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ABSTRACT 

The effects variable viscosity and thermal conductivity on a 

steady free convective boundary layer flow of a dusty fluid 

past a vertical permeable stretching surface with viscous 

dissipation and thermal radiation is studied. The system of partial 

differential equations together with the prescribed boundary 

conditions governing the equations of motion are reduced to a 

system of ordinary differential equations using similarity 

transformations. The resultant boundary value problems are 

then solved numerically using shooting technique based on 

fourth order Runge-Kutta method. The effects of physical 

parameters viz., viscosity parameter, thermal conductivity 

parameter, fluid-particle interaction parameter, local Grashof 

number, suction parameter, Prandtl number, radiation parameter 

and Eckert number on the flow and heat transfer are computed 

and presented graphically. The temperature gradient which 

gives the rate of heat transfer at the surface and skin friction 

coefficient are also obtained and present in Tables. The effects 

of all the parameters are quite significant.  
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1. INTRODUCTION 
Due to  application in industry and in technology the study of  

flow and heat transfer over a stretching sheet has  drawn the  

interest of many researchers. It takes very important role in  

industries such as chemical industry, power and cooling 

industry for drying, chemical vapour deposition on surfaces 

and cooling of nuclear reactors etc. Such processes occur 

when the effect of buoyancy forces in free convection 

becomes significant. The problem of free convection under the 

influence of magnetic field has attracted numerous researchers 

in view of its applications in geophysics and astrophysics. Many 

problems of flow and  convective heat transfer over a stretching 

sheet and stretching surfaces have been studied for both 

Newtonian and non-Newtonian fluids with  applied electric and 

magnetic fields, under different thermal boundary conditions. 

Crane [1]  first studied  the problem of steady two-dimensional 

boundary layer flow of an incompressible and viscous fluid 

caused by a stretching sheet. Grubka and Bobba [2] studied the 

heat transfer effects by considering the power-law variation of 

surface temperature.  

 

The flow and heat transfer over a vertical stretching sheet 

under various physical situations have been reported by many 

researchers like Daskalakis [3], Chen [4], Chamkha [5], Ishak 

et al. [6], Saleh et al. [7], Gireesha et al. [8]. Kumari et al. [9] 

have studied the unsteady free convection flow over a 

continuous moving vertical surface in an ambient fluid by 

taking two different heating processes like constant surface 

temperature (CST) and constant surface heat flux (CHF). 

Chakrabarti [10] studied the boundary layer flow of a dusty 

gas. Datta and Mishra [11] have investigated boundary layer 

flow of a dusty fluid over a semi-infinite flat plate. Several  

investigators such as Agranat [12], Vajravelu et al. [13], 

Evgeny et al. [14], XIE Ming-liang et al. [15] and Palani et al. 

[16] studied flow problems of dusty fluids. Gireesha et al. [17] 

obtained the numerical solution for boundary layer flow and 

heat transfer of a dusty fluid over a stretching sheet with non-

uniform heat source/sink. The above investigations deal with 

the flow and heat transfer induced by a horizontal stretching 

sheet, but there arise some situations where the stretching sheet 

moves vertically in a cooling liquid. Under such circumstances 

the fluid flow and the heat transfer characteristics are 

determined by two mechanisms, namely motion of the 

stretching sheet and the buoyant force. Also, in the above 

studies, the radiation effect was ignored. But, in the systems 

operating at high temperatures, the thermal radiation heat 

transfer becomes very important and its effects cannot be 

neglected. Thermal radiation t plays a significant role in 

controlling heat transfer processes in polymer industry.  

Chen [18] analyzed MHD mixed convection of a power law 

fluid past a stretching surface in the presence of thermal 

radiation and internal heat generation/absorption. 

Mukhopadhyay and Layek [19] studied free convective flow 

and radiative heat transfer of a viscous incompressible fluid 

with variable viscosity over a stretching porous vertical plate.  

Ramesh et al.[20] studied the effects of thermal radiation on a 

steady boundary layer flow and heat transfer of an 

incompressible viscous dusty fluid over a permeable vertical 

stretching surface.  

In all the earlier investigations viscosity and thermal 

conductivity were assumed as constant. But viscosity and 

thermal conductivity varies with temperature. In this paper an 

attempt has been made to study numerically the effects of 

viscosity and thermal conductivity on flow and heat transfer of 

an incompressible viscous dusty fluid over a permeable vertical 

stretching surface with thermal radiation and viscous 

dissipation. The resulting non-linear boundary value problem in 
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ordinary differential equations is solved by shooting technique 

based on fourth order Runge-Kutta method. Velocity and 

temperature distributions are presented in graphs for various 

flow characteristic parameters. The coefficient of skin friction 

and temperature gradient at the surface which is the rate of  heat 

transfer are presented in tables. The effects of all the flow 

parameters are significant.  

