
International Journal of Computer Applications (0975 – 8887)

Volume 103 – No.2, October 2014

8

Visual Secret Sharing between Remote Participants

Neil Buckley

Dept of Mathematics and
Computer Science

Liverpool Hope University
Liverpool, England

Atulya K. Nagar
Dept of Mathematics and

Computer Science

Liverpool Hope University
Liverpool, England

S. Arumugam
National Centre for Advanced

Research in Discrete
Mathematics (n-CARDMATH)

Kalasalingam University
Krishnankoil, Tamilnadu, India

ABSTRACT

Visual cryptography and random grids are forms of visual

secret sharing that encrypt a secret image into indecipherable

shares. Decryption occurs by printing them onto

transparencies and stacking, but this requires participants to

be in the physical presence of each other, so this paper

addresses the use of visual secret sharing between remote,

incommunicado agents. To this end, a prototype application

has been developed to form a subpixel matrix of a

photographed share that is one half of a (2, 2) scheme. It is

algorithmically “stacked” with its stored complement to

decrypt the secret. The implemented algorithms are

presented, as well as visual results for variations of three

values of three photographic condition metrics. Although

only a third of the total results proved positive,

recommendations are given regarding photographic

conditions to significantly improve accuracy. Furthermore,

we suggest a number of applications of this technology.

Keywords

Secret Sharing, Visual Cryptography, Random Grids,

Augmented Reality, Mobile Technology

1. INTRODUCTION
Reliable identity authentication is a mounting concern in a

world with increasing reliance on online services. Despite a

decrease in online banking fraud in recent years, still £35.4

million were lost in fraudulent UK transactions in 2011 [1].

To meet this threat, banks have issued customers hand-held

devices of various types. For example, HSBC’s SecureKey

uses its synchonrised internal clock and customer credentials

to generate a code the user types to access an online account.

This has, however, been met with much frustration [10].

This study proposes the visual cryptographic (VC) paradigm,

formulated by Moni Naor Adi Shamir in 1994 [11], as well as

the preferable (though ironically older) random grid method

of Kafri and Keren [7], as authentication solutions.

Both of these methods are flavours of visual secret sharing

(VSS), which separates a secret image into n shares, each a

random sequence of dots, or subpixels. When k shares are

printed onto transparencies and stacked, a contrast-reduced

version of the secret is visually discernible.

Although reconstruction contrasts are similar for both VC and

RG, the former entails further quality loss in the form of pixel

expansion, whereby more than one subpixel is required to

reconstruct each original secret pixel. RG does not have this

problem, and several algorithms have been proposed recently

[2, 14] that have brought them to the forefront of VSS

research, due to increased ability to conceal secrets in access

structures.

The perfect physical stacking of shares, which is here termed

conventional VSS, is the ideal situation resulting in the best

possible contrast in a given (k, n)-VSS scheme (VSSS).

However, researchers such as [8, 9], investigate imperfect VC.

Handling imperfections lies at the heart of this research,

entailing the computational stacking of a stored binary share

onto a share displayed on a computer monitor (or printed) and

photographed with a mobile phone.

A key advantage to using this type of cryptography is the

possibility of assigning access structures to the revealing of a

secret, for example if there are n participants holding shares,

and only certain subsets of them are permitted to unlock the

secret.

2. AIMS AND OBJECTIVES
The aim of this work is to devise effective algorithms for

converting a photographed share image into a binary subpixel

matrix. This matrix is then algorithmically “stacked” onto its

accompanying matrix to reveal a secret image portraying a

numeric code. This entails quantification and variation of

various photographic conditions, which is used to compare

results and make recommendations regarding the use of this

technology.

The paper is organised as follows:

 In Section 4.1, the implementation of a prototype mobile

application and the initial raw image preprocessing is

described.

 In Sections 4.2-3, a novel computer vision algorithm is

presented to approximate the boundaries of the visual

share image and estimate its subpixel values.

 In Section 4.4, describe the computational stacking of the

shares is explored.

