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ABSTRACT 

Multi-temporal satellite images exhibit high amount of 

correlation in spatial, spectral and temporal domain. This high 

redundancies provide a high potential and a good opportunity 

to explore the entropy as a funtion of natural diversity. From 

the information-theory point of view, the potential gain from 

exploiting the temporal domain correlation can be estimated 

by quantifying the entropy relationship between two 

temporally dependent images. As conditioning reduces 

uncertainty, knowing one of the variables reduces the average 

uncertainty about the others in two dependent events. So the 

multi-temporal images is best distributed sequentially where 

current images can be forecasted from previous reference 

image. Thus, multiple dates’ remote sensed images treated as 

a sequential data set varies in relative distributions of the 

brightness values depending on the reflectivity of various 

features. This paper mainly reflects the fact of how various 

geographical features influence the temporal dependency. The 

initial issue treated by multi-temporal image transmission lay 

in the areas of data reduction that in turn depend on the 

quantities such as entropy and mutual information, which are 

functions of the probability distributions that underlie the 

process of communication. This paper mainly exploits the 

energy deviation in temporal characteristics for diverse 

geographical features. Mainly features for urban, forestry, 

desert and coastal areas have been investigated. The key 

measure of data compaction entropy will be exploited in this 

case to better understand the features dependency. 
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1. INTRODUCTION 
Significant temporal correlation of multi-temporal remote 

sensed images presents an opportunity to use historical images 

to analyse the current image. Homogeneous ground features 

show similar reflectivity values within the same band that, 

ultimately, cause the pixels to have similar intensity values to 

their neighbours [1] [2]. Rather than this spatial correlation, 

image data generated by multispectral or hyperspectral 

sensors contain a high degree of correlation among the 

spectral bands as well. Absorption of the radiation in a given 

spectral band by an object causes that object to appear dark 

while high reflection causes it to be bright in the same spectral 

band in an image; this static nature of the dissimilarities 

between different spectral bands makes satellite images very 

redundant [2]. Temporal correlation between frames has been 

widely exploited in video compression between the frames 

[3], but there are very few studies in multi-temporal remote 

sensing. Most applications in remote sensing require 

quantification of the functional relationship between the 

images of a given scene that are captured with different 

sensors at different times [4][5][6][7][8]. In most cases, the 

relationship between sensors’ radiances recorded at two 

different times from regions of constant reflectance has been 

approximated by linear functions. If this is not possible, 

approximate or bulk correction for the scattering and 

absorbing effects of the atmosphere, instead of detailed 

correction, is carried out [2]. In [9], the reference image used 

for temporal prediction is assumed to be linearly related to the 

current image of the same scene unless there are significant 

land cover changes. Temporal redundancy in remote sensed 

images is explored and analysed in this paper and it is more 

complicated due to the much longer intervals between the data 

sets, and stronger noise-imaging environment. The presence 

of atmosphere can cause obstructions to satellite remote 

sensing by absorbing and scattering the electromagnetic 

energy. Therefore, transmittance of the atmosphere is an 

important factor to consider in a sensing system design, by 

often using the frequency range in which the transmittance of 

the atmosphere is high1. Also the weather conditions such as 

the levels of the haze, dust or mist present in the environment, 

introduce radiometric distortion. Since they change frequently, 

multi-temporal data have low consistency over time. So, 

multiple dates’ remote sensed images treated as a sequential 

data set varies in relative distributions of the brightness values 

depending on the seasonal effect which is solely dependent 

upon the solar radiation, illumination and reflectivity effects 

of the object and the conditions of the atmosphere. However, 

the various natural aspects like forest, urban area, desert and 

water region varies with time for different reflectivity and for 

that the temporal dependency also shows deviation. The 

temporal features need to be specially considered to design 

any satellite image distribution system [10]. Many 

applications collect images over a regular period in order to 

identify reliable and comprehensive temporal information. 

These images can be transmitted sequentially by exploiting 

their temporal features. This paper is based on analysing the 

change of uncertainty factors that usually responsible for 

temporal variation. The deviation in temporal uncertainty for 

diverse geographical features will be explored. Images taken 

from urban, forestry, desert and coastal areas have been 

investigated in this purpose. 

