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ABSTRACT 

Transmission Control Protocol (TCP) is connection oriented 

transport protocol used on IP in wireless medium and it insists 

lossless data transmission in proper order. When TCP is used 

as a transmission protocol where physical layer is wireless 

medium, results high packet reordering due to bursty traffic 

and drastic variation in quality of service with respect to time. 

By sharing the same path for data and acknowledgement 

increases the traffic and collision, resulting in reduced 

throughput. In order to improve QoS this paper proposes a 

solution “Improved Delay the Duplicate Acknowledgement” 

(IDDA). This reduces traffic and spurious retransmissions, 

thereby improving TCP performance.   

Keywords 

Transmission Control Protocol (TCP), Fast Retransmission, 

Wireless Networks, packet reordering, Random loss, 

congestion control. 

1. INTRODUCTION 
The Transmission Control Protocol (TCP) is one of the core 

protocols of the Internet Protocol Suite [1] which is used 

extensively by many of the Internet's most popular 

applications [2], including Web (HTTP), file transfer (FTP), 

and e-mail (SMTP), Secure-Shell, and some streaming-media 

applications. TCP provides reliable stream delivery service 

that guarantees delivery of a data stream sent from one host to 

another. The order of the bytes transmitted from each host is 

identified with a unique sequence number (seqno) [3]. So that 

the data can be transferred reliably and in order, despite of any 

fragmentation, disordering, or packet loss that occurs during 

transmission. When a destination receives a data packet, it 

acknowledges the receipt of the packet by sending back an 

acknowledgement packet with the next expected data seqno. 

The round trip time (RTT) [4] is sampled and averaged to 

calculate the retransmission timeout (RTO) used by TCP to 

achieve reliable delivery. RTT timing has traditionally taken 

the form of starting a timer before a sending a packet and the 

packet is transmitted. After receiving the proper 

acknowledgement packet the timer will stop.   

TCP primarily uses cumulative acknowledgment scheme [5], 

where the receiver sends an acknowledgement packet 

signifying that the receiver has received all data preceding the 

acknowledged seqno. Essentially, the first data byte in a 

packet is assigned a seqno, which is inserted in the seqno 

field, and the receiver sends an acknowledgment specifying 

the seqno of the next packet is expect to receive. For example, 

if the sender sends 4 bytes with a seqno of 100, 101, 102, & 

103 assigned, then the receiver would send back an ACK of 

104 since that is the next byte it expects to receive in the next 

packet. By sending an ACK of 104, the receiver is signaling 

that it received bytes 100, 101, 102, & 103 correctly. If, by 

some chance, the last two bytes were corrupted then an ACK 

value of 102 would be sent since 100 & 101 were received 
successfully.  

TCP performance over networks subjected to congestion 

losses, which can be improved by enhancing following 

congestion control algorithms [2] [6] [7] [8]: slow start, 

congestion avoidance, fast retransmit, and fast recovery [9]. 

Slow start: A slow start suggests that the sender set the 

congestion window (cwnd) to 1 and then for each ACK 

received it increase the cwnd by 1. For the first RTT receiver 

sends 1 packet, in the second receiver sends 2 and in the third 

receiver sends 4. Thus sender increases exponentially until a 

packet loss, and decreases our sending rate by reducing 

congestion window to one and start over again. 

Congestion avoidance: For congestion avoidance Tahoe uses 

‘Additive Increase Multiplicative Decrease’. A packet loss is 

taken as a sign of congestion and Tahoe saves the half of the 

current window as a threshold value. It then set cwnd to one 

and starts slow start until it reaches the threshold value. After 

that it increments linearly until it encounters a packet loss.  

Fast retransmit: So Reno [9] suggests an algorithm called 

‘Fast Re-Transmit’. Whenever receiver receives 3 duplicate 

ACK’s that indicates the segment was lost, so sender re-

transmits the segment without waiting for timeout.  

Fast recovery: Like Reno [9], New-Reno [10] also enters into 

fast-retransmit when it receives multiple duplicate packets. In 

the fast recovery phase which allows for multiple re-

transmissions in new-Reno and it notes the maximums 

segment which is outstanding. The fast-recovery phase 

proceeds as in Reno, when a fresh ACK is received.  

The rest of the paper is organized as follows: The Section 2 

summarize the causes of the packet reordering and its 

consequences on TCP. Section 3 provides TCP delayed ACK 

mechanism and a survey of existing solutions and drawbacks. 