 As part of the discussion in Section 5, security,

robustness and computational complexity are discussed.

 Here also, applications to identity authentication are

proposed and analysed.

3. RELATED WORK
The work of [9] bears similarity to this study in its attempts to

extract information from a digitized, hence distorted digital

share. However, they first print the share and use Fourier

transform to correct the image.

They identify the share image in the scene “through the

presence of peaks in the Fourier domain”, taking advantage of

the fact that a physical translation of the image is

mathematically equivalent to a linear phase modulation in the

Fourier space.

International Journal of Computer Applications (0975 – 8887)

Volume 103 – No.2, October 2014

9

One cannot disregard the similarity of this work to QR-code

recognition. Indeed, [3] brings about offline QR recognition

using VC. Particularly interesting is their suggestion of using

QR-like calibration symbols in shares to aid stacking and

ameliorate the alignment problem of VC.

The alignment problem is further addressed by [8], who

discuss the inherent robustness of VC using pixel expansion

m>2, with non-zero contrast up to a maximal misalignment.

They derive an exact formula for the resulting contrast of

misaligned (n, n)-VCS, but concede difficulty for (k, n)-VCS

if k<n. However, they concede that when individual

subpixels are expanded before being printed onto

transparencies, this in itself increases robustness.

In the spirit of stacking a physical share onto a digital one, [4]

propose an application in an alternative to mobile phone

passwords, instead stacking a VC transparency onto the

screen displaying the accompanying share in a (2, 2)-VCS.

The revealed “image”, in their proposal, is not pictorial, but

reveals a statistically significant conglomeration of black

pixels to the left, right, top or bottom of the display, inviting

the user to swipe the screen in the required direction.

Importantly, they cite this as an implementation of increased

security in “something you have”, as opposed to “something

you know”.

In VC implementations with full or partial computational

decryption, as in the case of [9], the reconstruction can be de-

noised to arrive at a better approximation to the original

image. However, to aid a cleaner, higher contrast

reconstruction, [13] was the first to propose the XOR binary

operation for stacking, as opposed to OR.

Although this is difficult to bring out in physical share

stacking, they say it is possible by polarizing light, creating a

perfect reconstruction for (n, n)-VCS, and almost perfect if

k<n.

Sivasankari and George [12] take advantage of such XOR-

based VC in the concealment of a “subliminal message” in a

secret colour image. This extra secret is hidden in the pixel

colour values before channel decomposition and share

generation. The reconstruction is thus close enough to the

original to accurately extract the subliminal, which would be

extremely difficult with a noisy OR reconstruction.

4. PROPOSED METHOD

4.1 Preprocessing
A (2, 2)-VSSS is used, i.e. k=2, n=2, comprising a secret

image, I split into shares
0H and

1H , such that

0 1
' H H I , where denotes XOR and 'I is the

reconstructed secret. However, when
0H is photographed,

it becomes
0

'H , which is used in this paper to denote the

photographed share itself, and the resultant subpixel matrix

reconstruction.

If ij is the (row, column) coordinate of a subpixel, then

0,1
{0,1}

ij
H with 0 and 1 resp. white (or transparent) and

black. However, this study instead proposes equating them to

RGB (255, 127, 0) and (0, 127, 255), respectively, rendering

them statistically distinguishable from the background and

from each other, given that these combinations maximize the

total colour distance, i.e.

max() () ()G R B G .

However, only
0H is displayed on the screen.

1H is

stored in memory as a binary matrix. As stacking is

computational, the user has no need to view the second share.

With the share displayed, the user takes a photograph of the

screen with a mobile phone. Figure 1 shows the screen and

resulting photograph. Note the degradation in image quality.

Here, also, the advice in [8] is heeded, expanding each

subpixel to approximately a 5 5 pixel block (depending on

the size of the share), increasing its salience.

To remove non-share pixels from the photograph, Algorithm

1 is given, performing a pixel-by-pixel and block-by-block

colour analysis.

