
International Journal of Computer Applications (0975 – 8887)

Volume 102– No.8, September 2014

5

Acknowledgment Time Delay Approach to Optimize TCP

Performance in Hybrid Networked Systems

K. Lakshmi Nadh

 Research Scholar
JNT University Kakinada

India

Y.K. Sundara Krishna
Dept. of Computer Science

Krishna University
Machilipatnam, India

K.Nageswara Rao
Principal

PSCMRC of Engg & Tech
Vijayawada, India

ABSTRACT

Transmission Control Protocol (TCP) is connection oriented

transport protocol used on IP in wireless medium and it insists

lossless data transmission in proper order. When TCP is used

as a transmission protocol where physical layer is wireless

medium, results high packet reordering due to bursty traffic

and drastic variation in quality of service with respect to time.

By sharing the same path for data and acknowledgement

increases the traffic and collision, resulting in reduced

throughput. In order to improve QoS this paper proposes a

solution “Improved Delay the Duplicate Acknowledgement”

(IDDA). This reduces traffic and spurious retransmissions,

thereby improving TCP performance.

Keywords

Transmission Control Protocol (TCP), Fast Retransmission,

Wireless Networks, packet reordering, Random loss,

congestion control.

1. INTRODUCTION
The Transmission Control Protocol (TCP) is one of the core

protocols of the Internet Protocol Suite [1] which is used

extensively by many of the Internet's most popular

applications [2], including Web (HTTP), file transfer (FTP),

and e-mail (SMTP), Secure-Shell, and some streaming-media

applications. TCP provides reliable stream delivery service

that guarantees delivery of a data stream sent from one host to

another. The order of the bytes transmitted from each host is

identified with a unique sequence number (seqno) [3]. So that

the data can be transferred reliably and in order, despite of any

fragmentation, disordering, or packet loss that occurs during

transmission. When a destination receives a data packet, it

acknowledges the receipt of the packet by sending back an

acknowledgement packet with the next expected data seqno.

The round trip time (RTT) [4] is sampled and averaged to

calculate the retransmission timeout (RTO) used by TCP to

achieve reliable delivery. RTT timing has traditionally taken

the form of starting a timer before a sending a packet and the

packet is transmitted. After receiving the proper

acknowledgement packet the timer will stop.

TCP primarily uses cumulative acknowledgment scheme [5],

where the receiver sends an acknowledgement packet

signifying that the receiver has received all data preceding the

acknowledged seqno. Essentially, the first data byte in a

packet is assigned a seqno, which is inserted in the seqno

field, and the receiver sends an acknowledgment specifying

the seqno of the next packet is expect to receive. For example,

if the sender sends 4 bytes with a seqno of 100, 101, 102, &

103 assigned, then the receiver would send back an ACK of

104 since that is the next byte it expects to receive in the next

packet. By sending an ACK of 104, the receiver is signaling

that it received bytes 100, 101, 102, & 103 correctly. If, by

some chance, the last two bytes were corrupted then an ACK

value of 102 would be sent since 100 & 101 were received
successfully.

TCP performance over networks subjected to congestion

losses, which can be improved by enhancing following

congestion control algorithms [2] [6] [7] [8]: slow start,

congestion avoidance, fast retransmit, and fast recovery [9].

Slow start: A slow start suggests that the sender set the

congestion window (cwnd) to 1 and then for each ACK

received it increase the cwnd by 1. For the first RTT receiver

sends 1 packet, in the second receiver sends 2 and in the third

receiver sends 4. Thus sender increases exponentially until a

packet loss, and decreases our sending rate by reducing

congestion window to one and start over again.

Congestion avoidance: For congestion avoidance Tahoe uses

‘Additive Increase Multiplicative Decrease’. A packet loss is

taken as a sign of congestion and Tahoe saves the half of the

current window as a threshold value. It then set cwnd to one

and starts slow start until it reaches the threshold value. After

that it increments linearly until it encounters a packet loss.

Fast retransmit: So Reno [9] suggests an algorithm called

‘Fast Re-Transmit’. Whenever receiver receives 3 duplicate

ACK’s that indicates the segment was lost, so sender re-

transmits the segment without waiting for timeout.

Fast recovery: Like Reno [9], New-Reno [10] also enters into

fast-retransmit when it receives multiple duplicate packets. In

the fast recovery phase which allows for multiple re-

transmissions in new-Reno and it notes the maximums

segment which is outstanding. The fast-recovery phase

proceeds as in Reno, when a fresh ACK is received.

