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ABSTRACT 

Extreme Learning Machine (ELM) has recently emerged as a 

fast classifier giving good performance. Circular–Complex 

extreme learning machine (CC-ELM) is recently proposed 

complex variant of ELM which has fully complex activation 

function. It has been shown that CC-ELM outperforms real 

valued and other complex valued classifiers. In both CCELM 

& ELM parameters between input and hidden layer are 

initialized randomly and the weights between hidden and 

output layer are obtained analytically. Due to this 

randomization, the performance of both ELM & CC-ELM 

fluctuates. In this paper, performance fluctuation due to 

random parameter of CC-ELM and the circular transformation 

function have been analyzed first, then by using an Ensemble 

approach namely Bagging, a variants Bagging.C1  is proposed  

to bring the stability in the performance of CC-ELM. In 

Bagging.C1 various data samples are generated by using 

random parameters of circular transformation function. 

Performance of proposed classifier ensemble is evaluated 

using a set of benchmark real-valued classification problems 

from the University of California, Irvine machine learning 

repository. 

Keywords 
classification; complex-valued neural networks; extreme 

learning machine  

1. INTRODUCTION 
Extreme learning machine is a fast classifier with a good 

prediction ability which was recently proposed by Huang et al 

[1]. It is a single layer feed-forward neural network in which 

the input weights and hidden layer biases are initialized 

randomly and the weights between hidden layer and output 

layer are determined analytically using Moore-Penrose 

generalized inverse H† of the output matrix of hidden layer. 

Unlike other traditional gradient descent learning algorithm 

such a backpropagation ELM does not require tuning of the 

parameters like learning rate, learning epoch etc and can 

provide better performance in terms of learning speed, 

reliability and generalization Tian  et. al [2]. It does not have 

to encounter problems like stopping criteria and local minima 

Wang et. al. [3].   

With the evolution of technologies that include the processing 

of complex-valued signals like, signal processing, adaptive 

array processing [4, 5], image processing [6] it has been a 

necessity to create and develop complex-valued neural 

networks. R.Savitha et. al [7] proposed a Fast learning circular 

complex valued extreme learning machine (CC-ELM) for the 

classification of real valued data sets  in complex domain.CC-

ELM uses sin(z) as circular transformation function and 

sech() as fully complex Gaussian type activation function. 

Circular transformation function, an orthogonal decision 

boundary of CC-ELM at hidden layer and output layer shows 

better performance and prediction ability of real valued data 

than ELM and various complex valued classifier [7]. Various 

variants of ELM also have been proposed in literature to 

enhance the performance like OS-ELM [8], I-ELM [9], W-

ELM [10], C-ELM [11] etc. However these variants could not 

address some drawbacks of ELM [12] which are mentioned 

below: 

1. The ELM and its variants randomly select the input 

weights and the hidden layer bias. This causes instability 

in the predictions of ELM.. 

2.  The ELMs suffer from the overfitting problem. This is 

due to more number of hidden nodes on larger datasets 

and the complexity of the input instances distribution. 

3. When the size of the dataset increases the order of the 

matrix H also increases. This implies that when larger 

datasets are used large memory is required to calculate 

the Moore-Penrose inverse. 

Hansen and Salmon have proved in [13] that the above 

mention problems can be solved by using ensemble learning. 

The ensemble learning aims at reducing the risk of modeling 

error by combining several base learners. Each base learner in 

the ensemble can be generated either  by creating diversity in 

the dataset used for each classifier by using subsets of a larger 

dataset or the  whole dataset by creating diversity in terms of 

settings in the learning algorithm [14]. Yu Liu [15] proved 

that variation among components input weights and initial 

parameter forces those components to have diverse output 

space which increases the diversity and generalization ability 

of an ensemble model. Jiuwen Cao et. al. [16] also have 

proved that large number of multiple realization of ELM 

reduces the misclassified sample, have the lower variance and 

is able to correctly classify test sample with probability of 

one. 