Fig 1: A: original
0

H and B: photographed
0

'H

Algorithm 1: Removal of Non-share Pixels

Input: Photograph including
0

'H

Output: Isolated
0

'H

For each vertical screen pixel, y, do,

For each horizontal screen pixel, x, do,

{ , , }R G B additive pixel colour components

0
() ()G R B G

1
() ()R G G B

If
0

50 and
1

50 , then,

[][]pixel x y white

End If

End For

End For

For each vertical 15-pixel block, cy, do,

For each horizontal 15-pixel block, cx, do,

1 0colour Count

2 0colour Count

For each vertical block pixel, y, do,

For each horizontal block pixel, x, do,

A

B

photographed

International Journal of Computer Applications (0975 – 8887)

Volume 103 – No.2, October 2014

10

{ , , }R G B pixel value

If R<G and G<B then,

 1 1 1colour Count colour Count

Else If R>G and G>B, then,

 2 2 1colour Count colour Count

End If

End For

End For

If colour1Count < 2 or colour2Count < 2, then,

[][]block cx cy white End If

End For

End For

Note that the various parameter choices, i.e. 50, 15 and 2,

were arrived at experimentally. The results of applying the

algorithm to
0

'H in Figure 1B is given in Figure 2.

Fig 2: Result of Algorithm 1 for non-share pixel removal

It is clear that many share pixels have also been removed,

making Algorithm 1 alone unsuitable for image

preprocessing, however it can be effectively used to determine

the margins, within which the share is approximately located.

For convenience, these are denoted , {1, ..., 4}
i

iM , moving

clockwise from the top margin.

On the other hand, one could argue for a simplification in

preprocessing by constraining the implementation to pure

white pixels surrounding the share out to a reasonable

distance and stipulating that the user photograph the share to

be approximately centrally positioned.

In either case, a white border is drawn, concealing any

interface-related components.

4.2 Side and Corner Location
Let us denote corner points, counting clockwise from the top

left corner of
0H as , ...,

1 4

xy xy
C C . When photographed,

they translate to , ...,
1 4

xy xy
' 'C C .

Due to camera positional variation, , {1,..., 4}
i

xy xy

i
' i C C ,

and because of variation of camera distance and rotation,

, , {1,..., 4}
j i j i

xy xy xy xy
' ' i j C C C C , so the first task is

to locate the corners. This is achieved by locating a respective

edge and algorithmically “rolling” along the side toward the

desired corner.

Algorithm 2 is presented as the first step toward locating the

first candidate for
1C , denoted

1 1
{ , }X Y . It analyses

colour value differences
1 2
, (i.e. G-R and B-G) from the

field of view’s horizontal centre, starting at vertical point
1

M

and working downward until constraints on
1 2
, }{ are

satisfied. It then moves leftward, continually analysing

1 2
, }{ until its constraints fail a sufficient number of times

for it to assume it has reached the corner.

(Highlighted in red are the parts of the algorithm that vary

depending on respective corner to be located.)

Algorithm 2: Horizontal Location for Corner Candidate 1

searchLowerBound
1

M

searchUpperBound 2
windowHeight

8boundMargin

 default initial threshold

0, 5numFailures maxFailures

Define Function calcPixelValDiff(x, y)

{R,G,B} colour components of pixel (x, y)

Return G-R B-G

End Function

//HORIZONTAL SEARCH

For x = 2
windowWidth to

4
M (working backward), do,

found false

For y = searchLowerBound to searchUpperBound, do,

//TEST CURRENT AND NEARBY PIXELS

If calcPixelValDiff(x, y+yd) > for any yd from 0

to 4, then,

Mark the (x, y) location with a white spot

1
yY

found true , 0numFailures

//LIMIT SEARCH TO EASE COMPUTATIONAL

COMPLEXITY

searchLowerBound y – boundMargin

searchUpperBound y + boundMargin

break from this loop

End If

End For

If not found, then 1numFailures numFailures

If numFailures > maxFailures, then,

//SET
1

X TO THE LAST POINT AT WHICH IT

FOUND A VALID PIXEL COLOUR

1
X x + maxFailures

break from this loop (as now found
1

X)

End If

End For

International Journal of Computer Applications (0975 – 8887)

Volume 103 – No.2, October 2014

11

Similarly, Algorithm 3 locates a second candidate for this

corner, analyzing
1 2
, }{ from

4
x M and moving

upward toward
1

xy
'C .

