherable 

shares.  Decryption occurs by printing them onto 

transparencies and stacking, but this requires participants to 

be in the physical presence of each other, so this paper 

addresses the use of visual secret sharing between remote, 

incommunicado agents.  To this end, a prototype application 

has been developed to form a subpixel matrix of a 

photographed share that is one half of a (2, 2) scheme.  It is 

algorithmically “stacked” with its stored complement to 

decrypt the secret.  The implemented algorithms are 

presented, as well as visual results for variations of three 

values of three photographic condition metrics.  Although 

only a third of the total results proved positive, 

recommendations are given regarding photographic 

conditions to significantly improve accuracy.  Furthermore, 

we suggest a number of applications of this technology.   

Keywords 

Secret Sharing, Visual Cryptography, Random Grids, 
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1. INTRODUCTION 
Reliable identity authentication is a mounting concern in a 

world with increasing reliance on online services.  Despite a 

decrease in online banking fraud in recent years, still £35.4 

million were lost in fraudulent UK transactions in 2011 [1]. 

To meet this threat, banks have issued customers hand-held 

devices of various types.  For example, HSBC’s SecureKey 

uses its synchonrised internal clock and customer credentials 

to generate a code the user types to access an online account.  

This has, however, been met with much frustration [10]. 

This study proposes the visual cryptographic (VC) paradigm, 

formulated by Moni Naor Adi Shamir  in 1994 [11], as well as 

the preferable (though ironically older) random grid method 

of Kafri and Keren [7], as authentication solutions. 

Both of these methods are flavours of visual secret sharing 

(VSS), which separates a secret image into n shares, each a 

random sequence of dots, or subpixels.  When k shares are 

printed onto transparencies and stacked, a contrast-reduced 

version of the secret is visually discernible. 

Although reconstruction contrasts are similar for both VC and 

RG, the former entails further quality loss in the form of pixel 

expansion, whereby more than one subpixel is required to 

reconstruct each original secret pixel.  RG does not have this 

problem, and several algorithms have been proposed recently 

[2, 14] that have brought them to the forefront of VSS 

research, due to increased ability to conceal secrets in access 

structures. 

The perfect physical stacking of shares, which is here termed 

conventional VSS, is the ideal situation resulting in the best 

possible contrast in a given (k, n)-VSS scheme (VSSS).  

However, researchers such as [8, 9], investigate imperfect VC. 

Handling imperfections lies at the heart of this research, 

entailing the computational stacking of a stored binary share 

onto a share displayed on a computer monitor (or printed) and 

photographed with a mobile phone. 

A key advantage to using this type of cryptography is the 

possibility of assigning access structures to the revealing of a 

secret, for example if there are n participants holding shares, 

and only certain subsets of them are permitted to unlock the 

secret.  

2. AIMS AND OBJECTIVES 
The aim of this work is to devise effective algorithms for 

converting a photographed share image into a binary subpixel 

matrix.  This matrix is then algorithmically “stacked” onto its 

accompanying matrix to reveal a secret image portraying a 

numeric code.  This entails quantification and variation of 

various photographic conditions, which is used to compare 

results and make recommendations regarding the use of this 

technology. 

The paper is organised as follows: 

 In Section 4.1, the implementation of a prototype mobile 

application and the initial raw image preprocessing is 

described. 

 In Sections 4.2-3, a novel computer vision algorithm is 

presented to approximate the boundaries of the visual 

share image and estimate its subpixel values. 

 In Section 4.4, describe the computational stacking of the 

shares is explored. 

 As part of the discussion in Section 5, security, 

robustness and computational complexity are discussed. 

 Here also, applications to identity authentication are 

proposed and analysed. 

3. RELATED WORK 
The work of [9] bears similarity to this study in its attempts to 

extract information from a digitized, hence distorted digital 

share.  However, they first print the share and use Fourier 

transform to correct the image. 

They identify the share image in the scene “through the 

presence of peaks in the Fourier domain”, taking advantage of 

the fact that a physical translation of the image is 

mathematically equivalent to a linear phase modulation in the 

Fourier space. 
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One cannot disregard the similarity of this work to QR-code 

recognition.  Indeed, [3] brings about offline QR recognition 

using VC.  Particularly interesting is their suggestion of using 

QR-like calibration symbols in shares to aid stacking and 

ameliorate the alignment problem of VC. 