Section 4 discusses proposed solution IDDA. A performance 

study of the surveyed algorithms is presented in Section 5. 

Finally, conclusion will be provided in Section 6. 

2. CAUSES AND CONSEQUENCES OF 

PACKET REORDERING 
All Recent studies show that packet reordering plays a vital 

role in packet transmission and it is not a rare event in 

wireless networks [11] [12]. Packet reordering (PR) [13] is a 

phenomenon in which packets with higher sequence numbers 

are received earlier than those with smaller sequence 

numbers. In Fig1, The TCP sender consecutively sends eight 
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packets: P1, P2, P3, P4, P5, P6, P7 and P8. The same 

sequence arrives at the TCP receiver in the following order: 

P1, P3, P4, P5, P6, P2, P7 and P8, where P2 is reordered with 

reordering block size = 1 and reordering delay time = 4 

packets. Upon receiving the three dupacks of packet P2, the 

sender triggers fast retransmission and retransmits the packet 

by reducing the size of cwnd groundlessly. 

 

 

Fig1: Packet reordering  

2.1 Causes of PR  

In wireless networks, packet reordering is due to [13] [14] 

multipath routing, Parallelism in Packet router, Load splitting, 

route fluttering, link layer retransmissions, router forwarding 

lulls etc.  

Multi-Path Routing 
When packets from the same flow take two or more paths 

through a network, it becomes very likely that packets will 

arrive out of order. The TCP receiver will reorder the packets 

before presenting the data to the application. The TCP sender 

fast retransmit mechanism will often mistake packet 

reordering for packet loss and will continue to reduce its 

offered load to unacceptably low levels. 

Parallelism in Packet router 
This is a promising approach to build a high-speed and 

inexpensive packet router. Thus, packet reordering is more 

likely to occur in high-speed networks. Successive packets 

that arrive at a router, even on the same link, may be 

forwarded and/or switched simultaneously by independent 

hardware. This simple parallel approach ignores ordering 

between packets processed simultaneously, and introduces 

packet reordering. 

Load splitting 
Load splitting among multiple links. The analysis in a recent 

study [15] shows that multiple links with slightly different 

link delays may introduce significant packet reordering. 
Route Fluttering 
Routing fluttering is a network phenomenon in which the 

forwarding path to a certain destination oscillates among a set 

of available routes to that destination. This result from route 

instability due to shaky links, and heavy loads or bursty traffic 

can present topological changes in the wireless environment. 

Similar to packet-level multipath routing, route fluttering 

causes packets to be forwarded on different paths and arrive at 

a destination can introduce chaotic in packets. 

Link-Layer Retransmissions 

Link-layer retransmission mechanisms [16] have been 

proposed to efficiently recover transmission losses due to high 

channel error rates in wireless networks. Such retransmitted 

packets are sent only after the losses are detected. These 

packets may then be interspersed with other packets belonging 

to the same traffic flow.  

Router Forwarding Lulls 
Some routers can halt its forwarding activity for buffered 

packets when it processes a routing update. These buffered 

packets are interspersed with new arrivals, thus causing 

packet reordering [17]. 

2.2 Consequence of PR 
The effects of packet reordering are determined by how the 

TCP sender responds to these various tasks [18] [19]: 

Spurious fast retransmit [6], Keeping Congestion Window 

Unnecessarily Small, Spurious timeout and ACK 

compression. 

Spurious fast retransmit 
Most TCP’s implement an algorithm known as fast retransmit 

[6] used to recover quickly from occasional packet loss. The 

fast retransmit algorithm is triggered by a series of duplicate 

acks. If the TCP sender gets three duplicate acks, it assumes 

that the data immediately after the byte being acked has been 

lost, and retransmits that data. The idea is that the duplicate 

acks indicate a packet has been lost, and by quickly 

retransmitting the data. If the duplicate acks cause due to 

reordering, then the fast retransmission is unnecessary and 

wastes bandwidth. 

Keeping Congestion Window Unnecessarily Small 
Fast recovery is generated with fast retransmit. A spurious fast 

retransmission would cause extra workload to the network and 

make congestion window half. Therefore, the congestion 

window becomes small relative to the available bandwidth of 

its transmission path with packet reordering.  

Spurious timeout 
Reordering can falsely inflate the RTT estimate when no 

unnecessary retransmissions are sent, which can potentially 

hurt performance in that TCP would have to wait longer 

before sending a legitimate retransmission. In the case when a 

segment is retransmitted needlessly because of reordering, the 

corresponding RTT sample [20] must be marked as invalid.  