Algorithm 3: Vertical Location for Corner Candidate 2

searchLowerBound
4

M

searchUpperBound 3
windowWidth //(OR 2)

0numFailures

//VERTICAL SEARCH

For y = 2
windowHeight

 to
1

M (working backward), do,

found false

For x = searchLowerBound to searchUpperBound, do,

//TEST CURRENT AND NEARBY PIXELS

If calcPixelValDiff(x+xd, y) > for any xd from 0

to 4, then,

Mark the (x, y) location with a white spot

2
xX

found true , 0numFailures

searchLowerBound x – boundMargin

searchUpperBound x + boundMargin

break from this loop

End If

End For

If not found, then 1numFailures numFailures

If numFailures > maxFailures, then,

2
Y y + maxFailures

break from this loop (as now found
2

Y)

End If

End For

Algorithm 4 arrives at the third candidate by taking the

average of the first two.

Algorithm 4: Corner Candidate 3

1 2

3
4

2

X + X
X

1 2

3
4

2

Y +Y
Y

Note the small offset of four pixels, which aids in the final

corner estimate in Algorithm 5, in which the final candidates

are “nudged” closer to the corner based on
1 2
, }{ .

Algorithm 5: Final Corner Estimate

4 3
X X ,

4 3
Y Y

found false

8nudgeMargin

While not found, do,

For xd = 0 to nudgeMargin, do,

If calcPixelValDiff(
4

X + xd,
4

Y) > , then,

found true

break from this loop

End If

End For

If not found, then
4 4
X X + 1

End While

found false

While not found

For yd = 0 to nudgeMargin, do,

If calcPixelValDiff(
4

X ,
4

Y + yd) > , then,

found true

break from this loop

End If

End For

If not found, then
4 4
Y Y + 1

End While

4 41
{ , }

xy
' X YC

The other corners are similarly located. However, because

1 2
, }{ is compared to , the value of must be

carefully chosen. Given the unpredictability of photographic

conditions, this is initialized (to 50), the corners are located,

and those coordinates are used to approximate the area. If the

area lay below some minimum, increases. This process

continues until the area approximates an expected value. The

result comprises Figure 3.

Fig 3: Side and corner location. (Note the algorithm’s

fault-tolerance with regards to the glare effect at the top

right of the share.)

4.3 Grid Calculation

With , {1, ..., 4}
i

xy
' iC , a grid of subpixels are built, i.e.

0
'H , approximating

0H . Share subpixel coordinates

0,1
, 2 , 2

ij
j w i h H imply there are w and h

subpixels spanning the resp. horizontal and vertical

dimensions of the share. However, it is first necessary to

focus on the dimensions of an individual subpixel.

Given the inevitability of skew in
0

'H , subpixel dimensions

vary, but all equal dimensions along a respective side are

assumed. Working with sides 1 to 4, beginning with the top

and working clockwise, subpixel dimensions are denoted

, {1, ..., 4},i i i for resp. width and height.

International Journal of Computer Applications (0975 – 8887)

Volume 103 – No.2, October 2014

12

Algorithm 6 approximately maps
0

'H back to
0H , i.e.

determines the colour values of the individual subpixels.

Note the division of I into a grid of “sectors”, S , such that

,1 , 2 2
ij

s j c i l S , where l is the number of lines

of text and c is the number of characters on each line,

assuming a portrayal of alphanumeric text.