The alignment problem is further addressed by [8], who 

discuss the inherent robustness of VC using pixel expansion 

m>2, with non-zero contrast up to a maximal misalignment.  

They derive an exact formula for the resulting contrast of 

misaligned (n, n)-VCS, but concede difficulty for (k, n)-VCS 

if k<n.  However, they concede that when individual 

subpixels are expanded before being printed onto 

transparencies, this in itself increases robustness. 

In the spirit of stacking a physical share onto a digital one, [4] 

propose an application in an alternative to mobile phone 

passwords, instead stacking a VC transparency onto the 

screen displaying the accompanying share in a (2, 2)-VCS. 

The revealed “image”, in their proposal, is not pictorial, but 

reveals a statistically significant conglomeration of black 

pixels to the left, right, top or bottom of the display, inviting 

the user to swipe the screen in the required direction.  

Importantly, they cite this as an implementation of increased 

security in “something you have”, as opposed to “something 

you know”. 

In VC implementations with full or partial computational 

decryption, as in the case of [9], the reconstruction can be de-

noised to arrive at a better approximation to the original 

image.  However, to aid a cleaner, higher contrast 

reconstruction, [13] was the first to propose the XOR binary 

operation for stacking, as opposed to OR. 

Although this is difficult to bring out in physical share 

stacking, they say it is possible by polarizing light, creating a 

perfect reconstruction for (n, n)-VCS, and almost perfect if 

k<n. 

Sivasankari and George [12] take advantage of such XOR-

based VC in the concealment of a “subliminal message” in a 

secret colour image.  This extra secret is hidden in the pixel 

colour values before channel decomposition and share 

generation.  The reconstruction is thus close enough to the 

original to accurately extract the subliminal, which would be 

extremely difficult with a noisy OR reconstruction. 

4. PROPOSED METHOD 

4.1 Preprocessing 
A (2, 2)-VSSS is used, i.e. k=2, n=2, comprising a secret 

image, I split into shares 
0H  and 

1H , such that 

0 1
' H H I , where   denotes XOR and 'I  is the 

reconstructed secret.  However, when 
0H  is photographed, 

it becomes 
0

'H , which is used in this paper to denote the 

photographed share itself, and the resultant subpixel matrix 

reconstruction. 

If ij is the (row, column) coordinate of a subpixel, then 

0,1
{0,1}

ij
H   with 0 and 1 resp. white (or transparent) and 

black.  However, this study instead proposes equating them to 

RGB (255, 127, 0) and (0, 127, 255), respectively, rendering 

them statistically distinguishable from the background and 

from each other, given that these combinations maximize the 

total colour distance, i.e. 

max( ) ( ) ( )G R B G     . 

However, only 
0H  is displayed on the screen.  

1H  is 

stored in memory as a binary matrix.  As stacking is 

computational, the user has no need to view the second share. 

With the share displayed, the user takes a photograph of the 

screen with a mobile phone.  Figure 1 shows the screen and 

resulting photograph.  Note the degradation in image quality. 

Here, also, the advice in [8] is heeded, expanding each 

subpixel to approximately a 5 5  pixel block (depending on 

the size of the share), increasing its salience. 

To remove non-share pixels from the photograph, Algorithm 

1 is given, performing a pixel-by-pixel and block-by-block 

colour analysis. 

 

 

   

Fig 1: A: original 
0

H  and B: photographed 
0

'H  

 

Algorithm 1:  Removal of Non-share Pixels 

Input:  Photograph including
0

'H  

Output:  Isolated 
0

'H  

For each vertical screen pixel, y, do, 

For each horizontal screen pixel, x, do, 

{ , , }R G B  additive pixel colour components 

0
( ) ( )G R B G      

1
( ) ( )R G G B      

If 
0

50   and 
1

50  , then, 

[ ][ ]pixel x y white  

End If 

End For 

End For 

 

For each vertical 15-pixel block, cy, do, 

For each horizontal 15-pixel block, cx, do, 

1 0colour Count   

2 0colour Count   

For each vertical block pixel, y, do, 

For each horizontal block pixel, x, do, 

A 

B 

photographed 
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{ , , }R G B  pixel value 

If R<G and G<B then, 

 1 1 1colour Count colour Count   

Else If R>G and G>B, then, 

 2 2 1colour Count colour Count   

End If 

End For 

End For 

 

If colour1Count < 2 or colour2Count < 2, then, 

[ ][ ]block cx cy white End If 

End For 

End For 

 

Note that the various parameter choices, i.e. 50, 15 and 2, 

were arrived at experimentally.  The results of applying the 

algorithm to 
0

'H  in Figure 1B is given in Figure 2. 