The rest of the paper is organized as follows: The Section 2

summarize the causes of the packet reordering and its

consequences on TCP. Section 3 provides TCP delayed ACK

mechanism and a survey of existing solutions and drawbacks.

Section 4 discusses proposed solution IDDA. A performance

study of the surveyed algorithms is presented in Section 5.

Finally, conclusion will be provided in Section 6.

2. CAUSES AND CONSEQUENCES OF

PACKET REORDERING
All Recent studies show that packet reordering plays a vital

role in packet transmission and it is not a rare event in

wireless networks [11] [12]. Packet reordering (PR) [13] is a

phenomenon in which packets with higher sequence numbers

are received earlier than those with smaller sequence

numbers. In Fig1, The TCP sender consecutively sends eight

International Journal of Computer Applications (0975 – 8887)

Volume 102– No.8, September 2014

6

packets: P1, P2, P3, P4, P5, P6, P7 and P8. The same

sequence arrives at the TCP receiver in the following order:

P1, P3, P4, P5, P6, P2, P7 and P8, where P2 is reordered with

reordering block size = 1 and reordering delay time = 4

packets. Upon receiving the three dupacks of packet P2, the

sender triggers fast retransmission and retransmits the packet

by reducing the size of cwnd groundlessly.

Fig1: Packet reordering

2.1 Causes of PR

In wireless networks, packet reordering is due to [13] [14]

multipath routing, Parallelism in Packet router, Load splitting,

route fluttering, link layer retransmissions, router forwarding

lulls etc.

Multi-Path Routing
When packets from the same flow take two or more paths

through a network, it becomes very likely that packets will

arrive out of order. The TCP receiver will reorder the packets

before presenting the data to the application. The TCP sender

fast retransmit mechanism will often mistake packet

reordering for packet loss and will continue to reduce its

offered load to unacceptably low levels.

Parallelism in Packet router
This is a promising approach to build a high-speed and

inexpensive packet router. Thus, packet reordering is more

likely to occur in high-speed networks. Successive packets

that arrive at a router, even on the same link, may be

forwarded and/or switched simultaneously by independent

hardware. This simple parallel approach ignores ordering

between packets processed simultaneously, and introduces

packet reordering.

Load splitting
Load splitting among multiple links. The analysis in a recent

study [15] shows that multiple links with slightly different

link delays may introduce significant packet reordering.
Route Fluttering
Routing fluttering is a network phenomenon in which the

forwarding path to a certain destination oscillates among a set

of available routes to that destination. This result from route

instability due to shaky links, and heavy loads or bursty traffic

can present topological changes in the wireless environment.

Similar to packet-level multipath routing, route fluttering

causes packets to be forwarded on different paths and arrive at

a destination can introduce chaotic in packets.

Link-Layer Retransmissions

Link-layer retransmission mechanisms [16] have been

proposed to efficiently recover transmission losses due to high

channel error rates in wireless networks. Such retransmitted

packets are sent only after the losses are detected. These

packets may then be interspersed with other packets belonging

to the same traffic flow.

Router Forwarding Lulls
Some routers can halt its forwarding activity for buffered

packets when it processes a routing update. These buffered

packets are interspersed with new arrivals, thus causing

packet reordering [17].

2.2 Consequence of PR
The effects of packet reordering are determined by how the

TCP sender responds to these various tasks [18] [19]:

Spurious fast retransmit [6], Keeping Congestion Window

Unnecessarily Small, Spurious timeout and ACK

compression.

Spurious fast retransmit
Most TCP’s implement an algorithm known as fast retransmit

[6] used to recover quickly from occasional packet loss. The

fast retransmit algorithm is triggered by a series of duplicate

acks. If the TCP sender gets three duplicate acks, it assumes

that the data immediately after the byte being acked has been

lost, and retransmits that data. The idea is that the duplicate

acks indicate a packet has been lost, and by quickly

retransmitting the data. If the duplicate acks cause due to

reordering, then the fast retransmission is unnecessary and

wastes bandwidth.

Keeping Congestion Window Unnecessarily Small
Fast recovery is generated with fast retransmit. A spurious fast

retransmission would cause extra workload to the network and

make congestion window half. Therefore, the congestion

window becomes small relative to the available bandwidth of

its transmission path with packet reordering.

Spurious timeout
Reordering can falsely inflate the RTT estimate when no

unnecessary retransmissions are sent, which can potentially

hurt performance in that TCP would have to wait longer

before sending a legitimate retransmission. In the case when a

segment is retransmitted needlessly because of reordering, the

corresponding RTT sample [20] must be marked as invalid.