                                                           
1 https://www.e-education.psu.edu/natureofgeoinfo/ 
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2. TEMPORAL UNCERTAINTY  
From the information-theory point of view, the potential gain 

from exploiting the temporal domain correlation can be 

estimated by quantifying the entropy relationship between two 

temporally dependent images (Fig. 1). An efficient data 

distribution system ensures that the reduced entropy is less 

than the original entropy. As the entropy is the measurement 

of the number of bits required to transmit data, reducing the 

entropy of the transmitted data ensures savings in both storage 

and bandwidth. According to the information theory, 

“conditioning reduces uncertainty”; in other words, knowing 

one of the variables reduces the average uncertainty about the 

others in two dependent events. If X  and Y  are temporally 

dependent images, Y conveys as much information about X  

as X  conveys about Y . Therefore, conditioning provides 

additional information about the outcome of Y if the outcome 

of X is known. Now, if X  is the previous image of the 

sequence and Y  the current one, conditioning Y with X  will 

(usually) produce a bit stream with a smaller bit rate 

compared with the original bit rate [11]. However, one of the 

concerns regarding the de-correlation process of a 

transmission system that could reduce its overall temporal 

gain is how efficiently is Y  modelled using X ? Sometimes, a 

poor mathematical model can lead to a bit rate equal to the 

original bit rate of Y . The next concern is how much 

overhead is required to send the model parameters in order to 

reconstruct the image at the receiver? Sometimes, modelling 

can greatly reduce the transmitted data but significantly 

increase the overhead costs which eventually decreases the 

total gain.  

 

Fig. 1 Temporal uncertainty reduction for image X and Y. 

Another concern is that how co-dependent are Y and X ? This 

reflects the fact that, if the geographical diversity between the 

images is huge, conditioning will not greatly reduce the 

uncertainty. Most multispectral data contain redundant 

information caused by the correlations among pixels and 

spectral bands. Therefore, to avoid sending repeated 

information, and to better utilise the transmission bandwidth, 

data reduction is required and possible. Data reduction for 

distribution is achieved through a process of redundancy 

removal or de-correlation. Statistical or transformation 

modeling is used to achieve the lowest possible entropy of the 

data which is then ready to be coded or transmitted. Basically, 

data values/symbols with high probabilities are coded with 

fewer bits than those with low probabilities.  

3. UNCERTAINTY MEASUREMENT 
The entropy is a measure of the average uncertainty in the 

random variable. The key measure of energy or variance 

outcome is known as entropy, since it indicates the lowest 

possible average number of bits needed for the storage and 

transmission of the image, after an appropriate coding 

technique, such as Huffman coding, is applied. Entropy is the 

minimum descriptive complexity of a random variable, and 

mutual information is the communication rate in the presence 

of noise. Let xi  be a data set over a space, X , so xi Î {X}  

where i=1 to n. The entropy of xi is the function of its 

distribution. If P(.)  is the probability mass function defined 

over X , the entropy of X is 

H (X) = p(xi )log2

1

p(xi )i=1

n

å                                                        (1)                                                                                  

It is dependent upon the probability of the distribution of the 

pixel values and not on the actual values. Entropy is sensitive 

to the data range and, the number of symbols and categories, 

but not to the actual values.  

Now, the conditional entropy H(Y | X) , which is the entropy of 

a random variable conditional on the knowledge of another 

random variable, can be estimated from multi-temporal 

prediction [1]. After a good prediction model is applied, most 

image prediction errors can be very closely approximated by 

the symmetric exponential distribution. The entropy of this 

kind of distribution is a monotonic function of its variance: 

The smaller the variance, the smaller the entropy [12]. 

Minimisation of the SSE (sum squared error) for regression 

analysis means minimising the variance of the prediction 

error. The reduction in uncertainty due to another random 

variable is called the mutual information. For two random 

variables X and Y this reduction is the mutual information 

MI(X :Y ) =H(X)-H(Y | X)                                                         (2)
   

                                                       

 

MI(X :Y ) =MI(Y :X) = p(x, y)log2

p(y, x)

p(y)p(x)
xÎX

å
yÎY

å
                         (3)

 

4. GEOGRAPHICAL DIVERSITY OF 

MULTI-TEMPORAL IMAGES 
Sensors installed in the satellite are developing day by day 

and the resolution of taking the images have gained a 

dominant level. Spatial resolution refers to the size 

corresponding to the ground area covered by a pixel and 15-

80 metres, such as that of the Landsat ETM+ (enhanced 

thematic mapper) considered medium resolution. This 

multispectral image collects data in eight bands within the 

spectral range of 0.45 µm to 2.35 µm, which include one 

panchromatic and one thermal bands of lower resolution. 

Among them, Band1 (blue) is used for atmospheric and deep-

water imaging; Band2 (green) is used for imaging of 

vegetation and deep water structures; Band3 (red) is used for 

imaging of man-made objects, soil, and vegetation; band4 

(near IR) is used for such things as vegetation and biomass 

surveys; Band5 (short wave IR) is used for such things as to 

sense vegetation moisture and snow/cloud reflectance 

differences and Band7 (short wave IR) is used for such things 

as determining vegetation moisture and depiction of minerals 

(based on hydroxyl ions) for geological mapping. 