Ensemble of weak learner model may differ in terms of 1).the 

base classifier used for prediction 2). Approach used to create 

various model either by selecting different realization of 

model or by using different samples of data set. 3).ensembling 

approach is used and 4). The ensemble pruning algorithm is 

used. The two popular methods for an ensemble are Bagging 

[17], Boosting [18] and its variants. In the literature variants 

of ELM based on Bagging are, V-ELM [16],in this it is 

proved that  ability to correctly classify a test data with a large 

number of training model is probability of one and the final 

prediction is done by majority voting . Chen et. al. [19]  

proposed an ensemble based on simple averaging that select 

ELM models on the basis of product index for each model by 
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the correlation between the MSE value and ambiguity from a  

population of models. Liu et. al. [20] proposed an EN-ELM 

that generate RxM model from R fold cross validation over M 

iteration and on the basis of output norms weights first half of 

the model are elected. Heeswijk et al [21] introduced an 

adaptive ensemble model in which average weights of the 

model are updated when new example are arrived. Yuan Lan 

et. al. [22] introduced EOS-ELM which uses ensemble 

method for sequential learning when data arise with fixed or 

varying size or chunk by chunk. Zhai et. al [12]  introduced  

DE-ELM which uses entropy of an instance for model 

pruning and Gaitang Wang et. al [23]  proposed ELM 

ensemble uses fuzzy activation function for output and  

dynamic AdaBoost  in which weights of ELM components  

are modified  based upon optimum threshold . 

However very less research work has been conducted about 

the performance ability of ensemble classifier in a complex 

domain. In this paper for CVNN  variants of Bagging is 

evaluated. Two complex-valued ensemble based classifiers 

namely, V-CELM.C1 (Voting based-Complex Extreme 

Learning Machine.C1) and V-CELM.C2 (Voting based-

Complex Extreme Learning Machine.C2) are implemented 

using a variants of Bagging in the complex domain named as 

Bagging.C1.  

For evaluating the performance of the ensemble based 

classifiers the simulations has run on datasets retrieved from 

the open UCI repository. Eight multi-class and six binary-

class datasets have chosen for the experiments. Along with the 

various experiments presented in this paper to study the 

effectiveness of our classifiers, we have also used the 

Wilcoxon ranksum method to strengthen our claims of 

building an efficient complex based ensemble classifier. 

The rest of the paper is organized as follows. Section 2 gives a 

brief description of the CC-ELM and ensemble methods. 

Section 3, presents the work and Section 4 presents the 

experimental study. Finally conclusion is done   in Section 5. 

2. CIRCULAR COMPLEX-VALUED   

EXTREME LEARNING MACHINE  
CC-ELM has chosen as  base classifier among other complex-

valued extreme learning machines due to it efficient 

transformation mapping and better accuracy in prediction.  

For creating a complex-valued extreme learning machine the 

basic assumption is that a set of N observations namely O, can 

be represented as : O = {(xi,ci)|xi  Rn, i = 1,2,…..,N}, where 

xi is the n-dimensional real-valued input vector and ci  CV, 

where CV = {1,2,…,C} is the class vector containing coded 

class labels with C number of classes. The following function 

is used to obtain the coded-class label, ccrt : 

ccrt =  
                              
                           

     r=1,2,….,C                (1) 

The transformation function used in CC-ELM to map 

the real-valued input features into complex domain is the sin 

() function.  

                         (2) 

The sine function is analytic and almost bounded everywhere 

[16] which makes it a suitable function to be used in the 

transformation part of the CC-ELM classifier.  a and b(0 < a,b 

≤ 1) are real-valued non-zero transformation constant and  

            is the non-zero translational/rotational bias.  

The CC-ELMs use a fully complex valued activation function 

in the hidden layer of the type of hyperbolic secant function 

[14]. The responses of the sech activation are given as in (3): 

hj = sech(ujT(zt – vj)); j=1,…., K    (3) 

 where uj and vj  Cn are complex-valued scaling factor and 

complex-valued center of the j-th hidden neuron respectively. 