ACK compression and traffic
ACK compression is another issue that possibly arises with

wireless link delays. Packet reordering causes not only data

segments, but also ACKs to arrive at a destination out of

order. The former phenomenon is called forward-path

reordering, while the second is known as reverse-path

reordering [21]. ACK-clocking or self-clocking refers to the

property that the receiver can generate ACKs no faster than

data segments can get through the network [22]. For forward-

path reordering, an ACK for several new segments, which

follows a number of duplicate ACKs, can in turn allow a

source to inject several pending segments into the networks.

Even when there is no data segment being reordered,

disordered ACKs lead to a source transmitting several

segments together rather than one or two segments per ACK.

This causes loss of its ACK clocking and bursty traffic, which

may lead to transient network congestion and congestion

collapse from undelivered packets [23].

3. DELAYED DUPLICATE

ACKNOWLEDGEMENT SOLUTIONS

FOR PACKET REORDERING

3.1 The TCP delayed ACK mechanism
With every segment that TCP sends, the receiver issues an

ACK to acknowledge the receipt of the data. Instead of

sending an ACK for every segment, the delayed ACK [24]

[25] [40] can be enabled, which gives the TCP receiver have

to wait some time before sending an acknowledgement. In the

implementation of TCP protocol, delayed ACK is used to

improve the TCP transfer performance [26]. A host that is

receiving a flow of TCP data packets can increase efficiency

by sending few than one ACK packet per data packet

received. Because a packet loss event will cause the change of

the behavior pattern of the end points, investigation of the

ration between the bidirectional packet numbers give clues of

International Journal of Computer Applications (0975 – 8887)

Volume 102– No.8, September 2014

7

network packet loss. The receiver contains a timer bound

variable interval that gives the number of seconds to wait for

the second in-order packet. The time-out of this timer causes

immediate ACK generation of the first packet. In addition,

out-of-order packets cause immediate ACK generation.

3.2 Existing Solutions
A number of TCP solutions have been proposed to solve the

problem of packet reordering related acknowledgment delay

are: DelAck TCP-ADA and TCP-ADW.

3.2.1 DelAck
Jimenez and Altman have promoted the use of delayed ACK

techniques (DelAck) [27] [30], to improve the performance of

TCP in multihop wireless ad-hoc networks. DelAck is a

receiver-side solution, which reduce channel competitions

among data segments and ACKs and also reduce performance

diminution due to packet reordering. In transmission path, the

forward and reverse traffic between adjacent hosts can share

and compete for same channel. In order to reduce channel

competitions, the DelAck is delay the acknowledgement for

the coming data packets. In this approach a receiver generate

an ACK for every d data segments. An ACK is also generated

whenever the first unacknowledged data segment has been

received for a certain time period, say 0.1 s. The value of d

can be configured so that d increases with the segment seqno.

Drawbacks:

 The value of d is orthogonal to the packet seqno and

which depends on the size of the congestion window and

available bandwidth.

 The bursts of TCP segments may be put into the network

every time a delayed ACK is received by a source. This

can start to transient network congestion and congestion

collapse due to undelivered packets.

3.2.2. TCP-ADA
Kankipati and Singh developed TCP with “adaptive delayed

acknowledgment” (TCP-ADA) [28] [30]. It is a receiver-side

solution to reduce intra-flow channel contention in mobile ad

hoc networks. The approach of TCP-ADA is similar to that of

DelAck [27, as long as TCP-ADA postpones acknowledgment

for a time period. After receiving the data segment, TCP-

ADA updates ∆, an exponentially weighted moving average

of the inter arrival time between two consecutive packets. A

destination will defer sending an ACK of the segment for a

time period of β∆. The deferment period is restarted every

time a data segment arrives before the postponement timer

expires. An ACK is sent to a source if the total deferment

period reaches a certain threshold.

Drawbacks:

 The source has to be idle for about one RTT to receive an

ACK before it can send new segments to the destination

then the loss of ACK-clocking to the network.

 If one ACK for a full congestion window of data. The

loss of that ACK leads to expiration of the retransmission

timer and the initiation of the slow start phase to restarts

cwnd.

3.2.3. TCP-ADW
Ammar and Othman devised the adaptive delayed ACK

algorithm TCPADW [29] [30], is a receiver-side solution

which addresses ACK delay window. The main goal was to

have a better throughput by lowering the number of ACK to

the minimal number, which guarantees the TCP reliability and

reduce channel competition. In this scheme, unless the

sender’s retransmission timer expires, the receiver always

increases the delay window based on the increase in the

transmission rate (cwnd size), except at session startup.