 

 
Fig 2:  Result of Algorithm 1 for non-share pixel removal 

 

It is clear that many share pixels have also been removed, 

making Algorithm 1 alone unsuitable for image 

preprocessing, however it can be effectively used to determine 

the margins, within which the share is approximately located.  

For convenience, these are denoted , {1, ..., 4}
i

iM  , moving 

clockwise from the top margin. 

On the other hand, one could argue for a simplification in 

preprocessing by constraining the implementation to pure 

white pixels surrounding the share out to a reasonable 

distance and stipulating that the user photograph the share to 

be approximately centrally positioned.   

In either case, a white border is drawn, concealing any 

interface-related components. 

4.2 Side and Corner Location 
Let us denote corner points, counting clockwise from the top 

left corner of 
0H  as  , ...,

1 4

xy xy
C C .  When photographed, 

they translate to  , ...,
1 4

xy xy
' 'C C . 

Due to camera positional variation, , {1,..., 4}
i

xy xy

i
' i C C , 

and because of variation of camera distance and rotation, 

, , {1,..., 4}
j i j i

xy xy xy xy
' ' i j   C C C C , so the first task is 

to locate the corners.  This is achieved by locating a respective 

edge and algorithmically “rolling” along the side toward the 

desired corner.   

Algorithm 2 is presented as the first step toward locating the 

first candidate for 
1C , denoted 

1 1
{ , }X Y .  It analyses 

colour value differences 
1 2
,   (i.e. G-R and B-G) from the 

field of view’s horizontal centre, starting at vertical point 
1

M  

and working downward until constraints on 
1 2
, }{   are 

satisfied.  It then moves leftward, continually analysing 

1 2
, }{   until its constraints fail a sufficient number of times 

for it to assume it has reached the corner. 

(Highlighted in red are the parts of the algorithm that vary 

depending on respective corner to be located.) 

 

Algorithm 2:  Horizontal Location for Corner Candidate 1 

searchLowerBound 
1

M  

searchUpperBound  2
windowHeight

 

8boundMargin   

  default initial threshold 

0, 5numFailures maxFailures   

 

Define Function calcPixelValDiff(x, y) 

{R,G,B}  colour components of pixel (x, y) 

Return G-R B-G  

End Function 

 

//HORIZONTAL SEARCH 

For x = 2
windowWidth  to 

4
M  (working backward), do, 

found false  

For y = searchLowerBound to searchUpperBound, do, 

//TEST CURRENT AND NEARBY PIXELS 

If calcPixelValDiff(x, y+yd) >   for any yd from 0 

to 4, then, 

Mark the (x, y) location with a white spot 

1
yY  

found true , 0numFailures   

//LIMIT SEARCH TO EASE COMPUTATIONAL 

COMPLEXITY 

searchLowerBound  y – boundMargin 

searchUpperBound   y + boundMargin 

break from this loop 

End If 

End For 

 

If not found, then 1numFailures numFailures   

If numFailures > maxFailures, then, 

//SET 
1

X  TO THE LAST POINT AT WHICH IT 

FOUND A VALID PIXEL COLOUR 

1
X  x + maxFailures 

break from this loop (as now found 
1

X ) 

End If 

End For 
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Similarly, Algorithm 3 locates a second candidate for this 

corner, analyzing 
1 2
, }{   from 

4
x M  and moving 

upward toward 
1

xy
'C . 

 

Algorithm 3:  Vertical Location for Corner Candidate 2 

searchLowerBound 
4

M  

searchUpperBound  3
windowWidth      //(OR 2) 

0numFailures   

//VERTICAL SEARCH 

For y = 2
windowHeight

 to 
1

M  (working backward), do, 

found false  

For x = searchLowerBound to searchUpperBound, do, 

//TEST CURRENT AND NEARBY PIXELS 

If calcPixelValDiff(x+xd, y) >   for any xd from 0 

to 4, then, 

Mark the (x, y) location with a white spot 

2
xX  

found true , 0numFailures   

searchLowerBound   x – boundMargin 

searchUpperBound   x + boundMargin 

break from this loop 

End If 

End For 

 

If not found, then 1numFailures numFailures   

If numFailures > maxFailures, then, 

2
Y  y + maxFailures 

break from this loop (as now found 
2

Y ) 

End If 

End For 

 

Algorithm 4 arrives at the third candidate by taking the 

average of the first two. 