The output layer neurons employ a linear activation function 

in the CELM. The output    of the CELM network with K 

hidden neurons is: 

 

             
 
      (4) 

 

where wnj are the weights connecting the n-th output neuron 

with the j-th hidden neuron. Equation (4) can also be written 

as in Equation (5). 

         (5) 

where W is the matrix of all output weights connecting the 

hidden and output layer neurons. H is the response matrix of 

the hidden layer and is given as in Equation (6). 

H(V,U,Z) = 

 

        
          
  

         
         

    
        

          
  
         

         

      (6) 

 

Here H is a K × N matrix, where K is the number of hidden 

neurons and N is the number of samples to be trained. The 

parameters (uj,vj) chosen randomly and The output weights 

W are calculated by the least squares method according to 

Equation (7): 

W = YH† ,      (7) 

Where H† is the Moore-Penrose pseudo-inverse of the hidden 

layer output matrix and Y is the complex-valued coded class 

label. 

From the outputs, the class labels are estimated as below: 

                             (8) 

3.  PROPOSED WORK: CC-ELM 

BASED ENSEMBLE METHODS 

(BAGGING.C1) 
In this paper it has been tried to significantly improve the 

classification performance of CC-ELM by incorporating 

variants of bagging using the random parameter of circular 

transformation function. Major focus has been rendered to the 

method by which datasets are chosen for training by each base 

learner in the ensemble. The description of the variants of 

bagging namely: ‘Bagging.C1’ is given below: 

V-CELM.C1 using Bagging.C1: To bring diversity in order to 

implement an ensemble (i) data can be diverse and the 

classifier constant, (ii) data is kept constant and classifier 

varied or (iii) bring both data and classifier diversity together. 

In the algorithm Bagging.C1 we follow the latter method, i.e., 

to incorporate both data and classifier diversity. In each 

iteration of Bagging. C1, a new dataset is provided to the base 
classifier. 
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Table 1: Bagging.C1 Algorithm 

The original dataset ODs which is in real-valued format is 

transformed to complex-valued dataset by the transformation 

function: zi = sin (axi + bxi + α) where a and b (0 < a, b ≤ 1) 

is real-valued non-zero transformation constant and        
      is the non-zero translational/rotational bias. The values 

of a, b and    are randomly chosen for each classifier in the 

ensemble thereby generating random samples of the original 

dataset. The classifier specifications itself are changed for 

each classifier in the ensemble by varying the parameters u 

and v of the CC-ELM classifier. We use random values of a, b 

and   for changing the dataset for each classifier. The impact 

of transformation function on the classification ability of 

complex valued neural networks has been stressed on [14], 

[15] and [16]. Thus creating diverse datasets from the original 

dataset by randomizing the parameters a, b and   are 

supposed to bring good performance results in bagging. 

Subsequent to training, in the testing phase when a new 

instance is provided to the ensemble, the class prediction is 

performed by a majority voting of the class predictions by the 

individual CC-ELM classifiers in the ensemble. We generate 

an ensemble based classifier termed as V-CELM.C1 which 

implements Bagging.C1 algorithm. The entire algorithm is 

presented in detail in Table no. 1. 

V-CELM.C2: In V-CELM.C2, instead of providing random 

samples of the original dataset OD for each classifier in the 

ensemble, we produce only one sample and use the same 

across all the CC-ELM classifiers. The diversity is only in 

terms of the parameters u and v of the CC-ELM classifier in 

each iteration of the ensemble. The remaining steps are the 

same as for Bagging.C1.  

4. EXPERIMENTAL STUDY AND 

RESULT ANALYSIS 
To evaluate the efficacy of the proposed ensemble techniques 

Four experiments has conducted in this study and for the 

proposed method the simulation is done on The MATLAB 

7.10.0 (R2010a) running on Core 2 DUO PC. The 

experiments have used  a total 14 datasets obtained from the 

UCI repository [23] of which 8 and 6 are multi-class datasets 

and binary class datasets respectively. The information 

regarding the datasets is provided in Table No.2. 

