
International Journal of Computer Applications (0975 – 8887)

Volume 102 – No.9, September 2014

17

Optimal Software Release Time Policy using

Goal Programming

Sanjeev Kumar

Research Scholar

Himalayan University

Sachin Gupta
Assistant Prof.

Vivekanand Institute of
Professional Studies, New Delhi

India

Dr. Deepak Tyagi
Prof.and Director

St. Anne Mary Education Society
New Delhi India

ABSTRACT

In this paper, the impact of software testing effort and the
efficiency on the modeling of software reliability for
optimizing the cost in case of release time policy has been
discussed. Another important problem in the software

development process is to determine when to stop testing and
release the software. If testing is stopped too early, there may
be too many defects in the software, resulting in too many
failures during the operation and leading to significant losses.
If too much time is spend on testing, there may be a high
testing cost. Therefore, there must be a tradeoff between
testing and releasing. The release time should be determined
by the testing process, efforts and cost. The more defects have

been detected and removed, the less time will be used for
further testing. To eliminate this problem of releasing the

software goal programming approach has been discussed.

Keywords

Software release time policy, goal programming, software
testing efforts, software defect removal.

1. INTRODUCTION
With the wide spread use of computer, software is playing an

important role in our life. In other words computers and
computer-based systems have entered in every walk and talk
of our lives. We have become heavily dependent on
automated tools and intelligent systems for almost every
activity. A mere delay in the operation of these systems can
lead to huge financial losses; hence software reliability
becomes a problem that cannot be ignored. Software
reliability is consequently one of the most important features

for the critical software system.

According to ANSI definition, software reliability is defined
as the probability of failure free software operation for a
specified period of time under a specified environment. In
practice, it is very difficult for the project managers to
measure software reliability and quality. In the seventies of
last century, many models (namely called Software reliability
growth models, SGRM) have been proposed to describe the

software testing process. Among these models, GO (Goel and
Okumoto)[4] model assumes that the defects detected up to
time‘t’ follows a non-homogeneous Poisson process (NHPP),
while Jelinski and Moranda[11] model assumes that the total
numbers of defects at the start of testing is a known constant,
and the failure rate at any time is proportional to the number
of defects remaining at that moment.

It is the testing stage of the software development in which
attempts are made to remove the most of the faults which are
dormant in software. A successful test strategy begins by
considering the requirement specification and continues by
specifying test cases based on this requirement specification.
Most of the earlier software reliability models assume the
fault removal process to be perfect i.e. when an attempt is
made to remove a faults are introduced. But this assumption is

not realistic due to the complexity of the software system and
incomplete understanding of the user’s requirements or the
specifications by the team. The software testing team may not
be able to fix the cause of the failure properly or they may not
be introducing new faults during the removal. Therefore it is
necessary to incorporate the effect of imperfect debugging
into the software reliability growth modeling.

The problem of determining when we to stop testing are

emerges. That is to say, if we stop testing too early, there may
be too many defects in the software, which will result in too
many failures during the operation, and lead to significant
losses. On the other side, spending too much time in testing
may result in a high testing cost and delay the introduction of
the product into the market. Therefore, there is a tradeoff
between software testing and releasing.

2. LITERATURE REVIEW
There are two commonly used approaches in the industry for
software reliability modeling. The first approach utilizes
software reliability growth models (SRGM) in later stages of
software development cycle to estimate the software failure
rate from the observed failures. As each failure occurrence
initiates the removal of a fault, the number of failures that

have been experienced by time t, denoted by M(t) , can be
regarded as a reflected image of reliability growth. Each
SRGM implicitly assumes a certain functional form of mean
value function. M(t). Using the failure times or the times
between failures collected during a testing project, the
parameters of a SRGM like expected number of failures by
the time t or failure intensity can be estimated. Software
architecture greatly affects the reliability and availability of

software systems. The second approach referred to as
architecture based modeling, utilizes discrete state Markov
modeling in the software reliability estimation (Taylor and
Vander (2007))[30]. System failures can be avoided with
better software architectures by raising exceptions when fault
occurs and confining the failure to a particular module.

International Journal of Computer Applications (0975 – 8887)

Volume 102 – No.9, September 2014

18

Table 1: The summary of the literature review

S.No. Authors and study published in the year Objective and the Discussion

1. Hudson (1967) [9] The software development was considered as birth and death

process. The fault is considered as birth and fault correction as

death. In his theory he proposed that the rate of detection of faults

is proportional to the number of faults remaining and the rate of

fault detection increases with time.

