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ABSTRACT
Conjugate gradient methods have played a useful and powerful role
for solving large-scale optimization problems which has become
more interesting and essential in many disciplines such as in engi-
neering, statistics, physical sciences, social and behavioral sciences
among others. In this paper, we present an application of a pro-
posed three-term conjugate gradient method in regression analysis.
Numerical experiments show that the proposed method is promis-
ing and superior to many well-known conjugate gradient methods
in terms of efficiency and robustness.
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1. INTRODUCTION
This paper concerns the conjugate gradient methods for the numer-
ical solution of the following unconstrained optimization problem

min f(x);x ∈ Rn (1)

where f : Rn → R is continuously differentiable function and n
is the dimension of x, which is assumed to be large. The iterates of
the conjugate gradient methods are obtained by

xk+1 = xk + λkdk, (2)

where dk is the search direction and λk > 0 is the step length. The
step length can be calculated by an exact line search :

λ∗k = argminλ∈R{f(xk + λkdk)} (3)

or by some line search strategies such as the Armijo condition;

f(xk + λkdk) ≤ f(xk) + c1λkg
T
k dk (4)

for some constant c1 ∈ (0, 1), where gk = ∇f(xk) denotes the
gradient vector of f(x) at the current iterate point xk. These meth-
ods also define the search direction dk by

dk+1 = −gk+1 + βkdk, d0 = −g0 (5)

for k ≥ 1, where the parameter βk ∈ R is a scaler known as conju-
gate gradient coefficient.
It is well known that regression analysis often arises in economics,
finance, trade, meteorology, medicine biology,chemistry physics

and so on (see for example [1],[2],[3] and the references therein).
The classical regression model is defined by

Y = h(X1,X2, ...,Xp + ε) (6)

where Y is the response variable, Xi is the predictor variable, i =
1, 2, , ...p, p > 0 is an integer constant, and ε is the error term.
The function h(X1,X2, ...,Xp) explain the type of relationship
that exist between Y and X = (X1,X2, ...,Xp). Thus we obtain
the following linear regression model when h is a linear function

Y = β0 + β1X1 + β2X2 + ...+ βpXp + ε (7)

which is the simplest regression model, where β0, β1, ..., βp are
the regression parameters. The most important task in regression
analysis is to estimate the parameter β = (β0, β1, ..., βp) and the
method of least squares is an important method to determine the
parameters which is defined by

min
β∈Rp+1

S(β) =

m∑
i=1

(hi−β0+β1Xi1+β2Xi2+...+βpXip)
2 (8)

where hi is the data valuation of the ith response variable,
Xi1,Xi2, ...,Xip are p data valuation of ith predictor variable, and
m is the number of the data. If the dimension of p and the number
m is small, then we can obtain the parameters β = (β0, β1, ..., βp)
from extreme value of calculus and thus it is not difficult to see that
problem (8) is the same as the unconstrained optimization prob-
lem (1). The regression parameters of interest are estimated by the
least squares method if the dimension of the parameters is small
and can be transformed in to unconstrained optimization problems
. The numerical optimization techniques to be employed includes
the steepest descent method, Newton method, quasi-Newton meth-
ods or conjugate gradient methods in finding the solution to such
given practical optimization problems.

2. THE DERIVATION PROCESS
The idea of memoryless quasi-Newton method of Perry [7] in
which Hk+1 is updated from Hk = θkI on every iteration is con-
sidered. Applying this idea of memoryless scheme to symmetric
rank-one (SR1) update, we can obtain the search direction without
the computation and storage of matrices which gives immediately
the following:

Hk+1gk+1 = θkgk+1 + (sk−θkyk)(sk−θkyk)T

yT
k

(sk−θkyk)
gk+1,
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= θkgk+1 + (sk − θkyk)αk, (9)

and

dk+1 = −Hk+1gk+1 = −θkgk+1 − αksk + θkαkyk,

= −θkgk+1 − αksk + δkyk. (10)

where

αk =
(sk − θkyk)T

yTk (sk − θkyk)
gk+1, (11)