During the startup, the receiver sets the delay window to 1 and

increases it based on the transmission rate. When the packet

loss occurs, the receiver decreases its delay window to a

certain value based on the hop count. In case of short path, the

receiver decreases the delay window to half. For the long

path, the receiver will decrease its delay window to the value

two. Out-of-order packets cause ACK generation immediately

in order to inform the sender of the packet loss in a timely

manner.

Drawbacks:

 In this scheme when packet reordering occurs, it does not

avoid spurious retransmissions.

 It does not solve packet reordering by delaying the ACK, it

is for avoiding the competition and collision.

4. PROPOSED SOLUTION
TCP-IDDA [38] is a new approach, which is capable of

decreasing the number of ACK’s to improve TCP

performance and avoid unnecessary retransmissions.

4.1 TCP-IDDA
Generating acknowledgement for each data packet also

reduces TCP throughput over wireless networks than in wired

networks. In wireless networks, acknowledgement packets

share the path with data packets. This creates the competition

and collision between ACK and DATA packets, resulting in

reduced TCP throughput. Decreasing the number of ACKs

enhances the performance of TCP as it reduces the

competition and collision with DATA packets. This paper

proposes a receiver-side solution IDDA is extension of

Delayed Duplicate Acknowledgements [31] [32], which

Delay the duplicate acknowledgement for a certain time

period. The proposed solution is to decrease the number of

acks to improve TCP performance. TCP throughput is

improved when one ack acknowledges the full congestion

window or out-of-order packets.

In the network environment of TCP must estimate the

following settings and with mathematical calculation. The

information has retrieved with PING for google.co.in with

address (173.194.117.111) 56(84) bytes of data. The data is

displayed in the following table1.

Table1: data with seqnumber and time

Seq Time

(ms)

Seq Time

(ms)

Seq Time

(ms)

1 316 11 285 21 285

2 316 12 300 22 302

3 303 13 297 23 269

4 309 14 314 24 260

5 322 15 319 25 241

6 316 16 311 26 256

7 313 17 277 27 251

8 294 18 281 28 270

9 306 19 265

10 296 20 Reorder

International Journal of Computer Applications (0975 – 8887)

Volume 102– No.8, September 2014

8

The RTT [4] was originally estimated in TCP by:

RTTest = (α * RTTOld) + ((1 – α) * RTTNew) (1)

Where α is constant weighting factor (0 ≤ α < 1). Choosing a

value α close to 1 makes the weighted average immune to

changes that last a short time (e.g., a single segment that

encounters long delay). Choosing a value for α close to 0

makes the weighted average respond to changes in delay very

quickly. For simulation maximum RTT sample is taking into

consideration.

For our calculation α=0.5.

RTTest = (0.5 * 316) + (0.5 * 303)

 =309.5ms

Compute Retransmission Time Out for the network

environment

RTO =β*RTTest where β>1 (2)

A low value of ' β ' will ensure quick detection of a packet

loss. Any small delay will however cause unnecessary

retransmission. A typical value of ' β ' is kept at 2.

For our calculation β =1.5.

RTO =1.5*309.5

 =464.25ms

In order to observe congestion, the traditionally TCP

implementations have increased cwnd by precisely SMSS

bytes upon receipt of an ACK covering new data. Thus TCP

implementations increase cwnd,

 cwnd += min (N, SMSS) (3)

Where SMSS is (Sender Maximum Segment Size), which is

the size of the largest segment that the sender can transmit.

Another common formula that a TCP MAY use to update

cwnd during congestion avoidance is given in equation (4):

 cwnd += SMSS*SMSS/cwnd (4)

TCP sender sequentially sends packets into the network by

representing its receiver address.

 (5)

Where is number of packets with window size w

(1≤i≤w).

The packets are entered into the network in the order of

p(i),p(i+1),p(i+2)…….p(i+w)

When the receiver gets the unsequenced packet from sender, it

immediately sends negative ACK of previous sequence

packet. That is, the receiver gets the packet order in the form

of p(i),p(i+1),p(i+2),p(i+3),p(i+4),p(i+5)….p(i+27).