Table 2: Datasets used and their description 

Here the datasets of various sizes have been used across our 

experimental study. The number of training instances and 

testing instances used for each dataset has been mentioned in 

the Table. We use twenty base CC-ELM classifiers 

throughout our experiments (J=20). The number of hidden 

nodes generated for each CC-ELM classifier in the ensemble 

is as per given in [16]. In order to Prove the efficiency of the 

ensemble methods over the single classifier models; two 

complex-valued ensemble based classifiers V-CELM.C1, V-

CELM.C2 are compared with the CC-ELM classifier in four 

major aspects: 

Algorithm 1: Bagging.C1 

Input: ODS: Original training set = {(xi , ci)| xi  Rn, ci  

CV, i = 1,2,…,N}; J: Number of iterations; n: size of ODS 

and Bootstrap, CC-ELM: Base classifier 

Output: final_CLP : Final class prediction using majority 

voting 

Algorithm 

1. for j = 1 to J 

2. Lj = RandomTransformationSample (ODS) 

3. Generate a new CC-ELMj model by randomly 

choosing U and V 

4. Calculate the class prediction, CLPj for CC-ELMj 

CLPj = output (CC-ELMj (Lj)) 

5. End 

6. final_CLP = maxj=1,…,J (CLP) 

function RandomTransformationSample(ODS)  

1. Select random numbers a [0,1] ,b  [0,1],α  

[0,2] 

2. for i = 1,…, N 

3. zi = sin (axi + bxi + α) 

4. ccr
i
 =  

         
                 

 
       r=1,2,….,C 

5. end   

6. return L= {(zi,cci)|zi  Cn,cci  CC, 

i=1,2,…,N}, CC is the complex coded class label 

matrix 

Data-set Categor

y 

Instance

s 

Feature

s 

Classe

s 

Training 

Instance

s 

Testing 

Instance

s 

Pen digits (DS1) Multi 10992 16 10 7494 3498 

Optical 

digits(DS2) 

Multi 5620 64 10 3823 1797 

Waveform(DS3) Multi 5000 40 3 3000 2000 

Image(DS4) Multi 2310 19 7 210 2100 

Vehicle (DS5) Multi 846 18 4 424 422 

Balance(DS6) Multi 625 4 3 400 225 

Ecoli(DS7) Multi 336 7 8 168 168 

Wine(DS8) Multi 178 13 3 100 78 

Spambase(DS9) Binary 4601 57 2 2300 2301 

Pima(DS10) Binary 768 8 2 400 368 

 

Cancer(DS11) Binary 683 9 2 300 383 

Cancer1(DS12) Binary 569 30 2 300 269 

Ionosphere(DS1

3) 

Binary 351 34 2 100 251 

Heart(DS14) Binary 270 13 2 100 170 
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1. The impact of building ensemble methods over a 

single neural network based classifier 

2. Average testing accuracy 

3. The impact of stability in the performance of an 

ensemble classifier over a single classifier model.  

4. Statistical test namely Wilicoxon test to ensure the 

performance overhand of the ensemble techniques. 

We mention each experiment, their respective results and a 

detailed study of the proposed ensemble methods based on 

these results. 

4.1 The impact of building CC-ELM 

base classifier over the proposed ensemble 

methods 
To enhance the performance of CC-ELM  Bagging.C1 has 

been used to generate the base classifier with diversity. In this 

section we study the power of ensemble method of CC-ELM 

base classifier with data set Waveform (DS3). 

 

Fig.1: The impact of construction of CC-ELM sub 

classifier on Ensemble Waveform data set (DS3) 

The experiment is performed by varying the hidden nodes of 

CC-ELM from 10 to 50 and the results are shown for the 

testing accuracy in Fig. 1.  The CC-ELM is evaluated our 

proposed algorithms and From the results it is vivid that the 

testing accuracy of the ensemble methods are far better than 

that of a single CC-ELM model. It implies that while building 

an ensemble rather than using a single model better prediction 

capability can be achieved with less number of computational 

resources.  