δk = θkαk, (12)

θk =
ωk
υk
−

{
ω2
k

υ2
k

− ωk
ηk

} 1/2

. (13)

We now present the basic steps of our proposed line search algo-
rithm here represented as TTCG-SR1
Algorithm TTCG-SRI
Step 1 : Given an initial point x0 ∈ Rn, set k = 0 and d0 = −g0

Step 2 : Test a criterion for stopping the iterations. If the test is sat-
isfied, then stop; otherwise continue with step 3
Step 3 : Compute the search direction dk by (10)-(12), with θk de-
fined in (13)
Step 4 : Find an acceptable steplength λk, by using the following
line search procedure. Given the constants η ∈ (0, 1) and τ, τ ′ with
0 < τ < τ ′ < 1
(i) set λ = 1
(ii) Test the relation

f(xk + λdk) ≤ f(xk) + ηλgTk dk, (14)

(iii) If (14) is not satisfied, choose a new λ in [τλ, τ ′λ] and go to
(ii). If (14) is satisfied, set λk = λ and xk+1 = xk + λkdk
Step 5 : Set k := k + 1, and go to step 2

3. DESCRIPTION OF THE PROBLEMS
In this section, the detailed description of the problems considered
are given below, these problems were obtained from the papers of
[8] and [9].
Problem 1. In the table below, there is data of some kind of com-
modity between year demand and price:

Table 1. Data of demand and price
Price pi(RM) 1 2 2 2.3 2.5 2.6 2.8

Demand di(500g) 5 3.5 3 2.7 2.4 2.5 2

Price pi(RM) 3 3.3 3.5

Demand di(500g) 1.5 1.2 1.2

From the statistical point of view we can infer that there will be
possible change in the demand even though the price is inconve-
nient and the demand will be possible invariably albeit the price
changes. In summary, there will be decrease in the demand with
the increase in the price and our primary objective is to determine
the approximate function between the demand and the price, that
is the regression equation of d to p.

From the given data above, one can observe that there exists

a linear relationship between the demand and the price, with the
regression equation given by d̂ = β0 + β1p, with β0 and β1

denoting the regression parameters. Solving the above regression
equation entails finding the value of β0 and β1 by the method of
least squares that minimized the problem

minQ =

n∑
i=0

[di − (β0 + β1pi)]
2, (15)

we can now transform the above least squares problem in to an
unconstrained optimization problem as

min
x∈R2

f(β) =

n∑
i=1

[di − β(1, pi)
T ]2. (16)

Problem 2. The table below gives the data of the age x and the
average height H of a pine tree:

Table 2. Data of the age and average height
xi 2 3 4 5 6 7 8

hi 5.6 8 10.4 12.8 15.3 17.8 19.9

xi 9 10 11

hi 21.4 22.4 23.2

From the above problem, careful observation reveals that the age x
and the average height H have parabolic relations with the regres-
sion function defined by ĥ = β0 + β1x+ β2x

2, where β0, β1 and
β2 are the regression parameters. Similar to the problem 1 above,
we can use the method of least squares to solve the problem as

minQ =

n∑
i=0

[hi − (β0 + β1xi + β2x
2
i )]

2. (17)

Similar transformation of the above least squares problem in to an
unconstrained optimization problem yields the following as

min
x∈R3

f(β) =

n∑
i=1

[di − β(1, xi, x
2
i )
T ]2. (18)

Solving the above problems (16) and (18) using the method of ex-
treme value of calculus yields the solutions β∗ = (6.5,−1.6), and
β∗ = (−1.33, 3.46,−0.11), respectively. In this context, we em-
ploy our proposed three-term conjugate gradient via the symmetric
rank-one update method to solve these problems in order to assess
the performance of the method in solving regression problems in
comparison with the method of extreme value of calculus or other
software and some other well-known conjugate gradient methods.