2. FLOW ANALYSIS OF THE          

      PROBLEM 
We consider a steady two dimensional laminar boundary layer 

flow of an incompressible viscous dusty fluid over a vertical 

stretching sheet. The flow is generated by the action of two 

equal and opposite forces along the xaxis and yaxis being  

normal to the flow. The sheet being stretched with a velocity 

Uw(x) along the xaxis, keeping the origin fixed in the fluid of 

ambient temperature T.  

The dust particles are assumed to be spherical in shape and 

uniform in size and number density of the dust particle is 

taken as a constant throughout the flow. With these 

assumptions and usual boundary layer approximations, and 

following Vajravelu and  Nayfeh [6] we get the equations 

motions as : 
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where (u, v) and (up, vp) are the velocity components of the 

fluid and dust particle phases along x  and y directions 

respectively. µ, , p and N are the co-efficient of viscosity of the fluid, 

density of the fluid, density of the particle phase, number density of the 

particle phase respectively. K is the stokes resistance (drag co-

efficient). T and T are the fluid temperature with in the 

boundary layer and in the free stream respectively. g is the 

acceleration due to gravity,  is the volumetric coefficient of 

thermal expansion, m is the mass of the dust particle 

respectively. In deriving these equations, the drag force is 

considered for the interaction between the fluid and particle 

phases.  

The dusty boundary layer heat transport equations with 

radiation are:  
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where T and Tp is the temperature of the fluid and 

temperature of the dust particle, cp and cm are the specific heat 

of fluid and dust particles, 
T
 is the thermal equilibrium time and is the 

time required by the dust cloud to adjust its temperature to the fluid, 
v
 is 

the relaxation time of the of dust particle i.e., the time required by a dust 

particle to adjust its velocity relative to the fluid, k is the thermal 

conductivity.  

Using the Rosseland approximation for radiation [4], radiation 

heat flux is simplified as  

qr  
   

                    …(8) 

        where  and k are the Stefan-Boltzman constant and the mean 

absorption co-efficient respectively. The  temperature differences 

within the flow is such that the term T 
4
 may be expressed as a 

linear function of the temperature. Expanding T4 in a Taylor 

series about T and neglecting the higher order terms beyond the first 

degree in (T T
) we get  

T 4  4            … (9) 

Substituting equations (8) and (9) in (6) we get,    
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The boundary conditions for the flow problem are  given by  

 

u = Uw (x), v =Vw(x) , T = Tω = T + A    at  y=0         

                                                                                  …(11 

  u 0, up 0, vp v, p  ,  T T ,  Tp T   

 as  y 

    

where Uw(x) = cx is the stretching sheet velocity, c > 0 is the 

stretching rate,    is the density ratio,  Tw and T  denote the 

temperature at the wall and at large distance from the wall respectively,  A is 

a positive  constant and l = is a characteristic length. 

               Following Lai and Kulacki [21] we assume that the viscosity 

and thermal conductivity are inverse linear functions of 

temperature, i.e.  
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           Where                are constants and their values 

depend on the reference state and thermal properties 

of the fluid i.e.   and  k. In general     
                           for gases. 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 103 – No.11, October 2014 

41 

Let us introduce the following similarity transformations,  

u = cx f′(), v =  f (),  =  

up = cx F (), vp =  G(), r = H()                           …  (13)  

() =  , p() =      …(14)             

Where  

Using (13) and (14) in (2) to (12), we obtain the following non-

linear ordinary differential equations  
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G F′ + F2 + [F f′] = 0                                 … (16) 

 

G G′ + [f + G] = 0                                                                  … (17 ) 

      

H F  + H G′ + G H′ = 0                                                                …  (18) 
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  2Fp + G′p +  [ p  ] = 0,                   … (20) 

      

where a primce denotes differentiation with respect to  and l = 

,  =  is the relaxation time of the particle phase, β =  is 

the fluid particle interaction parameter, Gr =  is the 

local Grashof number , r =  is the relative density, Pr =  is 

the Prandtl number, Ec =  is the Eckert number, N r =  is the 

Radiation parameter, 

    
     

     
                                  

     

     
  

is the thermal conductivity parameter. 

The  boundary conditions (11) and (12) become 

  f = f
0 
,  f  ′ = 1 ,    at  = 0,                     … (21) 

   f ´ = 0, F = 0, G = f,  H = ,      as                                  

                                                                                                               … (22)      

where  f0 = is the suction parameter.  