2. Jelinki and Moranda (1972)[11] Developed software reliability growth model which is based on the

assumption that at the beginning of the testing , there are a u faults

in the software program with a u being an unknown but fixed

number.

3. Musa et.al. (1987).[22] The model prepared by Jelinki and Moranda is of binomial type as

classified by Musa et.al. The Jelinki and Moranda model has poor

predictive capabilities in many cases where as the model proposed

by Musa is rich in clarity of modeling and has a better conceptual

insight and predictive validity. In this model the execution time is

viewed in two ways like (a) operating time of the software product

and (b) Cumulative execution time that occurs during the test

phase of development and the post delivery maintenance.

4. Scheindewind (1972) [26] Presented a software reliability model from an empirical viewpoint

assuming fault detections per time interval as a non homogeneous

Poisson process with an the exponential mean value function. He

applied least square method or maximum likelihood estimation to

the determination of the parameters of the process and also

suggested that the time lag between failure detection and

correction be determined from actual data and used to correct the

time scale in forecast.

5. Goel and Okumoto (1979)[4] Proposed a model assuming expected number of initial software

faults as N as compared to the fixed but unknown actual number of

the initial software faults u0 in the Jelinki and Moranda.

6. Piwowarski et al.(1983) [25] Proposed a model for block coverage in dependence of the

number of test cases executed during functional testing, which can

easily be extended to become a model of the number of failures

experienced in terms of time.

7. Yamada et al.(1986) [33] Extended Goel-Okumoto model stating that the ratio between the

expected number of software failure occurring in

(t, t+∆t) with ∆t →0 is proportional to the expected number of

undetected faults.

8. Littlewood et al. (1986)[18] The Bayesian extension to the Jelinski and Moranda model was

proposed by Littlewood in 1986 to improve the parameter

estimation of the model and hence its predictive capability.

9. Tohma et al. (1989)[31] He gave a structural approach to the estimation of the number of

residual software faults based on hyper- geometric distribution.

10. Tang and Iyer (1992)[29] They presented analysis and modeling of correlated failures in

multicomputer systems.

11. Lee et al. (1993)[17] Presents measurement-based evaluation of operating system fault

tolerance.

12. Lyu(1996)[19] He developed a model based on assumptions that the number of

failures experienced by time t follows a Poisson distribution. The

International Journal of Computer Applications (0975 – 8887)

Volume 102 – No.9, September 2014

19

number of software failures that occurs in (t, t+∆t) with ∆t →0 is

proportional to the expected number of undetected faults.

Whenever a failure occurs, faults that caused it is removed

instantaneously and without introducing any new fault into the

software. Since each fault is perfectly repaired after it has caused a

failure, the number of inherent faults in the software at the

beginning of the testing is equal to the number of failures that will

have occurred after an infinite amount of testing.

13. Gokhale et al. (1996)[5] Introduced the enhanced non-homogeneous Poisson process

(ENHPP) model as a unifying frame work for finite failure NHPP

models with the assumptions that the N faults inherent in the

software at the beginning of testing are uniformly distributed over

the potential fault sites and at time t. Whenever a failure occurs,

the fault that caused it is removed instantaneously and without

introducing any new fault into the software.

14. Krishnamurthy and Mathur (1997)[16] They gave an approach for the estimation of reliability of a

software system using reliability of its components.

15 Gokhale et al. (1998)[6] Presented an analytical approach to architecture-based software

reliability prediction.

16. Smidts and Sova (1999)[27] Considered an architecture-oriented modeling approach for

software reliability estimation based on decomposition of

requirements into software functions and attributes.

17. Huang et al (2001)[8] Proposed the incorporation of testing effort into the modeling

process, which can be measured by the human power, the number

of test cases, or the execution-time information.

18. Chen et al. (2001)[3] Included testing coverage into time-basis adjustment for more

accurate software reliability measurement.

19 Cai and Lyu (2004)[2] Carried out an empirical study on reliability and fault correlation

models for diverse software systems.

20. Mohanta (2005)[21] Proposed a fuzzy Markov model for determination of fuzzy state

probabilities of generating units.

21. Teng et al. (2006)[29] Studied reliability modeling of hardware and software

interactions.

22. Guillermo and Manic, (2006)[7] Have carried out fuzzy perform ability analysis of disk arrays.

23. Lyu (2007)[20] Proposed a recent trend in software architecture is that as

information engineering is becoming the central focus for today’s

businesses, service-oriented systems and the associated software

engineering will be the standards for business development.