ACK compression and traffic 
ACK compression is another issue that possibly arises with 

wireless link delays.  Packet reordering causes not only data 

segments, but also ACKs to arrive at a destination out of 

order. The former phenomenon is called forward-path 

reordering, while the second is known as reverse-path 

reordering [21]. ACK-clocking or self-clocking refers to the 

property that the receiver can generate ACKs no faster than 

data segments can get through the network [22]. For forward-

path reordering, an ACK for several new segments, which 

follows a number of duplicate ACKs, can in turn allow a 

source to inject several pending segments into the networks. 

Even when there is no data segment being reordered, 

disordered ACKs lead to a source transmitting several 

segments together rather than one or two segments per ACK. 

This causes loss of its ACK clocking and bursty traffic, which 

may lead to transient network congestion and congestion 

collapse from undelivered packets [23]. 

3. DELAYED DUPLICATE 

ACKNOWLEDGEMENT SOLUTIONS 

FOR PACKET REORDERING  

3.1 The TCP delayed ACK mechanism 
With every segment that TCP sends, the receiver issues an 

ACK to acknowledge the receipt of the data. Instead of 

sending an ACK for every segment, the delayed ACK [24] 

[25] [40] can be enabled, which gives the TCP receiver have 

to wait some time before sending an acknowledgement. In the 

implementation of TCP protocol, delayed ACK is used to 

improve the TCP transfer performance [26]. A host that is 

receiving a flow of TCP data packets can increase efficiency 

by sending few than one ACK packet per data packet 

received. Because a packet loss event will cause the change of 

the behavior pattern of the end points, investigation of the 

ration between the bidirectional packet numbers give clues of 
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network packet loss. The receiver contains a timer bound 

variable interval that gives the number of seconds to wait for 

the second in-order packet. The time-out of this timer causes 

immediate ACK generation of the first packet. In addition, 

out-of-order packets cause immediate ACK generation. 

  

3.2 Existing Solutions 
A number of TCP solutions have been proposed to solve the 

problem of packet reordering related acknowledgment delay 

are: DelAck TCP-ADA and TCP-ADW. 

3.2.1 DelAck 
Jimenez and Altman have promoted the use of delayed ACK 

techniques (DelAck) [27] [30], to improve the performance of 

TCP in multihop wireless ad-hoc networks. DelAck is a 

receiver-side solution, which reduce channel competitions 

among data segments and ACKs and also reduce performance 

diminution due to packet reordering. In transmission path, the 

forward and reverse traffic between adjacent hosts can share 

and compete for same channel. In order to reduce channel 

competitions, the DelAck is delay the acknowledgement for 

the coming data packets. In this approach a receiver generate 

an ACK for every d data segments. An ACK is also generated 

whenever the first unacknowledged data segment has been 

received for a certain time period, say 0.1 s. The value of d 

can be configured so that d increases with the segment seqno. 

Drawbacks: 

 The value of d is orthogonal to the packet seqno and 

which depends on the size of the congestion window and 

available bandwidth.  

 The bursts of TCP segments may be put into the network 

every time a delayed ACK is received by a source. This 

can start to transient network congestion and congestion 

collapse due to undelivered packets.  

3.2.2. TCP-ADA 
Kankipati and Singh developed TCP with “adaptive delayed 

acknowledgment” (TCP-ADA) [28] [30]. It is a receiver-side 

solution to reduce intra-flow channel contention in mobile ad 

hoc networks. The approach of TCP-ADA is similar to that of 

DelAck [27, as long as TCP-ADA postpones acknowledgment 

for a time period. After receiving the data segment, TCP-

ADA updates ∆, an exponentially weighted moving average 

of the inter arrival time between two consecutive packets. A 

destination will defer sending an ACK of the segment for a 

time period of β∆. The deferment period is restarted every 

time a data segment arrives before the postponement timer 

expires. An ACK is sent to a source if the total deferment 

period reaches a certain threshold. 

Drawbacks: 

 The source has to be idle for about one RTT to receive an 

ACK before it can send new segments to the destination 

then the loss of ACK-clocking to the network.  

 If one ACK for a full congestion window of data. The 

loss of that ACK leads to expiration of the retransmission 

timer and the initiation of the slow start phase to restarts 

cwnd.  