There the packet p (20) get reordered, it immediately responds

to the first two consecutive out-of-order packets by sending

negative dupack (ACK19) [33] immediately and calculates

delay value. However, dupacks for further consecutive out-of-

order packets are delayed for certain time d. If the next in-

sequence packet is received within the interval, then the

delayed dupacks are not sent. Otherwise, after the time d

interval, the receiver sends ACK for every d.

In order to calculate delay value, When the packets get

reordered, at the receiver end, it measures the gap [34] [39]

between two adjacent data packets. At this time, we supposed

 Stood for Gap value, which is difference between

the arrival time of recently received packet and previous

packet.

=

-
 (6)

Where
 , is recent packet time

is previous packet

time at receiver side.

=285-265

 =20ms

Calculate one way round trip time from eq(1) RTT=309.5ms

to=RTT/2 (7)

 =154.75ms

Then add the gap value of eq (6) to to

 T=to+
 (8)

 =174.75ms

Then measure T1 by adding some time variance with eq (8)

T1 =T + εT (9)

 Where ε=0.25

 T1 =218.43ms

Send previously sent acknowledgement for every delay (d)

value is obtained with eq (9).

d =γT1 (10)

Where γ=0.5

d=109.21ms

If the reordered packet p (20) is arrives with in delay interval,

the receiver should not send the third dupack. Otherwise it

will send the third dupack.

At the sender side it maintains acknowledgement threshold

limit value.

 (11)

When ACK value reaches to threshold limit, immediately

sender concludes the packet is loss or dropout but not

reordered. Then sender retransmits the lost packet.

International Journal of Computer Applications (0975 – 8887)

Volume 102– No.8, September 2014

9

Table2 shows the comparison of different mechanisms in

terms of fast retransmission, with our proposed mechanism,

the reordered packet is arrived at the receiver side before

sending the third dupack.

Table2: Different mechanisms in terms of fast

retransmission

Mechanism Fast Retransmission (ms)

RTO 464.25

Duplicate ACK’s

(Traditional)

314

TCP-IDDA 400.25

5. PERFORMANCE EVALUATION
Our approach concentrates mainly on keeping the TCP

throughput by delay the ACK to cwnd size. Simulation

experiments carried out to investigate and evaluate our

algorithm on hybrid networks. The main goal is to achieve

maximal TCP throughput and avoiding the unnecessary fast

retransmissions and reduce the needless reduction of

congestion window size by delaying ACKs. The performance

of IDDA is compared in terms of throughput, ACK’s received

and unnecessary retransmissions, using simulations conducted

in ns-2 simulator [35] (version 2.35), to the following other

algorithms: DelAck, TCP-ADA and TCP-ADW with metrics

Throughput[36], Unnecessary retransmission rate[37] and

Rate reorder/ack[26].

Fig2: Hybrid topology

 5.1 Simulation Environment and Results
In this section, we describe our simulation environment and

parameter settings used for evaluating the performance of

IDDA over hybrid topology which uses Internet Service

Provider (ISP), Gateway, Ethernet LAN and Wi-Fi as shown

in Fig2. The simulated network is having 30 wireless nodes

which have valid transmission range of 200m apart. In the

Linux to know the link utility by using Traceroute command it

can identify total number of hops from source to destination

with time. In our simulation case it is having maximum of 30

hops that was identified with Traceroute i.e. from INDIA to

US (Ex. amazon.com). During simulations, the data packets

are continuously transmitted up to the end of simulation and

the source of all TCP flows originated at the first node. The

data transmission rate is 2Mbps, otherwise stated. Each data

point represents an averaged result of 5 simulation runs with

different random seeds. FTP is the traffic source we used all

of our simulations. The packet size is 1000 bytes and the

initial window limit is set to 8 packets. The size of an

acknowledgment packet is same as the size of data packet.

Packet reordering is simulated by modifying the error model

object of ns-2 such that randomly selected packets can be

delayed for a random amount of time. This allows us the

flexibility to choose the percentage of the packets to be

delayed, the distribution for choosing the packets randomly as

well as the distribution for the delays. The TCP-IDDA agent

is implemented by modifying the tcp-sack1 implementation of

TCP-SACK agent in ns-2.

The TCP Sink/Sack1 agent is used for the receivers. FTP

sources start sending data at time 0 and are staggered to avoid

synchronization. All simulations [37] are run for 150 seconds.

The receiver advertises a large window such that the sending

rate is not limited by the receiver dynamics.