24. Suri (2009),[28] Has developed a simulator for risk assessment of software project

based on performance measurement.

25. Yadav and khan (2009) and Khaled

(2009)[32]

Have given a critical review of software reliability models. In the

analysis of certain software systems, few parameters such as

software failure and repair rates cannot be exactly estimated.

In the present scenario, it is difficult to analyze software
reliability and availability due to such uncertain parameters.
The models generally assume that once a fault is discovered it

is removed immediately that is, software have instantaneous
repair time. The reality is that applications executing in the
field can take significant amount of time may be days or weeks
to get a fault removed. The second problem, which is generally

faced, is the quality of the failure data. For example repeat
failures generally occur due to the fact that faults are not
removed instantaneously. Another problem is that operational

profile testing is generally ignored i.e. it is assumed that the
software is going to be tested in the same manner that it is used
in the field, which is not true in practice. Thus, there is a need
of further improvements in the existing models so that

International Journal of Computer Applications (0975 – 8887)

Volume 102 – No.9, September 2014

20

reliability and availability can be computed more efficiently
and accurately.

3. OPTIMAL SOFTWARE RELEASE

POLICY
Software reliability growth models can captures the
quantitative aspects of the software testing process, and can be
used to provide a reasonable software release time. During the

software testing phase, developers can use the SRGM to
determine when to stop testing. If the reliability goal is
achieved, the software product is ready for release.

To shift the software from the testing phase to the operational
phase, theoretical determination of the release time of software
is very important problem in terms of cost. In recent years, the
problem of optimal software release time has been analyzed

and discussed by many authors.
The release time problem is to decide upon the optimal testing
termination time T. In the present problem we consider
optimization of testing under budgetary constraint. The
mathematical formulation of the problem is given as,

Where

 ,

The above problem can be extended in terms of getting desired
reliability with the minimum cost.

Maximize R(x|T)

Minimize C(T)

Subject to
C(T) <= Cb
R(x|T)>= R0
T>=0, R0>=0
We proposed a goal programming model to deal with the
problem of error free software with optimal time of release.

There exist various variables (factors) that affect the software
development. The present model is base on the following
factors.

Number of functional point: The number of functional point
can be considered as phases in software development. As the
number of functional point increases, the complexity of the
software deployment also increases. Let there are four phases

in terms of functional point Requirement analysis, Design,
Integration and Testing.

Budget assign for the development of software: Budget for
different phases is different. Any change at any stage results in
delay to procure the budget and in some cases sourcing of
finance also matters.

Number of people participates: Number of people participate at

different phases according to the requirement analysis also
effects the release time policy as the wrong deployment of
manpower results in delay of project.

Project duration: Estimation of time and completion of project
within the expected time must be taken under account and the
risk associated with the delay in project is also estimated.

Testing efforts: The efforts applied to make software error free

also affect its release time policy. For simplicity of the problem
we are assuming that the testing efforts for different phases of
software development are different.

4. GOAL PROGRAMMING MODEL
Although few of above mentioned variable is taken under
account, but the given problem is extended to the any number
of variable on which the release time policy depends.

B1, B2, B3 and B4 are the budget per day assign to the
Requirement analysis, Design, Integration and Testing

respectively. ‘B’ be the total assign budget.

M1, M2, M3 and M4 is the number of man power per day assign
to the Requirement analysis, Design, Integration and Testing
respectively. ‘M’ be the total manpower assign.

E1, E2, E3 and E4 is the efforts assign per day to the
Requirement analysis, Design, Integration and testing
respectively. ‘E’ be the total efforts required.

R, D, I, and T denotes the decision variables, in terms of time
taken in respective phases of requirement analysis, Design,
Integration and testing respectively and Tt be the total time
taken in testing.

Minimize Z = R + D + I + T

Subject to:
B1 R + B2 D + B3 I + B4 T ≤ B
M1 R + M2 D + M3 I + M4 T ≤ M
E1 R + E2 D + E3 I + E4 T ≤ E

R, D, I, T ≥ 0

The above mentioned Linear programming model can be

converted to goal programming model

Minimize Z = P1
 + P2

 + P3
 P4

Subject to:
B1 R + B2 D + B3 I + B4 T +

 = B

M1 R + M2 D + M3 I + M4 T +

 = M

E1 R + E2 D + E3 I + E4 T +

 = E
R + D + I + T +

 = Tt

R, D, I, T,

 ≥ 0.