Algorithm 6: Share 0 Reconstruction

2 1

1

' '
x x

w

C C
,

3 4

3

' '
x x

w

C C

4 1

4

' '
y y

h

C C
,

3 2

2

' '
y y

h

C C

1 3
widthDiff

4 2
widthDiff

2 1

2 1

' '

' '

y y

x x

topGradient

C C

C C

3 4

3 4

' '

' '

y y

x x

bottomGradient

C C

C C

2

topGradient bottomGradient
meanGradient

0
' H empty w h matrix

Define Function calcSubpixelColour

(Receives parameters cx, cy, ,)

, 0blackCount whiteCount

For py = 0 to , do,

For px = 0 to , do,

{ , , }R G B colour components of pixel at

coordinate (cx + px, cy + py)

() ()G H B G

If > 20 and (B > G or G > R), then,

1blackCount blackCount

Else,

1whiteCount whiteCount

End If

If blackCount – whiteCount > 10, then return 1

Else If whiteCount – blackCount > 10, then

return 0

End For

End For

If blackCount – whiteCount > 30, then return 1

Else, return 0

End Function

For each horizontal subpixel, x, do,

1
.
y

skewedCellHeight heightDiff h

For each vertical subpixel, y, do,

1
.
y

skewedCellWidth widthDiff h

 1 1 4' ' 'x xx

y
skewedLeftGap h C C C

1
1 .cellX skewedLeftGap x skewedCellWidth

1

2
1 '

... . .

y
cellY y skewedCellHeight

x skewedCellWidth topGradient

C

1
.2 1cellX cellX skewedCellWidth

1

2
2 '

...(1). .

y
cellY y skewedCellHeight

x skewedCellWidth topGradient

C

3 2cellX cellX

2
3 2 .cellY cellY skewedCellHeight

4 1cellX cellX

4 3cellY cellY

2 1cellX cellX

4 1cellY cellY

0
' (1, 1, ,)
yx

calcSubpixelColour cellX cellY H

End For

End For

Here, and are approximated as the pixel length of the

respective side divided by the number of subpixels along that

side. Since this naïve approach results in such an imperfect

grid, additional offsets 1 2(,) are introduced for resp.

horizontal and vertical subpixel value approximations.

ijs is defined as “locked” if less than a threshold number of

its pixels remain black. With the execution of Algorithm 6 for

1 2 0 , one would expect at least a minimum number

of sectors to be resolved. If not, 5 and Algorithms

2 to 5 are re-executed.

Given such imperfect conditions for VC, it is unlikely all

sectors are locked after the first run. Therefore, the value of

1 and/or 2 are iteratively changed by , {1, 2}
i

i

and Algorithm 6 is re-executed. As a rule of thumb:

1 2
1, 0w h ,

1 2
0, 0.002h w ,

1 2
1, 0.002w h . (1)

The sign of
i

 is initialized positive, but when it reaches

bounds of 0.95 and 1.15, its sign reverses.

The result of grid calculation comprises Figure 4, (although

the grid lines are for demonstration purposes only).

Fig 4: Calculated grid overlaid onto
0
'H

International Journal of Computer Applications (0975 – 8887)

Volume 103 – No.2, October 2014

13

4.4 Share Stacking

With Share 0 approximation (
0
'H) in place, VC stacking

can be carried out with the already stored Share 1 (
1

H) to

obtain the reconstructed 'I . Although physical stacking is

analogous to binary OR calculation, it is pointed out by

research such as [13] that XOR () gives higher contrast.

Indeed, they proved that if k=n, the theoretical reconstructed

contrast is unity. Therefore, (2) is applied on each concurrent

subpixel, (i, j):

0 1
''

ij ij ij
 H HI (2)

Furthermore, due to the restrictions discussed in Section 4.3,

each sector in 'I is “locked” as soon as ()H S , where

()H . denotes Hamming weight and is white-to-black

ratio threshold. In experiments, was initialized to 0.3 and

is increased slowly toward 0.5, effectively starting “strict”

(i.e. requiring high contrast), but incrementally relaxing this

constraint.

In this way, 'I is gradually constructed, as illustrated below.

Fig 5: Calculated grid overlaid onto
0
'H

5. DISCUSSION

5.1 Computational Cost and Robustness
A number of variations in photographic conditions were

explored, most importantly distance, perspective, lighting and

device. To these are added the metric of the ratio of w to h,

i.e. dimensions of the share on the screen.