3.2.3. TCP-ADW 
Ammar and Othman devised the adaptive delayed ACK 

algorithm TCPADW [29] [30], is a receiver-side solution 

which addresses ACK delay window. The main goal was to 

have a better throughput by lowering the number of ACK to 

the minimal number, which guarantees the TCP reliability and 

reduce channel competition. In this scheme, unless the 

sender’s retransmission timer expires, the receiver always 

increases the delay window based on the increase in the 

transmission rate (cwnd size), except at session startup. 

During the startup, the receiver sets the delay window to 1 and 

increases it based on the transmission rate. When the packet 

loss occurs, the receiver decreases its delay window to a 

certain value based on the hop count. In case of short path, the 

receiver decreases the delay window to half. For the long 

path, the receiver will decrease its delay window to the value 

two. Out-of-order packets cause ACK generation immediately 

in order to inform the sender of the packet loss in a timely 

manner. 

Drawbacks: 

 In this scheme when packet reordering occurs, it does not 

avoid spurious retransmissions. 

 It does not solve packet reordering by delaying the ACK, it 

is for avoiding the competition and collision. 

 

4. PROPOSED SOLUTION 
TCP-IDDA [38] is a new approach, which is capable of 

decreasing the number of ACK’s to improve TCP 

performance and avoid unnecessary retransmissions. 

4.1 TCP-IDDA 
Generating acknowledgement for each data packet also 

reduces TCP throughput over wireless networks than in wired 

networks. In wireless networks, acknowledgement packets 

share the path with data packets. This creates the competition 

and collision between ACK and DATA packets, resulting in 

reduced TCP throughput. Decreasing the number of ACKs 

enhances the performance of TCP as it reduces the 

competition and collision with DATA packets. This paper 

proposes a receiver-side solution IDDA is extension of 

Delayed Duplicate Acknowledgements [31] [32], which 

Delay the duplicate acknowledgement for a certain time 

period. The proposed solution is to decrease the number of 

acks to improve TCP performance. TCP throughput is 

improved when one ack acknowledges the full congestion 

window or out-of-order packets.  

In the network environment of TCP must estimate the 

following settings and with mathematical calculation. The 

information has retrieved with PING for google.co.in with 

address (173.194.117.111) 56(84) bytes of data. The data is 

displayed in the following table1. 

Table1: data with seqnumber and time 

Seq Time 

(ms) 

Seq Time 

(ms) 

Seq Time 

(ms) 

1 316 11 285 21 285 

2 316 12 300 22 302 

3 303 13 297 23 269 

4 309 14 314 24 260 

5 322 15 319 25 241 

6 316 16 311 26 256 

7 313 17 277 27 251 

8 294 18 281 28 270 

9 306 19 265   

10 296 20 Reorder   
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The RTT [4] was originally estimated in TCP by:  

RTTest = (α * RTTOld) + ((1 – α) * RTTNew)          (1)  

Where α is constant weighting factor (0 ≤ α < 1). Choosing a 

value α close to 1 makes the weighted average immune to 

changes that last a short time (e.g., a single segment that 

encounters long delay). Choosing a value for α close to 0 

makes the weighted average respond to changes in delay very 

quickly. For simulation maximum RTT sample is taking into 

consideration. 

For our calculation α=0.5. 

RTTest = (0.5 * 316) + (0.5 * 303) 

          =309.5ms 

Compute Retransmission Time Out for the network 

environment 

 

RTO =β*RTTest   where β>1                                (2)  

A low value of ' β ' will ensure quick detection of a packet 

loss. Any small delay will however cause unnecessary 

retransmission. A typical value of ' β ' is kept at 2. 

For our calculation β =1.5. 

RTO =1.5*309.5 

       =464.25ms    

In order to observe congestion, the traditionally TCP 

implementations have increased cwnd by precisely   SMSS 

bytes upon receipt of an ACK covering new data. Thus TCP 

implementations increase cwnd, 

 cwnd += min (N, SMSS)                                      (3) 

Where SMSS is (Sender Maximum Segment Size), which is 

the size of the largest segment that the sender can transmit.   

Another common formula that a TCP MAY use to update 

cwnd during congestion avoidance is given in equation (4): 

  cwnd += SMSS*SMSS/cwnd                               (4) 

TCP sender sequentially sends packets into the network by 

representing its receiver address. 

                                                                                                 

                                                                      (5) 

Where       is number of packets with window size w 

(1≤i≤w). 