Throughput Evaluation
Fig3 presents the result of typical variation of TCP throughput

under varying bandwidths ranges from 10 to 30 Mbps. The

loss rate and reorder rate set to 5 and 3%, respectively. From

the graph, we observe that when bandwidth increases, the

throughput also increases, except IDDA the throughput of all

other TCP’s fluctuates lightly. Compared to other delay

mechanisms, IDDA can utilize the bandwidth efficiently.

When bandwidth greater than 15 Mbps, IDDA begins to

increase the throughput.

Fig3: TCP throughput according to various bandwidths

Simulation results in Fig4 shows the throughput gain of IDDA

in presence varying reorder rate ranges from 1 to 5%. When

reorder rate increases, the performance of IDDA becomes

better than DelAck, TCP-ADA and TCP-ADW. As a result,

DelAck, TCP-ADA and TCP-ADW frequently reduce the size

of cwnd and send spurious retransmissions and thereby

decrease the throughput performance. When the rate of

reorder increases, the spurious retransmissions of all TCP’s

increases. The delay mechanisms such as DelAck, TCP-ADA

and TCP-ADW cannot perform well according to the different

reorder rates because these solutions cannot properly detect

the reorder packets and results in the increases of spurious

retransmissions. On the other hand, IDDA can detect reorder

packets compared to other TCP mechanisms.

International Journal of Computer Applications (0975 – 8887)

Volume 102– No.8, September 2014

10

Fig4: TCP throughput according to various reorder rates.

Unnecessary retransmission Evaluation

The Fig5 analyzes the percentage of spurious retransmissions

of various algorithms under varying reorder rate ranges from

1 to 5%. The spurious retransmissions rate, which is defined

as the ratio of spurious retransmissions to the total number of

packets transmitted.

Fig5: Comparison of unnecessary retransmissions vs.

reorder rate.

Acknowledgments received Evaluation

Fig6: ACK’s received vs. reorder rate.

In the Fig6, it analyzes the percentage of acknowledgements

received of various algorithms under varying reorder rate

ranges from 1 to 5%. The acknowledgements received, which

is defined as the ratio of acknowledgements received to the

total number of packets reordered. When the rate of reorder

increases, the acknowledgements received of all TCP’s

increases. However, IDDA has less number of ACK’s

received compared to other TCP mechanisms due to the

ability of detecting the reorder packets. Compare to DelAck,

TCP-ADA and TCP-ADW the IDDA has less number of

acknowledgements received because of their capability to find

the reorder packets.

Table3 a summary of the TCP enhancements listed in this

paper and their functionality is presented. The comparison is

based on features: the solution deals with packet reordering,

reducing ACK overhead, spurious retransmission and usage of

bandwidth.

Table3: Comparison of various TCP packet reordering

Receiver side solutions

Strategy Dealing

with

reordering

Reducing

ACK

overhead

Dealing

with

spurious

retransmissi

on

Usage of

bandwi

dth

DelAck No Low No Low

ADA No Low No Low

ADW Yes Medium No Medium

IDDA Yes High Yes High

6. CONCLUSION
In this paper, we have presented the effect of number of

acknowledgements generated on TCP throughput in wireless

networks. The TCP-IDDA is a receiver side solution, which

tries to minimize the competitions between data and ACK

packets by reducing the number of ACK packets. Further,

unnecessary retransmissions and needless reduction of

congestion window size are significantly reduced by delaying

the duplicate acknowledgement for a time when packet

reordering occurs and it also improves bandwidth availability.

We also proposed some future research direction, including

the need of a mechanism to resolve the other non-congestion

losses including random loss with different topologies.

7. REFERENCES
[1] J. Postel, “Transmission Control Protocol,” Request for

Comments, RFC 793, Protocol Specification, DARPA

Internet Program, Sept. 1981.

[2] Joerg Widmer, Robert Denda, and Martin Mauve, A

Survey on TCP-Friendly Congestion Control IEEE

Network • May/June 2001.

[3] A. McKenzie A Problem with the TCP Big Window

Option, Network Working Group RFC 1110, August

1989.

[4] Improving Round-Trip Time Estimates in Reliable

Transport Protocols by PHIL KARN and CRAIG

PARTRIDGE in ACM Transactions on Computer

Systems, vol 9, No4, and November1991.

[5] M. Mathis,J. Mahdavi,S. Floyd,A. Romanow , TCP

Selective Acknowledgement Options, Standards Track

RFC 2018,October 1996.

[6] W. Stevens, TCP Slow Start, Congestion Avoidance, Fast

Retransmit, and Fast Recovery Algorithms RFC: 2001

NOAO,January 1997.