 

Algorithm 4:  Corner Candidate 3 

1 2

3
4

2
 

X + X
X  

1 2

3
4

2
 

Y +Y
Y  

 

Note the small offset of four pixels, which aids in the final 

corner estimate in Algorithm 5, in which the final candidates 

are “nudged” closer to the corner based on 
1 2
, }{  . 

Algorithm 5:  Final Corner Estimate 

4 3
X X ,

4 3
Y Y  

found false  

8nudgeMargin   

While not found, do, 

For xd = 0 to nudgeMargin, do, 

If calcPixelValDiff(
4

X + xd, 
4

Y ) >  , then, 

found true  

break from this loop 

End If 

End For 

 

If not found, then 
4 4
X X  + 1 

End While 

 

found false  

While not found 

For yd = 0 to nudgeMargin, do, 

If calcPixelValDiff(
4

X ,
4

Y  + yd) >  , then, 

found true  

break from this loop 

End If 

End For 

If not found, then 
4 4
Y Y + 1 

End While 

4 41
{ , }

xy
'  X YC  

 

The other corners are similarly located.  However, because 

1 2
, }{   is compared to  , the value of   must be 

carefully chosen.  Given the unpredictability of photographic 

conditions, this is initialized (to 50), the corners are located, 

and those coordinates are used to approximate the area.  If the 

area lay below some minimum,   increases.  This process 

continues until the area approximates an expected value.  The 

result comprises Figure 3. 

 

Fig 3:  Side and corner location.  (Note the algorithm’s 

fault-tolerance with regards to the glare effect at the top 

right of the share.) 

 

4.3 Grid Calculation 

With , {1, ..., 4}
i

xy
' iC , a grid of subpixels are built, i.e.

0
'H , approximating 

0H .  Share subpixel coordinates 

0,1
, 2 , 2

ij
j w i h   H  imply there are w and h 

subpixels spanning the resp. horizontal and vertical 

dimensions of the share.  However, it is first necessary to 

focus on the dimensions of an individual subpixel. 

Given the inevitability of skew in 
0

'H , subpixel dimensions 

vary, but all equal dimensions along a respective side are 

assumed.  Working with sides 1 to 4, beginning with the top 

and working clockwise, subpixel dimensions are denoted 

, {1, ..., 4},i i i    for resp. width and height. 
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Algorithm 6 approximately maps 
0

'H  back to 
0H , i.e. 

determines the colour values of the individual subpixels.   

Note the division of I  into a grid of “sectors”, S , such that 

,1 , 2 2
ij

s j c i l    S , where l is the number of lines 

of text and c is the number of characters on each line, 

assuming a portrayal of alphanumeric text.  

 

Algorithm 6:  Share 0 Reconstruction 

2 1

1

' '
x x

w





C C
,

3 4

3

' '
x x

w





C C
 

4 1

4

' '
y y

h






C C
,

3 2

2

' '
y y

h






C C
 

1 3
widthDiff   

4 2
widthDiff     

2 1

2 1

' '

' '

y y

x x

topGradient






C C

C C
 

3 4

3 4

' '

' '

y y

x x

bottomGradient






C C

C C
 

 

2

topGradient bottomGradient
meanGradient


  

0
' H empty w h  matrix 

 

Define Function calcSubpixelColour 

(Receives parameters cx, cy,  ,  ) 

, 0blackCount whiteCount   

For py = 0 to  , do, 

For px = 0 to  , do, 

{ , , }R G B  colour components of pixel at 

coordinate (cx + px, cy + py) 

( ) ( )G H B G      

If   > 20 and (B > G or G > R), then, 

1blackCount blackCount   

Else, 

1whiteCount whiteCount   

End If 

 

If blackCount – whiteCount > 10, then return 1 

Else If whiteCount – blackCount > 10, then 

return 0 

End For 

End For 

 

If blackCount – whiteCount > 30, then return 1 

Else, return 0 

End Function 

 

For each horizontal subpixel, x, do, 

1
.
y

skewedCellHeight heightDiff h   

For each vertical subpixel, y, do, 

1
.
y

skewedCellWidth widthDiff h   

 1 1 4' ' 'x xx

y
skewedLeftGap h  C C C  

1
1 .cellX skewedLeftGap x skewedCellWidth   

1

2
1 ' . ...