The impact of the distance of the camera from the monitor is

closely tied to and . With the recommended constraint

on the user (discussed in Section 4.1) of ensuring
0
'H is

approximately central and pervasive in the field of view,

“distance”, D, is simplified as:

0

.

()

w h
D

A

H
 (3)

where ().A denotes area (in pixels). Note here that

0
() .A ' w h H , but the act of approximation makes little

difference.

Viewing perspective, P, is here defined as the ordered pair:

1 0 2 3

() () () ()

0 2

3 0 2 1

() () () ()

3 1

' ' ' '

,
2

' ' ' '

2

y y y y

x x x x

w w

P

h h

C C C C

C C C C
 (4)

where the respective elements are horizontal and vertical

skew.

Lighting, L, is estimated as:

1 1

1 1

' ' '
heightwidth

ij ij ij

i j

heightwidth

ij ij ij

i j

R G B

L

R G B

 (5)

where width and height are the window pixel dimensions, {R,

G, B} are the original colour values, and their primes are the

photographed colour values.

The devices considered comprised a smartphone set to both

one and three megapixel mode, and a tablet device.

Experiments with photographs taken in one megapixel mode

failed in all cases due to inability to resolve
0
'H subpixels.

Interestingly, the tablet also failed in the vast majority of

attempts due to photographic distortion resulting from

monitor frame rate. Indeed, the result was a Moiré-like

pattern, severely hindering the ability to locate edges and

corners. Therefore, this study only considers three megapixel

mode on a smartphone and leaves other devices to further

research.

In addition, only results for w h are considered, as in

Figure 1. Given the remaining dimensions of the robustness

analysis, three discrete values of each are considered, with

results illustrated in Tables 1, 2 and 3.

Note that 0.62 1.21D , representing distances of

approximately 15 to 35 centimetres between the screen and

the camera. Also, 0 0.04P , representing angles of

approximately 0° to 30°, and 0.67 1.16L , representing

minimal to full monitor backlight.

The application was run on a laptop PC with a dual-core 2.09

GHz processor and 3 GB RAM.

International Journal of Computer Applications (0975 – 8887)

Volume 103 – No.2, October 2014

14

Table 1. Code recognition for high perspective values

|P| ≈ (4%, 4%)

D = 0.62 L= 0.7

(FAILURE)

L = 0.8

(1)

6.6 seconds

L = 1.11

(FAILURE)

D = 0.83 L= 0.69

(FAILURE)

L = 0.78

(2)

25 seconds

L = 1.07

(FAILURE)

D = 1.21 L = 0.69

(FAILURE)

L = 0.8

(FAILURE)

L = 1.06

(FAILURE)

Table 2. Code recognition for medium perspective values

|P| ≈ (2%, 2%)

D = 0.62 L= 0.67

(3)

13 seconds

L = 0.81

(4)

12 seconds

L = 1.10

(FAILURE)

D = 0.83 L= 0.69

(5)

10.3 seconds

L = 0.8

(6)

21 seconds

L = 1.16

(FAILURE)

D = 1.21 L = 0.67

(FAILURE)

L = 0.77

(7)

27.7 seconds

L = 1.08

(FAILURE)

International Journal of Computer Applications (0975 – 8887)

Volume 103 – No.2, October 2014

15

Table 3. Code recognition for low perspective values

|P| ≈ (0%, 0%)

D = 0.62 L= 0.71

(8)

18.3 seconds

L = 0.81

(9)

17.5 seconds

L = 1.10

(FAILURE)

D = 0.83 L= 0.69

(10)

13.2 seconds

L = 0.8

(11)

13 seconds

L = 1.16

(12)

13.1 seconds

D = 1.21 L = 0.67

(13)

22.3 seconds

L = 0.77

(FAILURE)

L = 1.08

(14)

26 seconds

Here, 14 of the 27 experiments resulted in at least partial

success, but if results 2, 4, 7 and 14 are also discarded for

illegibility of at least one of the eight characters, the total

success rate is 37%, in an average time of 14.6 seconds.