The packets are entered into the network in the order of 

p(i),p(i+1),p(i+2)…….p(i+w) 

When the receiver gets the unsequenced packet from sender, it 

immediately sends negative ACK of previous sequence 

packet. That is, the receiver gets the packet order in the form 

of    p(i),p(i+1),p(i+2),p(i+3),p(i+4),p(i+5)….p(i+27). 

There the packet p (20) get reordered, it immediately responds 

to the first two consecutive out-of-order packets by sending 

negative dupack (ACK19) [33] immediately and calculates 

delay value. However, dupacks for further consecutive out-of-

order packets are delayed for certain time d. If the next in-

sequence packet is received within the interval, then the 

delayed dupacks are not sent. Otherwise, after the time d 

interval, the receiver sends ACK for every d. 

In order to calculate delay value, When the packets get 

reordered, at the receiver end, it measures the gap [34] [39] 

between two adjacent data packets. At this time, we supposed  

       
 Stood for Gap value, which is difference between 

the arrival time of recently received packet and previous 

packet.  

       
=   

-   
                       (6) 

Where    
 , is recent packet time    

is previous packet 

time at receiver side.  

       
=285-265      

           =20ms 

Calculate one way round trip time from eq(1) RTT=309.5ms 

to=RTT/2                                                                (7) 

  =154.75ms 

Then add the gap value of eq (6) to to 

 T=to+       
                                                       (8)            

   =174.75ms 

Then measure T1 by adding some time variance with eq (8) 

T1 =T + εT                        (9) 

     Where ε=0.25            

  T1 =218.43ms                                                                                                 

Send previously sent acknowledgement for every delay (d) 

value is obtained with eq (9). 

d =γT1                      (10) 

Where γ=0.5     

d=109.21ms                                                                                                          

If the reordered packet p (20) is arrives with in delay interval, 

the receiver should not send the third dupack. Otherwise it 

will send the third dupack. 

At the sender side it maintains acknowledgement threshold 

limit value. 

                                                                 (11) 

When ACK value reaches to threshold limit, immediately 

sender concludes the packet is loss or dropout but not 

reordered. Then sender retransmits the lost packet. 
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Table2 shows the comparison of different mechanisms in 

terms of fast retransmission, with our proposed mechanism, 

the reordered packet is arrived at the receiver side before 

sending the third dupack. 

Table2: Different mechanisms in terms of fast 

retransmission 

Mechanism Fast Retransmission (ms) 

RTO 464.25 

Duplicate ACK’s 

(Traditional) 

314 

TCP-IDDA 400.25 

 

5. PERFORMANCE EVALUATION 
Our approach concentrates mainly on keeping the TCP 

throughput by delay the ACK to cwnd size. Simulation 

experiments carried out to investigate and evaluate our 

algorithm on hybrid networks. The main goal is to achieve 

maximal TCP throughput and avoiding the unnecessary fast 

retransmissions and reduce the needless reduction of 

congestion window size by delaying ACKs. The performance 

of IDDA is compared in terms of throughput, ACK’s received 

and unnecessary retransmissions, using simulations conducted 

in ns-2 simulator [35] (version 2.35), to the following other 

algorithms: DelAck, TCP-ADA and TCP-ADW with metrics 

Throughput[36], Unnecessary retransmission rate[37] and 

Rate reorder/ack[26].  

 

Fig2: Hybrid topology 

 5.1 Simulation Environment and Results 
In this section, we describe our simulation environment and 

parameter settings used for evaluating the performance of 

IDDA over hybrid topology which uses Internet Service 

Provider (ISP), Gateway, Ethernet LAN and Wi-Fi as shown 

in Fig2. The simulated network is having 30 wireless nodes 

which have valid transmission range of 200m apart. In the 

Linux to know the link utility by using Traceroute command it 

can identify total number of hops from source to destination 

with time. In our simulation case it is having maximum of 30 

hops that was identified with Traceroute i.e. from INDIA to 

US (Ex. amazon.com). During simulations, the data packets 

are continuously transmitted up to the end of simulation and 

the source of all TCP flows originated at the first node. The 

data transmission rate is 2Mbps, otherwise stated. Each data 

point represents an averaged result of 5 simulation runs with 

different random seeds.  FTP is the traffic source we used all 

of our simulations. The packet size is 1000 bytes and the 

initial window limit is set to 8 packets. The size of an 

acknowledgment packet is same as the size of data packet.  