... . .

y
cellY y skewedCellHeight

x skewedCellWidth topGradient

 



C
 

1
.2 1cellX cellX skewedCellWidth   

1

2
2 ' . ...

...( 1). .

y
cellY y skewedCellHeight

x skewedCellWidth topGradient

  



C
 

3 2cellX cellX  

2
3 2 .cellY cellY skewedCellHeight   

4 1cellX cellX  

4 3cellY cellY  

2 1cellX cellX    

4 1cellY cellY    

0
' ( 1, 1, , )
yx

calcSubpixelColour cellX cellY  H  

End For 

End For 

 

Here,  and   are approximated as the pixel length of the 

respective side divided by the number of subpixels along that 

side.  Since this naïve approach results in such an imperfect 

grid, additional offsets 1 2( , )   are introduced for resp. 

horizontal and vertical subpixel value approximations. 

ijs  is defined as “locked” if less than a threshold number of 

its pixels remain black.  With the execution of Algorithm 6 for 

1 2 0    , one would expect at least a minimum number 

of sectors to be resolved.  If not, 5 and Algorithms 

2 to 5 are re-executed. 

Given such imperfect conditions for VC, it is unlikely all 

sectors are locked after the first run.  Therefore, the value of 

1  and/or 2  are iteratively changed by , {1, 2}
i

i 

and Algorithm 6 is re-executed.  As a rule of thumb: 

1 2
1, 0w h     , 

1 2
0, 0.002h w     , 

1 2
1, 0.002w h       .                            (1) 

The sign of 
i

 is initialized positive, but when it reaches 

bounds of 0.95 and 1.15, its sign reverses. 

The result of grid calculation comprises Figure 4, (although 

the grid lines are for demonstration purposes only). 

 

Fig 4:  Calculated grid overlaid onto 
0
'H  
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4.4 Share Stacking 

With Share 0 approximation (
0
'H ) in place, VC stacking 

can be carried out with the already stored Share 1 (
1

H ) to 

obtain the reconstructed 'I .  Although physical stacking is 

analogous to binary OR calculation, it is pointed out by 

research such as [13] that XOR ( ) gives higher contrast.  

Indeed, they proved that if k=n, the theoretical reconstructed 

contrast is unity.  Therefore, (2) is applied on each concurrent 

subpixel, (i, j): 

0 1
''

ij ij ij
 H HI                   (2) 

Furthermore, due to the restrictions discussed in Section 4.3, 

each sector in 'I  is “locked” as soon as ( )H S , where 

( )H .  denotes Hamming weight and   is white-to-black 

ratio threshold.  In experiments,   was initialized to 0.3 and 

is increased slowly toward 0.5, effectively starting “strict” 

(i.e. requiring high contrast), but incrementally relaxing this 

constraint. 

In this way, 'I  is gradually constructed, as illustrated below. 

 

 

Fig 5:  Calculated grid overlaid onto 
0
'H  

 

5. DISCUSSION 

5.1 Computational Cost and Robustness 
A number of variations in photographic conditions were 

explored, most importantly distance, perspective, lighting and 

device.  To these are added the metric of the ratio of w to h, 

i.e. dimensions of the share on the screen. 

The impact of the distance of the camera from the monitor is 

closely tied to   and  .  With the recommended constraint 

on the user (discussed in Section 4.1) of ensuring 
0
'H  is 

approximately central and pervasive in the field of view, 

“distance”, D, is simplified as: 

 
0

.

( )

w h
D

A

 


H
                  (3) 

where ( ).A  denotes area (in pixels).  Note here that 

0
( ) .A ' w h H , but the act of approximation makes little 

difference. 

 

 

 

 

 

 

Viewing perspective, P, is here defined as the ordered pair: 

 

1 0 2 3

( ) ( ) ( ) ( )

0 2

3 0 2 1

( ) ( ) ( ) ( )

3 1

' ' ' '

,
2

' ' ' '

2

y y y y

x x x x

w w

P

h h

 

 

  
 

 
 

  
  

 
 
 

C C C C

C C C C
                     (4) 

where the respective elements are horizontal and vertical 

skew. 