In Fig. 2 performance of dataset Spambase (DS9) is evaluated 

with varying no. of training numbers, to analyze the 

performance fluctuation due to the random parameter of 

circular transformation function. The result clearly depicts 

that performance vary too much when we use a single model. 

 

Fig.2: The Experimental result in average test accuracy 

with varying number of Training  numbers of Spambase 

data set(DS9) 

The result also describes that randomization of circular 

transformation function a, b and α creates more variation than 

the random parameter between input and hidden layer u and v. 

When ensemble of base classifier has used both performance 

and stability increases highly. 

Table no. 3: Average test accuracy results of CC-ELM 

and ensemble methods for multi-class datasets 

 

 

 

 

Data set 

Hidden 

node 

C
C

-E
L

M
 

V
-C

E
L

M
.C

1
 

V
-C

E
L

M
.C

2
 

balance 10 81.751 83.831 84.186 

ecoli 10 83.726 86.678 84.678 

image  60 90.843 93.934 92.495 

vehicle 85 77.611 79.099 77.933 

waveform 35 83.16 87.175 85.315 

wine 10 89.769 92.81 92.20 

optical 60 90.535 92.099 91.109 

pen 50 79.081 85.975 84.033 
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The performance results for other datasets mentioned in Table 

No. 5 match with those that we have provided for the 

Waveform multi-class dataset. The results are not displayed 

due to the limitation in space to present them.   

Table no. 4: Average test accuracy results of CC-ELM and 

ensemble methods for binary class datasets 

 

4.2 The impact of ensemble methods on the 

testing accuracy of base classifier CC-ELM 
In this section, we intend to analyze the testing accuracy of 

the proposed ensemble methods over the original CC-ELM 

classifier. For this we have chosen to show the results of 

testing accuracy over the 14 datasets including multiclass and 

binary class datasets already described in Table no. 2. For 

each dataset, the experiment was run for 50 times and the 

average of the testing accuracy over the fifty results was 

retrieved and is presented in Table no. 3 for multi-class  

datasets and Table no. 4 for binary class datasets.  

The tables clearly represent the efficacy of our methods. In 

almost all the datasets, the test accuracy of the ensemble 

methods are quite better than that of the basic CC-ELM 

classifier as a single model. Since we have used datasets of 

various sizes across our experiment, our results clearly 

indicate that the ensemble methods we proposed can 

outperform the single CC-ELM model in almost all the cases 

whether the data range be small, medium and large. We had 

intended to check the importance of using random values of a, 

b and in producing random datasets for  V-CELM.C1. The 

results show that this technique is effective. And our Random 

Transformation Sample() method is indeed efficient. The 

diversity in terms of classifier can bring significant changes to 

the classification ability for an ensemble.  

4.3 Testing the stability of the ensemble 

methods over CC-ELM base classifier 

In this experiment, we test the stability of the ensemble 

methods over various network size and data size.  To 

demonstrate that our proposed methods have better stability 

over changing conditions of network and data ranges, we 

conduct experiments varying the datasets of large, medium 

and small sizes over different network sizes of 30, 40 and 50 

hidden nodes. 

The datasets chosen are Pen digits (large), waveform 

(medium) and heart (small). The experiment is run on each 

dataset for CC-ELM and two ensemble methods ten times 

each. The results are presented in Table no. 5. The 

observations from the table are briefly summarized below: 

 Table 5: stability test by varying the hidden node 

 

1. As the number of hidden nodes increases, the testing 

accuracy of all the classifiers increases respectively in 

the case of any dataset irrespective of its size. The entire 

proposed           ensemble methods can be seen to have 

higher testing accuracies than that of the original CC-

ELM method. 

2. It can be seen that all the ensemble methods presented 

here are better in stability for larger datasets when 

compared to the original-ELM which presents more 

fluctuations.   The bagging methods which use stochastic 

replacement of the dataset for each base classifier 

provides more stable results for large data instances.  