Packet reordering is simulated by modifying the error model 

object of ns-2 such that randomly selected packets can be 

delayed for a random amount of time. This allows us the 

flexibility to choose the percentage of the packets to be 

delayed, the distribution for choosing the packets randomly as 

well as the distribution for the delays. The TCP-IDDA agent 

is implemented by modifying the tcp-sack1 implementation of 

TCP-SACK agent in ns-2. 

The TCP Sink/Sack1 agent is used for the receivers. FTP 

sources start sending data at time 0 and are staggered to avoid 

synchronization. All simulations [37] are run for 150 seconds. 

The receiver advertises a large window such that the sending 

rate is not limited by the receiver dynamics. 

Throughput Evaluation  
Fig3 presents the result of typical variation of TCP throughput 

under varying bandwidths ranges from 10 to 30 Mbps. The 

loss rate and reorder rate set to 5 and 3%, respectively. From 

the graph, we observe that when bandwidth increases, the 

throughput also increases, except IDDA the throughput of all 

other TCP’s fluctuates lightly. Compared to other delay 

mechanisms, IDDA can utilize the bandwidth efficiently. 

When bandwidth greater than 15 Mbps, IDDA begins to 

increase the throughput.  

 

 

Fig3: TCP throughput according to various bandwidths 

Simulation results in Fig4 shows the throughput gain of IDDA 

in presence varying reorder rate ranges from 1 to 5%. When 

reorder rate increases, the performance of IDDA becomes 

better than DelAck, TCP-ADA and TCP-ADW. As a result, 

DelAck, TCP-ADA and TCP-ADW frequently reduce the size 

of cwnd and send spurious retransmissions and thereby 

decrease the throughput performance. When the rate of 

reorder increases, the spurious retransmissions of all TCP’s 

increases. The delay mechanisms such as DelAck, TCP-ADA 

and TCP-ADW cannot perform well according to the different 

reorder rates because these solutions cannot properly detect 

the reorder packets and results in the increases of spurious 

retransmissions. On the other hand, IDDA can detect reorder 

packets compared to other TCP mechanisms.  
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Fig4: TCP throughput according to various reorder rates. 

Unnecessary retransmission Evaluation  

The Fig5 analyzes the percentage of spurious retransmissions 

of various algorithms under varying reorder rate ranges from 

1 to 5%. The spurious retransmissions rate, which is defined 

as the ratio of spurious retransmissions to the total number of 

packets transmitted.  

 

Fig5: Comparison of unnecessary retransmissions vs. 

reorder rate. 

 

Acknowledgments received Evaluation 

 
 

Fig6: ACK’s received vs. reorder rate. 

 

In the Fig6, it analyzes the percentage of acknowledgements 

received of various algorithms under varying reorder rate 

ranges from 1 to 5%. The acknowledgements received, which 

is defined as the ratio of acknowledgements received to the 

total number of packets reordered. When the rate of reorder 

increases, the acknowledgements received of all TCP’s 

increases. However, IDDA has less number of ACK’s 

received compared to other TCP mechanisms due to the 

ability of detecting the reorder packets. Compare to DelAck, 

TCP-ADA and TCP-ADW the IDDA has less number of 

acknowledgements received because of their capability to find 

the reorder packets. 

Table3 a summary of the TCP enhancements listed in this 

paper and their functionality is presented. The comparison is 

based on features: the solution deals with packet reordering, 

reducing ACK overhead, spurious retransmission and usage of 

bandwidth. 

Table3: Comparison of various TCP packet reordering 

Receiver side solutions 

Strategy Dealing 

with 

reordering 

Reducing 

ACK 

overhead 

Dealing 

with 

spurious 

retransmissi

on 

Usage of 

bandwi

dth 

DelAck No Low No Low 

ADA No Low No Low 

ADW Yes Medium No  Medium 

IDDA Yes High Yes High 

 

6. CONCLUSION 
In this paper, we have presented the effect of number of 

acknowledgements generated on TCP throughput in wireless 

networks. The TCP-IDDA is a receiver side solution, which 

tries to minimize the competitions between data and ACK 

packets by reducing the number of ACK packets. Further, 

unnecessary retransmissions and needless reduction of 

congestion window size are significantly reduced by delaying 

the duplicate acknowledgement for a time when packet 

reordering occurs and it also improves bandwidth availability.  

We also proposed some future research direction, including 

the need of a mechanism to resolve the other non-congestion 

losses including random loss with different topologies. 
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