Lighting, L, is estimated as: 

 
1 1

1 1

' ' '
heightwidth

ij ij ij

i j

heightwidth

ij ij ij

i j

R G B

L

R G B

 

 

 



 

 

 
                (5) 

where width and height are the window pixel dimensions, {R, 

G, B} are the original colour values, and their primes are the 

photographed colour values. 

The devices considered comprised a smartphone set to both 

one and three megapixel mode, and a tablet device. 

Experiments with photographs taken in one megapixel mode 

failed in all cases due to inability to resolve 
0
'H  subpixels.  

Interestingly, the tablet also failed in the vast majority of 

attempts due to photographic distortion resulting from 

monitor frame rate.  Indeed, the result was a Moiré-like 

pattern, severely hindering the ability to locate edges and 

corners.  Therefore, this study only considers three megapixel 

mode on a smartphone and leaves other devices to further 

research. 

In addition, only results for w h  are considered, as in 

Figure 1.  Given the remaining dimensions of the robustness 

analysis, three discrete values of each are considered, with 

results illustrated in Tables 1, 2 and 3. 

Note that 0.62 1.21D  , representing distances of 

approximately 15 to 35 centimetres between the screen and 

the camera.  Also, 0 0.04P  , representing angles of 

approximately 0° to 30°, and 0.67 1.16L  , representing 

minimal to full monitor backlight. 

The application was run on a laptop PC with a dual-core 2.09 

GHz processor and 3 GB RAM. 
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Table 1. Code recognition for high perspective values 

|P| ≈ (4%, 4%) 

D = 0.62 L= 0.7 

(FAILURE) 

L = 0.8 

(1)

 

6.6 seconds 

 

L = 1.11 

(FAILURE) 

D = 0.83 L= 0.69 

(FAILURE) 

L = 0.78 

(2)

 

25 seconds 

L = 1.07 

(FAILURE) 

D = 1.21 L = 0.69 

(FAILURE) 

L = 0.8 

(FAILURE) 

L = 1.06 

(FAILURE) 

 
 

 

 

 

 

 

Table 2. Code recognition for medium perspective values 

|P| ≈ (2%, 2%) 

D = 0.62 L= 0.67 

(3)

 

13 seconds 

L = 0.81 

(4)

 

12 seconds 

L = 1.10 

(FAILURE) 

D = 0.83 L= 0.69 

(5)

 

10.3 seconds 

L = 0.8 

(6)

 

21 seconds 

L = 1.16 

(FAILURE) 

D = 1.21 L = 0.67 

(FAILURE) 

L = 0.77 

(7)

 

27.7 seconds 

L = 1.08 

(FAILURE) 
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Table 3. Code recognition for low perspective values 

|P| ≈ (0%, 0%) 

D = 0.62 L= 0.71 

(8)

 

18.3 seconds 

L = 0.81 

(9)

 

17.5 seconds 

L = 1.10 

(FAILURE) 

D = 0.83 L= 0.69 

(10)

 

13.2 seconds 

L = 0.8 

(11)

 

13 seconds 

L = 1.16 

(12)

 

13.1 seconds 

D = 1.21 L = 0.67 

(13)

 

22.3 seconds 

L = 0.77 

(FAILURE) 

L = 1.08 

(14)

 

26 seconds 

Here, 14 of the 27 experiments resulted in at least partial 

success, but if results 2, 4, 7 and 14 are also discarded for 

illegibility of at least one of the eight characters, the total 

success rate is 37%, in an average time of 14.6 seconds. 

Table 4 likewise summarises (rounded percentage) success 

rates and average times for the respective “low”, “medium” 

and “high” values of P, D and L. 

Table 4. Mean recognition rates for low, medium and high 

perspective, distance and lighting, respectively, for the 

metrics of perspective (P), distance (D) and lighting (L) 

 Low Medium High 

P 67% (16.2 sec.) 44% (14.1 sec.) 11% (6.6 sec.) 

D 44% (13.5 sec.) 56% (14.1 sec.) 11% (22.3 sec) 

L 56% (15.4 sec.) 67% (14 sec.) 11% (13.1 sec.) 

 

It is clear that low perspective results in higher recognition 

rates, but a highly skewed 
0
'H  can still be decrypted if the 

camera is placed close to the screen.  In general, however, 

medium distance is preferable.  The same is true for lighting.  

Furthermore, in all cases, high values resulted in poor 

recognition. 

It is evident from the timings that “ideal” conditions resulted 

in the code being decrypted in approximately 14 seconds. 