3. The medium size spam dataset exhibit far better results 

for the ensemble methods when compared to both large 

and small datasets. This is however obvious as Spambase 

as we have chosen is a binary class dataset and the 

performance overhand are quite reasonable.  .   

4.4 Statistical test: Wilcoxon test to verify 

the performance overhand of the proposed 

methods 
Various statistical methods are used in literature to prove the 

efficiency of the neural network classifiers like Wilcoxon test, 

paired t-test etc. We use the Wilcoxon test in our experiments 

to analyze, evaluate and conclude that our methods are 

undeniably better than the original CC-ELM classifier. The 

experiments are conducted over 6 datasets where for each 

dataset the CC-ELM and one of the proposed methods are run 

Data set 

Hidden 

node 

C
C

-ELM
 

V
-C

E
L

M
.C

1 

V
-C

E
L

M
.C

2 

CANCER 15 97.68

6 

98.791 97.702 

CANCER1 15 86.46

0 

88.208 87.096 

HEART 15 85.36

4 

86.988 85.658 

IONO 15 81.74

5 

83.932 82.924 

PIMA 20 78.38

5 

78.548 78.09 

SPAMBASE 50 86.64

4 

89.175 88.381 

 CC-ELM V-CELM.C1 V-CELM.C2 

Data set h_3

0 

h_4

0 

h_5

0 

h_3

0 

h_4

0 

h_5

0 

h_3

0 

h_4

0 

h_5

0 

          
Pen 

digit 

72.

8 

77.

4 

79.

0 

80.

6 

83.

1 

83.

6 

80.

5 

83.

0 

83.

5 

Spam 

base 

83.

5 

85.

1 

86.

2 

86.

0 

86.

8 

87.

1 

86.

6 

87.

1 

87.

3 

Vehicle 76.

1 

78.

0 

78.

4 

77.

3 

78.

6 

79.

3 

78.

5 

79.

0 

80.

2 
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for 10, 30 and 50 times. We thus generate six statistics for 

each ensemble method to ensure its efficacy over the CC-

ELM. We denote the dataset for the original CC-ELM and our 

proposed method as Oi and Pi where i  {1, 2, 3}. When i = 1, 

O1 and P1 are vectors of size 10, when i=2 O2 and P2 are 

vectors of size 30 and when i=3 O1 and P2 are size 50 vectors.  

Table 6: CC-ELM and V-CELM.C1 rank test 

For conducting the Wilcoxon test we use the MATLAB 

ranksum() function. The ranksum was calculated three times 

for each dataset with each proposed method against the 

original CC-ELM as ranksum(O1,P1), ranksum(O2,P2) and 

ranksum(O3,P3). The Table no. 6 and Table no. 7, shows the p 

values and h values of Wilcoxon test tested between CC-ELM 

against V-CELM.C1 and  V-CELM.C2. According to the 

Wilcoxon test when the value of p is too small, it shadows a 

doubt on the validity of the null hypothesis. Therefore the 

values of p and h clearly indicate the significant overhand of 

our proposed methods over the original CC-ELM. Thus we 

have proved statistically that building an ensemble using CC-

ELM can bring noteworthy improvement in the classification 

ability of the complex-valued neural network classifier. 

5. CONCLUSION 
In this paper, to reduce the performance variation and to 

enhance the stability, an ensemble based method on CC-ELM 

base classifier has implemented which also improves the 

generalization ability and class prediction capability of the 

fast learning CC-ELM classifier. For introducing the 

ensemble methods into a complex domain a popular ensemble 

techniques namely Bagging has chosen and made 

improvements so that it may be used to solve real-valued 

classification problems using CC-ELM. The newly proposed 

algorithms are tested for their classification ability against a 

single CC-ELM classifier to show the better performance of 

an ensemble. We found that the classifier based on the 

algorithm Bagging.C1 does due to the diversity we brought in 

the ensemble by randomly changing the values of a, b and α in 

the dataset. The experimental study further demonstrates that 

our approach is strong and robust.   

 

 

 

 

 

Table 7: CC-ELM and V-CELM.C2 rank test 
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