Table 4 likewise summarises (rounded percentage) success

rates and average times for the respective “low”, “medium”

and “high” values of P, D and L.

Table 4. Mean recognition rates for low, medium and high

perspective, distance and lighting, respectively, for the

metrics of perspective (P), distance (D) and lighting (L)

 Low Medium High

P 67% (16.2 sec.) 44% (14.1 sec.) 11% (6.6 sec.)

D 44% (13.5 sec.) 56% (14.1 sec.) 11% (22.3 sec)

L 56% (15.4 sec.) 67% (14 sec.) 11% (13.1 sec.)

It is clear that low perspective results in higher recognition

rates, but a highly skewed
0
'H can still be decrypted if the

camera is placed close to the screen. In general, however,

medium distance is preferable. The same is true for lighting.

Furthermore, in all cases, high values resulted in poor

recognition.

It is evident from the timings that “ideal” conditions resulted

in the code being decrypted in approximately 14 seconds.

5.2 Real-world Applications
The proposed methodology can find use in any situation

requiring sharing of a binary image or code, such as a

password or PIN number securely over the Internet, as well as

using a mobile phone to photograph a printed share.

Two examples are given. The first is in banking, providing an

alternative to login devices. A bank, before sending such a

device to a customer, has its internal clock synchronized with

that of the bank and is loaded with some customer credentials.

When the customer attempts to log in to an online account and

switches on the device, both the server and device use a secret

formula, based on current time and credentials, to generate an

eight-digit code the customer inputs to access the account.

This is regarded as secure, as it relies on “something you

have”, versus knowledge alone, which due to its ethereal

nature can more easily fall into the wrong hands [4]. Hence, it

provides greater security.

However, the use a mobile phone is suggested here to perform

the same action. The proposed implementation comprises

Figure 6.

It is important to note that both the system and the app must

not only generate the same verification code, but valid

complementary , {0,1}
i

iH of a (2, 2)-VCS. In

conventional VC, each basis matrix column permutation is

random, but to realize the above system, the results must be

deterministic. Hence, a pseudorandom sequence generator

can be used, which common to both agents, taking its seed

from the same input parameters, i.e. user credentials and

current time.

It is of course wise to approximate “current time” to within

several minutes, giving the customer enough time to login.

International Journal of Computer Applications (0975 – 8887)

Volume 103 – No.2, October 2014

16

Fig 6: Banking implementation for login code generation

and identity verification

Heretofore, this study have focused on a digitized version of

0
H , but the algorithms are applicable if this share is printed.

Taking account of the constraints on D, P and L, such usage

could be used much like QR-codes, but with an explicitly

graphical element.

In this context, a second application is proposed, to the

dissemination of door access codes to authorized personnel.

Let us imagine that staff member Alice must gain access to

room B101, but due to heightened security, its digital keypad

changes regularly and unpredictably.

To ensure authorized staff have the correct code, a copy of

0
H is printed and fixed permanently outside the door.

Given that this share is permanent and unchanging, it is

desirable to use random grids, as discussed by researchers

such as [2]. Therefore, for this implementation,
0

H is

randomly generated. Treating this as a share with pixel

expansion 2 2 , the codebook in Table 5 is used to generate

1
H based on

0
H and I .

Table 5. Share
1

H generation based on a random grid-

based visual secret sharing

I

0
H

1
H

(Et cetera. I.e., copy the
0

H subpixel matrix

into
1

H .)

(Et cetera. I.e., copy the binary complement

of the
0

H subpixel matrix into
1

H .)

Alice is given a private mobile app, which she must not share

with colleagues. When the door code changes, the share held

by her app is automatically updated. To access B101, she

activates the app, points the camera at the mounted share

image, and the app extracts the code. She then inputs the code

into the keypad to gain access.