5. MODEL ILLUSTRATION
The proposed goal programming model is tested using an
illustration. The impact of changing the priority in objective
function can also be done. Although the model can be solved
by many software’s but due to easiness we are using solver of
MS Excel to illustrate model.

Minimize Z = P1
 + P2

 + P3
 P4

Subject to:
8,000 R +5,000 D + 2,000 I + 7,000 T +

 = 25,000

10 R + 3 D + 4 I + 8 T +

 = 25

2,000 R + 750 D + 480 I + 1,280 T +

 = 4,700
R + D + I + T +

 = 11

R, D, I, T,

 ≥ 0

International Journal of Computer Applications (0975 – 8887)

Volume 102 – No.9, September 2014

21

6. CONCLUSION
The present research deals with the optimal software release

time policy problem. Extensive literature review has been done
and various methods that are dealing with the problem is
identified. The goal programming method to deal with release
time is proposed as it is multi criteria decision making problem.

Various parameters like requirement analysis time, design,
implementation and testing time is taken under account using
the constraints like budget, men hours, testing efforts and
duration of project. At last the model is illustrated using
numerical problem.

Table2: Illustration of the goal programming problem

7. REFERENCES
[1] Aggarwal K.K, Singh Yogesh, “Software Engineering”.

(2001) New Age International Publishers.

[2] Cai, X. and Lyu, M.R. (2004), An Empirical Study on
Reliability and Fault Correlation Models for Diverse
Software Systems, in Proceedings 15th International
Symposium on Software Reliability Engineering, Saint-
Malo, France, pp.125-136.

[3] Chen, M.H., Lyu, M.R., and Wong, E. (2001), Effect of
Code Coverage on Software Reliability Measurement,
IEEE Transactions on Reliability Vol. 50, No.2, pp. 165-
170.

[4] Goel. A.L, Okumoto K. (1979)“Time dependent error
detection rate model for software reliability and other
performance measures” IEEE Transactions on Reliability;
R-28(3): 206-211.

[5] Gokhale, S. S., Philip, T., Marinos, P. N. and Trivedi, K.
S. (1996), Unification of Finite Failure Non-
Homogeneous Poisson Process Models through Test
Coverage, Technical Report, Center for Advanced
Computing and Communication, Department of Electrical
and Computer Engineering, Duke University.

[6] Gokhale, S., Wong W.E., Trivedi, K.S. and Horgan, J.R.
(1998), An Analytical Approach to Architecture-Based
Software Reliability Prediction, IEEE International,

Computer Performance and Dependability Symposium,
Durham, NC, pp. 13-19.

[7] Guillermo, N. and Manic, M. (2006), Fuzzy
performability analysis of disk arrays, International
Symposium on Industrial Electronics, pp. 9-13.

[8] Huang, C.Y., Kuo, S.Y. and Lyu, M.R. (2001), A
Framework for Modeling Software Reliability
Considering Various Testing Efforts and Fault Detection

Rates, IEEE Transactions on Reliability, Vol. 50,No. 3,
pp. 310-321

[9] Hudson, G.R. (1967), Program Errors as Birth and Death
Process, Tech. report SP-3011, System Development
Corp.

[10] Huo R.H, Chen I.Y, Cheng.Y.P, Kuo. S.Y,(1996)
“Optimal Release Policies for Hyper- Geomertic
Distribution Software reliability growth model, ” IEEE
Tran.Rel., vol 45, no.4 pp 646-651 Dec. 1996.

[11] Jelinski Z, Moranda PB. “Software reliability research”
In: Freiberger W, (Ed.) Statistical Computer
Performance Evaluation 1972; New York: Academic
Press: 465-497.

[12] Kapur P.K., AggarwalS., Garg R.B.(1984.), “Bi-criterian
Release Policy for Exponential
 Software Reliability Growth Models ”, Operational
Research, vol 28,pp 165-180,

[13] Kapur PK, Garg RB, Kumar S.(1999) “Contributions to
hardware and software reliability”

[14] Kapur PK, Garg RB. “A software reliability growth model
for an error removal phenomenon” Software

Engineering Journal 1992; 7: 291-294.

[15] Khaled, M.S. (2009), What is Hampering the Performance
of Software Reliability Models, A Literature review,
Proceedings of the International Multi Conference of
Engineers and Computer Scientists , Hong Kong, pp.
231-238.