[7] K. Fall, and S. Floyd, “Simulation–Based Comparison of

Tahoe, Reno and SACK TCP”, Computer

Communications Review ACM-SIGCOMM, Vol. 26,

No. 3, July 1996.

[8] Bogdan Moraru, Flavius Copaciu, Gabriel Lazar and

Virgil Dobrota, Practical Analysis of TCP

Implementations: Tahoe, Reno, NewReno,

RATES/ERASMUS 2001-2002.

International Journal of Computer Applications (0975 – 8887)

Volume 102– No.8, September 2014

11

[9] M. Allman, V. Paxson, and W. Stevens, TCP Congestion

Control, IETF RFC 2581, Apr. 1999.

[10] S.Floyd and T.Henderson, “The NewReno modification

to TCP’s fast recovery algorithm,” IETF RFC 2582,

April 1999.

[11] Chunlei Liu, Fangyang Shen and Min-Te Sun, “A

Unified TCP Enhancement for Wireless Mesh networks“,

Parellel Processing Workshops, 2007. ICPPW 2007.

International Conference on vol,no..pp.71,10-14 sep

2007.

[12] Xiaoyuan Guo, Jiangchuan Liu “Path diversfied

retransmission for TCP over wireless mesh networks”

Quality of service (IWQoS),2010 18th International

workshop on vol,no..pp.1-9,16-18 june 2010.

[13] KC Leung, V Li, D Yang, An overview of packet

reordering in transmission control protocol (TCP):

problems, solutions, and challenges. Parallel Distrib Syst

IEEE Trans. 18(4), 522–535 (2007).

[14]Jie Feng, Zhipeng Ouyang, Lisong Xu *, Byrav

Ramamurthy, Packet reordering in high-speed networks

and its impact on high-speed TCP variants,Computer

Communications ,2008.

[15] L. Zhang, Z. Zhao, Y. Shu, L. Wang, and O. W. Yang,

“Load balancing of multipath source routing in ad hoc

networks,”, Communications, 2002.

[16] F. Hu and N.K. Sharma, “Enhancing Wireless Internet

Performance,” IEEE Comm. Surveys and Tutorials, vol.

4, no. 1, pp. 2-15, Dec. 2002.

[17] V. Paxson, “End-to-End Internet Packet Dynamics,”

IEEE/ACM Trans. Networking, vol. 7, no. 3, pp. 277-

292, June 1999.

[18]R. Ludwig and R. H. Katz, “The Eifel algorithm: making

TCP robust against spurious retransmission,” ACM

Computer Communications Review, vol. 30, no. 1, pp.

30–36, January 2000.

[19] Jon C. R. Bennett, Craig Partridge, and Nicholas

Shectman, Packet Reordering is Not Pathological

Network Behavior IEEE/ACM TRANSACTIONS ON

NETWORKING, VOL. 7, NO. 6, DECEMBER 1999.

[20] V. Jacobson, R. T. Braden, and D. Borman, TCP

Extensions for High Performance, rfc-1323, May 1992.

[21] J. Bennett, C. Partridge, and N. Shectman, “Packet

Reordering is Not Pathological Network

Behavior,” IEEE/ACM Trans. Networking, vol. 7, no. 6, pp.

789-798, Dec. 1999.

[22] V. Jacobson, “Congestion Avoidance and Control,”

ACM SIGCOMM Computer Comm. Rev., vol. 18, no. 4,

pp. 314-329, Aug. 1988.

[23] S. Floyd and K. Fall, “Promoting the Use of End-to-End

Congestion Control in the Internet,” IEEE/ACM Trans.

Networking, vol. 7, no. 4, pp. 458-472, Aug. 1999.

[24] TCP PACKET CONTROL FOR WIRELESS

NETWORKS,Wan Gang Zeng,THESIS SUBMITTED

IN SIMON FRASER UNIVERSITY,August 24, 2006.

[25] R Braden, Requirements for internet hosts–

communication layers, RFC 1122, IETF Network

Working Group, October 1989.

[26] Hua Wu and Jian Gong, Packet Loss Estimation of TCP

Flows Based on the Delayed ACK Mechanism,

C.S.Hong et al.(Eds):APNOMS 2009,LNCS

5787,PP.540-543,2009.

[27] E. Altman and T. Jimenez, “Novel Delayed ACK

Techniques for Improving TCP Performance in Multihop

Wireless Networks,” Lecture Notes in Computer

Science, vol. 2775, Sept. 2003.