The physical quantities of interest in this problem are the skin 

–friction coefficient    and Nusselt number    which indicate 

physically wall shear stress and rate of heat transfer 

respectively. The wall shear stress     is given by 
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 The skin –friction coefficient    can be defined as  
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The heat transfer from the plate is given by 

       
  

  
 
   

    
    

    
 
        

  
                      

The Nusselt number is given by                                                                                         
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3. RESULTS AND DISCUSSION  
The equations (15) to (20) together with the boundary 

conditions (21) and (22) are solved numerically using fourth 

order Runge-Kutta shooting method. Numerical values are 

obtained for different values of parameters as shown in graphs 

and tables for  l=.1,  β=.51,  ω=0.1, Pr=1.0,  Nr=3,  Ec=.1,  

fo=.30,  Gr=.5,  K1=.1,    =-10 and       . 

 

Fig- 1: Velocity profiles for different values of . 

 

Fig- 2: Temperature  profiles for different values of . 

Fig- 1 and Fig- 2, represent the graphs of velocity and 

temperature distribution respectively  for various values of fluid 

particle interaction parameter (). It is  observed from  figures that if  

increases there is slight decrease in the fluid phase velocity  but significant  

increase in the dust phase velocity. Temperature  increase in both 
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fluid and dust phase for increasing value of fluid interaction 

parameter .   

Figure 3, gives the  of velocity profiles  for various values of local 

Grashof number (Gr). It is observed that for increasing values of 

local Grashof number enhence the velocity  of both the fluid and 

dust phases. Physically Gr > 0 means heating of the fluid or 

cooling of the boundary surface, Gr < 0 means cooling of the 

fluid or heating of the boundary surface and Gr = 0 

corresponds to the absence of free convection current. Figure 

4, depicts the effect of local Grashof number (Gr) on 

temperature profiles. It is seen that increasing value of Gr results 

in thinning of the thermal boundary layer associated with an 

increase in the wall temperature gradient and hence produces an 

increase in the heat transfer rate.   

 

Fig- 3: Velocity profiles for different values of Gr 

 

Fig- 4: Temperature profiles for different values of Gr. 

 

Fig- 5: Velocity profiles for different values of f0. 

 

Fig- 6: Temperature profiles for different values of f0. 

Fig- 5, shows the effect of suction parameter fo on the velocity 

profiles. It is observed that both fluid and dust phase velocity profiles 

tends asymptotically to zero. The velocity profiles decreases as 
suction parameter f

0
 increases. It is seen from  the Fig- 6 that  

the fluid and dust phase temperature profiles  decrease 

monotonically for increase of suction.  

Figure 7, displays the variations of dimensionless temperature 

profile      with the variation of dimensionless reference 

temperature corresponding to  Prandtl number   . It is 

observed from the figure -7 that temperature increases with 

the increasing values of    .It is due to the reason that with the 

increasing values of the Prandtl number the  thermal 

diffusivity of the fluid will be decreases and as a result 

thermal conductivity will be decreases. Therefore the 

volumetric heat capacity of the fluid becomes larger. Velocity  

distribution for various  values of Pr is plotted in figure 8.  It is 

observed that for increasing values of Prandtl number Pr 

retarded the velocity for both the fluid phase as well as   dust 

phase. It is seen from all the figures that the fluid phase is 

almost parallel to the dust phase and velocity and temperature in 

the fluid phase is higher than that of the dust phase. 

The  temperature profiles ) and  are plotted for 

different values of radiation  parameter Nr  in Fig- 9 and Fig- 15. It 

is observed that the increase in the thermal radiation 

parameter Nr enhance temperature significantly.  

Velocity profile for the variable viscosity parameter    are 

presented in figures 10 and 14. It is seen that velocity 

decreases with viscosity due to increase of friction. 

 
Fig- 7: Temperature profiles for different values of Pr. 
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Fig- 8: Velocity  profiles for different values of Pr. 

 

Fig- 9: Temperature profiles for different values of Nr. 

 

Fig- 10: Velocity profiles for different values of  r. 

 

Fig- 11: Velocity profiles for different values of Ec 

 

Fig- 12: Temperature profiles for different values of Ec. 

The velocity and temperature  profiles for different values of 

Eckert number Ec is presented in figures 11 and 12. The 

Eckert number show no significant effects on the velocity 

profiles where as it enhances the temperature due to 

dissipation.  