In the proposed experiment, three pair of Landsat ETM+ 

images of the Australia were taken where each pair are one 

year apart (Fig. 2, Fig. 3 and Fig.4). One is taken in the year 

2000 and the other is taken in the year 2001. The three pair 

was specially chosen considering distinct features of urban, 

coastal and forest/desert areas. At first the distinguish nature 

of the three different pair of Landsat images has been 

illustrated with their 2D and 3D scatter plot. As can be seen 

from Fig. 5, Fig. 6 and Fig. 7 the urban, coastal and forest or 

desert areas respectively. It can be apparently seen that the 

H(Y|X) 
 

H(X|Y) 
 

H(X) 
 

H(Y) 
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forest/desert-featured region has more concentrative data 

compare to urban and coastal areas. 

   

                      (a)                                             (b) 

Fig. 2 Landsat ETM+ images for urban area taken in the 

year (a) 2000 and (b) 2001. 

  

                      (a)                                                (b) 

Fig. 3 Landsat ETM+ images for coastal area taken in the 

year (a) 2000 and (b) 2001. 

    

                         (a)                                            (b) 

Fig. 4 Landsat ETM+ images for forest and desert area 

taken in the year (a) 2000 and (b) 2001. 

 

Fig. 5 2D and 3D scatter plot for urban region. 

   

Fig. 6 2D and 3D scatter plot for coastal region. 

   

Fig. 7 2D and 3D scatter plot for desert/forest region. 

5. RESULTS AND DISCUSSION 
Table 1 and Table 2 have depicted the original entropy of the 

band wise images for the year 2000 and 2001 respectively. 

Now the main observation is that the H(Y ) is less informative 

than H(X). It can be justified by the fact that the pixel values 

of the images in the year 2001 have narrow range. It is due to 

the fact that the imaging conditions of the two images are 

completely different as far as environmental or weather 

factors are concerned. 

Table 1. Original Entropy for the Year 2000 (H(X)) 

Bands Coastal Forest/Desert Urban 

Band1 4.7848     4.9000     5.4360     

Band2 4.7957     5.2937     5.7103     

Band3 5.0806     5.9286     6.2642     

Band4 5.6279     5.1332     5.6112     

Band5 6.1878     6.9435     6.7542     

Band7 5.5793 6.4436 6.3253 

 

Table 2. Original Entropy for the Year 2001 (H(Y)) 

Bands Coastal Forest/Desert Urban 

Band1 3.8633 4.0394 4.6336     

Band2 4.3307 4.3746     4.9165     

Band3 4.7385     5.0302     5.4671     

Band4 5.4479     5.0115     5.5835     

Band5 5.3779     6.2322 6.1553     

Band7 4.8722         5.6134 5.6719 

Now the following figures shows the variation in the defined 

temporal measures for geographical feature difference. First 

of all H(X)-H(Y ) is shown in Fig. 8. It can be seen that each 

band has some environmental effect to reduce the entropy 

except band4. It can be easily guessed that band4 which 

captures the property of vegetation doesn’t being influenced 

by the change of imaging condition. It is invariant to the 

change for brightness value. Another important thing about 

the coastal region is that it has diverse features and also 

changes very frequently. That is the main reason that it shows 

some irregularities in entropy reduction compare to other two 

regions. 
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Fig. 8 Entropy difference between the two images. 

Now the conditional entropy H(Y | X) is given in Fig. 9. This 

is the entropy of one image having the knowledge of other. 

This has been extensively studied by applying a linear 

prediction algorithm to predict the recent image from 

reference image and then residual entropy has been calculated 

[13]. The plot easily depicts the fact that the urban areas have 

the most potentiality to remove the temporal correlation by 

applying prediction algorithm. Because the features in the 

urban areas like concrete, bare fields, roads, grass and trees 

are temporally very much co-dependent. 

Fig. 9 Conditional entropy of the images. 

Fig. 10 Uncertainty reduction of the image bands. 

Finally the reduction of uncertainty for conditioning has been 

given in Fig. 10. Every case of feature has the potentiality to 

reduce the entropy, ultimately the transmitted data. In some 

bands urban areas are more compressible than the other two 

feature of region. 

 

6. CONCLUSSION 
The general idea is that, rather than a complete image having 

to be transmitted each time (even with compression), the most 

recent images can be predicted from those that have already 

been received. After a good prediction model is applied, most 

image prediction errors can be very closely approximated by 

the symmetric exponential distribution of the entropy 

function. The entropy of this kind of distribution is a 

monotonic function of its variance: The smaller the variance, 

the smaller the entropy. As can be implied from the taken 

images that there is not much real changed areas over the 

time. So the correlation remains unchanged as well as the total 

variance. Consequently it can be said that the correlation is 

invariance to the features diversity. So all images have equal 

opportunity for entropy reduction procedure by conditioning. 

The multi-temporal image conditioning needs to be further 

exploited in this respect for efficient transmission of satellite 

images. Future extension of this work will explore the 

comparative analysis of temporal image conditioning. 
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