[28] A. K. Singh and K. Kankipati, “TCP-ADA: TCP with

Adaptive Delayed Acknowledgement for Mobile Ad Hoc

Networks, ”Proc. IEEE WCNC 2004, vol. 3, Atlanta,

GA, USA, 21–25 Mar. 2004, pp. 1685–90.

[29] Ammar Mohammed AI-Jubari and Mohamed Othman “A

New Delayed ACK Strategy for TCP in Multi-hop

Wireless Networks” 978-1-4244-6716-7/10/$26.00 ©

2010 IEEE.

[30] Ammar Mohammed Al-Jubari, Mohamed Othman,

Borhanuddin Mohd Ali and Nor Asilah Wati Abdul

Hamid,”TCP performance in multi-hop wireless ad hoc

networks: challenges and solution”, EURASIP Journal

on Wireless Communications and Networking December

2011.

[31] Nitin Vaidya, Miten Mehta, Charles Perkins, and Gabriel

Montenegro, “Delayed Duplicate Acknowledgements: A

TCP-Unaware Approach to Improve Performance of

TCP over Wireless”.

[32] Miten N.Mehta and Nitin H.Vaidya, “Delayed Duplicate

Acknowledgements: A proposal to Improve Performance

of TCP on Wireless Links”, Feb, 24, 1998.

[33] A Roach, A negative acknowledgement mechanism for

signaling compression, RFC 4077, IETF Network

Working Group (May 2005)

[34]Guy Riddle “Method for Measuring Network Delay using

Gap time” Patent No: US &, 012,900 B1, Mar, 14, 2006.

[35] “The network simulator – ns2,” Available at

http://www.isi.edu/nsnam/ns/.

[36] Prasanthi.S., Sang-Hwa Chung and Won-Suk Kim, An

Enhanced TCP Scheme for Distinguishing Non-

congestion Losses from Packet Reordering over Wireless

Mesh Networks 2011 IEEE.

[37] Sreekumari and Chung “TCP NCE: A unified solution

for non-congestion events to improve the performance of

TCP over wireless networks” EURASIP Journal on

Wireless Communications and Networking 2011,

http://jwcn.eurasipjournals.com/content/2011/1/23.

[38] K. LakshmiNadh, Y.K.Sundara Krishna and

K.Nageswara Rao “Improving TCP performance with

delayed acknowledgments over wireless networks: a

receiver side solution”, Conference on Advances in

Recent Technologies in Communication and Computing

(ARTCom 2013), 20-21 Sept. 2013,DOI:

10.1049/cp.2013.2231, ISBN: 978-1-84919-842-

4,Location: Bangalore, India.

[39] Quanjie Qiu, Zhinhuo Li ans Zhongfu Wu “An

Algorithm for Avilable Bandwidth Estimation of IPv6

Network” DOI:10.1007/978-3-642-17313-4_41 In

proceeding of: Advanced Data Mining and Applications-

6th International Conference, ADMA 2010,

Chongqing,China,November 19-

21,2010,Preceediings,PartII Source:DBLP.

[40] Sumitha Bhandarkar and A. L. Narasimha Reddy

Quanjie Qiu, Zhinhuo Li ans Zhongfu Wu “TCP-DCR:

Making TCP Robust to Non-congestion Events”

Networking 2004, Lecture Notes in Computer Science

Volume 3042, 2004, pp 712-724.

IJCATM : www.ijcaonline.org

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Prasanthi,%20S..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Sang-Hwa%20Chung.QT.&searchWithin=p_Author_Ids:37291426000&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Won-Suk%20Kim.QT.&searchWithin=p_Author_Ids:37856250600&newsearch=true
http://jwcn.eurasipjournals.com/content/2011/1/23
http://digital-library.theiet.org/search;jsessionid=yto3xviptwx6.x-iet-live-01?value1=&option1=all&value2=K.+LakshmiNadh&option2=author
http://digital-library.theiet.org/search;jsessionid=yto3xviptwx6.x-iet-live-01?value1=&option1=all&value2=Y.K.S.+Krishna&option2=author
http://digital-library.theiet.org/search;jsessionid=yto3xviptwx6.x-iet-live-01?value1=&option1=all&value2=K.N.+Rao&option2=author
http://dx.doi.org/10.1049/cp.2013.2231
http://link.springer.com/search?facet-author=%22Sumitha+Bhandarkar%22
http://link.springer.com/search?facet-author=%22A.+L.+Narasimha+Reddy%22
http://link.springer.com/book/10.1007/b97826
http://link.springer.com/bookseries/558