[16] Krishnamurthy, S. and Mathur, A.P. (1997), On the
estimation of reliability of a software system using
reliability of its components, in Proceedings of the 8th

IEEE International

[17] Lee, I., Tang, D., Iyer R.K. and Hsueh M.C. (1993),
Measurement-Based Evaluation of
Operating System Fault Tolerance, IEEE Transactions on
Reliability, pp.238-249.

[18] Littlewood, B., Abdel-Ghaley, A.A and Chan, P.Y.
(1986), Evaluation of Competing Software .

software release time model

variables R D I T u1 v1 u2 v2 u3 v3 u4 v4

Requirementdesign integrationtesting underachieve of budgetoverachievement of budgetunderachievement of manoverachievement of manunderachievement of testing effortsoverachivement of testing effortsunderachievement of total timeoverachievement of total timeleft hand sideright hand side

objective coefficient 0.5 0.5

constraints 8000 5000 2000 7000 1 -1 91000 91000

10 3 4 8 1 -1 84 84

2000 750 480 1280 1 -1 15820 15820

1 1 1 1 1 -1 11 11

variables R D I T u1 v1 u2 v2 u3 v3 u4 v4

solution value5.653846 9.153846 0 0 0 0 0 0 0 2353.077 0 3.807692

objective value1.903846

International Journal of Computer Applications (0975 – 8887)

Volume 102 – No.9, September 2014

22

[19] Lyu, M. R. (1996), Handbook of Software Reliability
Engineering, IEEE Computer Society measurement,
International Journal of Computer Science and Network
Security, Vol.9 No.6, pp. 23-30.

[20] Lyu,M.R. (2007), Software Reliability Engineering, A

Roadmap , in proceedings of international conference on
Future of Software Engineering, Washington, pp.153-170

[21] Mohanta, D.K. (2005), Fuzzy Markov model for
determination of fuzzy state probabilities of generating
units including the effect of maintenance. IEEE Trans. On
Power System, Vol.20, no.4, pp. 2117-2124.

[22] Musa, J. D., Iannino, A. and Okumoto, K. (1987)
Software Reliability - Measurement, Prediction,

Application, McGraw Hill, New York.

[23] Ohba M. “Software reliability analysis models” IBM
Journal of Research and Development 1984; 28: 428-
443.

[24] Pham H. “System Software Reliability”(2005); Springer
Series in Reliability Engineering.
Reliability and its Interdisciplinary Nature.

[25] Piwowarski, P., Ohba, M. and Caruso, J. (1983), Coverage

Measurement Experience During Function Test, in
Proceedings of Fifteenth International IEEE Conference
on Software Engg., pp.387-301.

[26] Schneidewind, N.F.(1972), An Approach to Software
Reliability Prediction and Quality Control, Fall Joint
Computer Conference, AFIP Press, Montvale, NJ. Vol.

41, pp. 837- 847.Singapore: World Scientific Publishing
Co. Ltd.

[27] Smidts, C. and Sova, D. (1999), An Architectural Model
for Software Reliability Quantification: Sources of Data,
Reliability Engineering and System Safety Vol.64,

pp.279–290.

[28] Suri, P.K. (2009), Simulator for Risk assessment of
software project based on performance Symposium on
Software Reliability Engineering, Mexico, pp.146-145.

[29] Tang, D. and Iyer, R.K. (1992), Analysis and Modeling of
Correlated Failures in Multicomputer systems, IEEE
Trans. Computers, Vol. 41, No. 5, pp. 567-577.

[30] Taylor, R. and Vander, Hoek A. (2007), Software Design

and Architecture: The Once and Future Focus of Software
Engineering, International conference on Future of
Software Engineering , IEEE-CS Press, pp. 226-243.

[31] Tohma, Y., Tokunaga, K., Nagase, S. and Murata, Y.
(1989), Structural approach to the estimation of the
number of residual software faults base on the hyper-
geometric distribution, IEEE Transactions on Software
Engineering, Volume SJ2-15, no. 3, pp. 345-355.

[32] Yadav, A. and Khan R.A.(2009), Critical review on
software reliability models, International Journal of
recent trends in Engineering, Vol 2, No. 3, pp. 114-116.

[33] Yamada H, Ohtera H, and Narihisa H. “Software
reliability growth models with testing effort”
 IEEE Trans. On Reliability 1986; R-35(1): 19-23.

IJCATM : www.ijcaonline.org