The advantage of using this methodology, as opposed to, for

example, the generation of key codes based on credentials, is

two-fold. Firstly, if using random grids, one grid can be

assigned as a “master share”, able to unlock any of infinite

number of secret images by XOR stacking with a grid

associated with that the respective secret.

Secondly, access structures can be assigned to the sharing of

the secret. For example, the room access in the example

above might only be permitted in the presence of one

employee and one manager, whose mobile apps could

communicate their binary matrices with each other and

digitally XOR, before being “stacked” with the printed share

using Algorithm 2 to 6.

6. CONCLUSION AND FURTHER

WORK
This paper has proposed a series of algorithms implementing

visual cryptography, where share holders are not in each

other’s presence. This entails either the use of random grid or

two separate systems of independently created complementary

shares of a (2, 2) visual cryptographic scheme.

This research has resulted in and been tested on a prototype

able to scan a photographed share. Within error margins, it

successfully discerns individual subpixels, stores them in a

binary matrix and stacks it with the complimentary stored

share to retrieve the secret image.

International Journal of Computer Applications (0975 – 8887)

Volume 103 – No.2, October 2014

17

This study has experimented with varying parameters values,

i.e. distance, perspective, lighting and device, and discovered

limitations. Future work will therefore address these

shortcomings, increasing the robustness to varying

photographic conditions on different devices. Indeed, the

advice of [3] will be considered to employ calibration patterns

embedded within the share to aid recognition.

7. REFERENCES
[1] APACS (2012) Fraud – The Facts [online] Available at:

<http://www.financialfraudaction.org.uk> [Accessed 27th

March 2014] pp 52-58

[2] Chen, T. & Tsao, K. (2011). Threshold visual secret

sharing by random grids. The Journal of Systems and

Software, 84(7). pp 1197-1208

[3] Fang, W. (2011). Offline QR Code Authorization Based

on Visual Cryptography. Seventh International

conference on Intelligent Information Hiding and

Multimedia Signal Processing. pp 89-92

[4] Filardo, N.W. & Ateniese, G. (2011). High-Entropy

Visual Identification for Touch Screen Devices. John

Hopkins University, Baltimore. pp 1-16

[5] Ibrahim, M.H. (2012). New Capabilities of Visual

Cryptography. International Journal of computer

Science Issues, 9(5). pp 225-231

[6] Jin, D., Yan, W. & Kankanhalli, M.S. (2005).

Progressive color visual cryptography. Journal of

Electronic Imaging, 14(3). pp 1-13

[7] Kafri, O. & Keren, E. (1987) Image encryption by

multiple random grids. Optical Letters 12(6). pp 377–

379

[8] Liu, F., Wu, C.K. & Lin, X.J. (2008). The alignment

problem of visual cryptography schemes. Designs,

Codes and Cryptography, 50(2). pp 215-227

[9] Machizaud, J., Chavel, P. & Fournel, T. (2011).

Fourier-based automatic alignment for improved visual

cryptography schemes. Optics Express, 19(23). pp

22709-22722

[10] Murray-West, R.(2011) Facebook cambpaign by angry

HSBC customers over new online security key, The

Telegraph [online] Available at:

<http://www.telegraph.co.uk/finance/personalfinance/co

nsumertips/banking/8725302/Facebook-campaign-by-

angry-HSBC-customers-over-new-online-security-

key.html> [Accessed 27th March 2014]

[11] Naor, M. & Shamir A. (1994). Visual Cryptography.

EUROCRYPT 1994. pp 1-12

[12] Sivasankari, S. & George, V.S. (2012). Implementation

of Stenography within Visual Cryptography. 2012

International Conference on Computing and Control

Engineering. pp 1-5

[13] Tuyls, P., Hollmann, H.D.L., Van Lint, J.H. &

Tolhuizen, L. (2005). XOR-based Visual Cryptography

Schemes. Designs, Codes and Cryptography, 37(1). pp

169-186

[14] Wu, X. & Sun, W. (2013). Improving the visual quality

of random grid-based visual secret sharing. Signal

Processing, 93(5). pp 977-995

IJCATM : www.ijcaonline.org