5.2 Real-world Applications 
The proposed methodology can find use in any situation 

requiring sharing of a binary image or code, such as a 

password or PIN number securely over the Internet, as well as 

using a mobile phone to photograph a printed share. 

Two examples are given.  The first is in banking, providing an 

alternative to login devices.  A bank, before sending such a 

device to a customer, has its internal clock synchronized with 

that of the bank and is loaded with some customer credentials.  

When the customer attempts to log in to an online account and 

switches on the device, both the server and device use a secret 

formula, based on current time and credentials, to generate an 

eight-digit code the customer inputs to access the account. 

This is regarded as secure, as it relies on “something you 

have”, versus knowledge alone, which due to its ethereal 

nature can more easily fall into the wrong hands [4].  Hence, it 

provides greater security.  

However, the use a mobile phone is suggested here to perform 

the same action.  The proposed implementation comprises 

Figure 6. 

It is important to note that both the system and the app must 

not only generate the same verification code, but valid 

complementary , {0,1}
i

iH  of a (2, 2)-VCS.  In 

conventional VC, each basis matrix column permutation is 

random, but to realize the above system, the results must be 

deterministic.  Hence, a pseudorandom sequence generator 

can be used, which common to both agents, taking its seed 

from the same input parameters, i.e. user credentials and 

current time. 

It is of course wise to approximate “current time” to within 

several minutes, giving the customer enough time to login. 
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Fig 6:  Banking implementation for login code generation 

and identity verification 

Heretofore, this study have focused on a digitized version of 

0
H , but the algorithms are applicable if this share is printed.  

Taking account of the constraints on D, P and L, such usage 

could be used much like QR-codes, but with an explicitly 

graphical element. 

In this context, a second application is proposed, to the 

dissemination of door access codes to authorized personnel.  

Let us imagine that staff member Alice must gain access to 

room B101, but due to heightened security, its digital keypad 

changes regularly and unpredictably. 

To ensure authorized staff have the correct code, a copy of 

0
H  is printed and fixed permanently outside the door.  

Given that this share is permanent and unchanging, it is 

desirable to use random grids, as discussed by researchers 

such as [2].  Therefore, for this implementation, 
0

H  is 

randomly generated.  Treating this as a share with pixel 

expansion 2 2 , the codebook in Table 5 is used to generate 

1
H  based on 

0
H  and I . 

Table 5. Share 
1

H  generation based on a random grid- 

based visual secret sharing 

 

I  

0
H  

1
H  

   

   

   

(Et cetera.  I.e., copy the 
0

H  subpixel matrix 

into 
1

H .) 

   

   

   

(Et cetera.  I.e., copy the binary complement 

of the 
0

H  subpixel matrix into 
1

H .) 

 

Alice is given a private mobile app, which she must not share 

with colleagues.  When the door code changes, the share held 

by her app is automatically updated.  To access B101, she 

activates the app, points the camera at the mounted share 

image, and the app extracts the code.  She then inputs the code 

into the keypad to gain access. 

The advantage of using this methodology, as opposed to, for 

example, the generation of key codes based on credentials, is 

two-fold.  Firstly, if using random grids, one grid can be 

assigned as a “master share”, able to unlock any of infinite 

number of secret images by XOR stacking with a grid 

associated with that the respective secret.   

Secondly, access structures can be assigned to the sharing of 

the secret.  For example, the room access in the example 

above might only be permitted in the presence of one 

employee and one manager, whose mobile apps could 

communicate their binary matrices with each other and 

digitally XOR, before being “stacked” with the printed share 

using Algorithm 2 to 6. 

6. CONCLUSION AND FURTHER 

WORK 
This paper has proposed a series of algorithms implementing 

visual cryptography, where share holders are not in each 

other’s presence.  This entails either the use of random grid or 

two separate systems of independently created complementary 

shares of a (2, 2) visual cryptographic scheme. 

This research has resulted in and been tested on a prototype 

able to scan a photographed share.  Within error margins, it 

successfully discerns individual subpixels, stores them in a 

binary matrix and stacks it with the complimentary stored 

share to retrieve the secret image.   
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This study has experimented with varying parameters values, 

i.e. distance, perspective, lighting and device, and discovered 

limitations.  Future work will therefore address these 

shortcomings, increasing the robustness to varying 

photographic conditions on different devices.  Indeed, the 

advice of [3] will be considered to employ calibration patterns 

embedded within the share to aid recognition. 
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