 
Fig- 13: Temperature profiles for different values of θk 
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Fig- 14: Velocity profiles for different values of  

 
Fig- 15: Velocity profiles for different values of Nr 

 
Fig- 16: Temperature profiles for different values of Nr 

Figures (13) and (16) display the variations of dimensionless 

temperature profiles with the variation of dimensionless 

reference temperature corresponding to thermal conductivity 

parameter   , and radiation parameter Nr.  From figure (13) it 

is observed that temperature slightly increases when    

increases. It is due to the fact that the kinematic viscosity of 

the fluid increases with the increase of    and as a result 

temperature increases. It is observed from the figure (16) that 

temperature increases with the increasing values of Nr. It is 

due to the radiative heat transfer  the  thermal diffusivity of 

the fluid increases and as a result thermal conductivity 

increases as a result temperature increases. 

Finally the skin friction coefficient     which gives the wall 

shear stress and  Nusselt number    which gives the rate of 

heat transfer  are shown in the tables (1) — (4) for different 

values of  Nr,  and Pr against           and for l=.1, β=.51, 

ω=0.1,  Pr=1.,  Nr=3,  Ec=.1,  fo=.30,  Gr=.5 and K1=.1 . The 

behaviour of these parameters is self evident from the tables 

and hence any further discussions about them seem to be 

redundant. 

Values of skin friction coefficient Cf and Nusselt number Nu 

Table-1 

   Nr              2.0       3.0   4.0 

θk 

 

   

Cf Nu Cf Nu Cf Nu 

2 -0.0206 -0.0617 -0.0254 -0.0931 -0.0292 -0.1208 

3 -0.0198 -0.0441 -0.0248 -0.0673 -0.0286 -0.0881 

4 -0.0195 -0.0384 -0.0245 -0.059 -0.0284 -0.0773 

5 -0.0194 -0.0356 -0.0243 -0.0548 -0.0283 -0.072 

 

                                           Table-2 

Nr              2.0       3.0   4.0 

θk 
 

 

Cf Nu Cf Nu Cf Nu 

-6 -0.01 -0.0686 -0.0121 -0.1018 -0.0138 -0.1311 

-4 -0.0094 -0.0693 -0.0114 -0.1026 -0.0129 -0.1318 

-2 -0.008 -0.0711 -0.0096 -0.1049 -0.0118 -0.1307 

 

                                            Table-3 

Pr              0.75               1.00             1.75 

θk 
 Cf Nu Cf Nu Cf Nu 

2 -0.0244 -0.0851 -0.0203 -0.0553 -0.02 -0.0357 

3 -0.0237 -0.0615 -0.0194 -0.0397 -0.0165 -0.0262 

4 -0.0234 -0.0538 -0.0191 -0.0347 -0.0161 -0.0228 

5 -0.0233 -0.05 -0.019 -0.0322 -0.0159 -0.0211 

 

                                   Table-4 

Pr           1.0        1.25            1.50         2.0
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Nr=1, 2, 3, 4

 Θr 
 
 

Cf  Nu  Cf  Nu  Cf  Nu  Cf  Nu  

-8 -0.0097 -0.0612 -0.0081 -0.0411 -0.0069 -0.0281 -0.006 -0.0195 

-6 -0.0095 -0.0615 -0.0079 -0.0414 -0.0067 -0.0283 -0.0059 -0.0196 

-4 -0.0089 -0.0621 -0.0075 -0.0419 -0.0064 -0.0287 -0.0055 -0.0199 

-2 -0.0076 -0.0637 -0.0064 -0.0432 -0.0055 -0.0298 -0.0051 -0.2011 
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4.   CONCLUSIONS  
The effect of variable viscosity and thermal conductivity together 

with thermal radiation on flow and heat transfer of a dusty fluid 

over a vertical permeable stretching sheet is studied 

numerically. Velocity and temperature profiles are presented 

graphically. Influence of all the physical parameters found to 

effect the flow and heat transfer characteristics. The fluid 

particle interaction parameter  , local Grashof number, suction 

parameter, radiation parameter, Prandtl number, Eckert 

number, viscosity parameter  and thermal conductivity 

parameter θk  are considered for discussion.  We may conclude 

as follows: 

1. Velocity of fluid phase decreases and dust phase increases 

as   increases. 

2. Velocity of fluid , dust phase increases and temperature of 

fluid and dust phase decreases    as Gr increases. 

3. Velocity and temperature of both fluid and dust phase 
decreases as Pr and fo increases. 

4. Temperature increases for increasing  value of the 

radiation parameter Nr and Eckert number Ec. 

5. Viscosity parameter  decreases the fluid and dust 

phase velocity. 

6. Thermal conductivity θk  enhances the temperature. 

7. Wall shear stress as well as the heat transfer rate increase 

with increase of viscosity,      thermal conductivity and 

thermal radiation. 

8.   Wall shear stress as well as the heat transfer rate both 

decrease with increase of thermal conductivity and 

Prandtl number but increase for increase of  viscosity 

parameter and Prandtl number. 
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