4. NUMERICAL RESULTS AND DISCUSSION
This section is devoted to the application of our proposed sufficient
descent three-term conjugate gradient method via the symmetric
rank-one method in comparison with:

(i) PR+: Gilbert and Nocedal [4].
(ii) HS: Hestenes and Steifel [6] .
(iii) CG-DESCENT method by Hager and Zhang [5].
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(iv) MPRP: A three-term conjugate gradient descent modified
Polak-Ribière-Polyak by zhang et al. [10].

(v) “ NA 1” standing for Algorithm 1, obtained from Yuan and
Wei [8] and the method is implemented with the nonmonotone
Wolfe line search rule.

All the experiments are implemented on a PC using MATLAB
7.9.0 (R2009b), with double precision arithmetic. For each test
problem, we performed ten numerical experiments with different
initial guess in order to evaluate the efficiency of the methods. As
regards the stopping criteria used in our experiments, in all the al-
gorithms, convergence is assumed if ‖gk‖ ≤ ε where ε = 10−4.
We forced the algorithm to stop whenever the number of iterations
exceeds 2000, and the symbol ”-” is used to represent the failure.

The columns in Table 3 and 4 below has the following meaning:
β∗: the approximate solution from the method of extreme value of
calculus or some software.
β̀: the solution as the programme is terminated.
β̆: the initial point.
ε∗: the relative error between β∗ and β̀ defined by ε∗ = ‖β̀−β∗‖

‖β∗‖

The following different initial points are those chosen by [8]
and [9] and are adopted here to test the efficiency of our algorithm
in Problem 1:
β̆1=(1,-0.01), β̆2=(-10,0.04), β̆3=(-2,-1.0), β̆4=(15,15), β̆5=(-
10,100) β̆6=(500,1000), β̆7=(-100,-100), β̆8=(2,3), β̆9=(-2,-3),
β̆10=(-0.001,0.001)
Furthermore, the initial points below are chosen to observe the
performance behaviour of our algorithm in solving Problem 2 in
comparison with other conjugate gradient methods as follows;
β̆1=(1.1,3.0,-0.5), β̆2=(-1.2,3.2,-0.3), β̆3=(-0.003,7.0,-0.8),;β̆4=(-
0.001,7.0,-0.5) β̆5=(100,100,100), β̆6=(0,0,0), β̆7=(-10,-100,-
1000), β̆8=(10,-100,1000) ,β̆9=(1,2,3), β̆10=(0.1,-0.3,0.8)

The numerical results of Tables 3 and 5 show the performance of all
the algorithms considered in these applications, the numerical re-
sults indicates that our algorithm has made significant performance
among these algorithms. The performance from the implementa-
tion of problem 1 indicates that irrespective of the different ini-
tial points, our proposed method was able to solve the problem,
though its performance is competitive with PR+, CG-DESCENT
and NA 1, its outperformed MPRP method which failed to solve
the problem in four different initial points within 2000 iterations.
Similarly, the performance of these algorithms on problem 2 shows
that 3TCG-SR1 has potential advantages over the other algorithms
since for all the different initial points considered it has success-
fully solve the problem with more notable results than that of NA1
while PR+, HS, CG-DESCENT and MPRP methods have all failed
to solve this problem. Overall, the result of our proposed method
has more precision than from the other algorithms and the method
of extreme value of calculus or other software.

5. CONCLUSION
In this paper , we applied the three-term conjugate gradient algo-
rithm via the symmetric rank-one method proposed to solve real-
life regression problems. Numerical results from the experiments
conducted using the TTCG-SR1 algorithm has indicated that our
proposed method is competitive and notable in comparison with the
other existing algorithms employed in the implementation. Hence,
we can conclude that our algorithm is successful for the test prob-

lems considered and can further be employed for application in re-
gression analysis especially for large scale problems.
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Table 3. Numerical results for problem 1
β∗=(6.5,-1.6) 3TCG-SR1 PR+ CG-DESCENT MPRP NA1
Initial points β̀ β̀ β̀ β̀ β̀

β̆1 (6.438282,-1.575313) (6.438305,-1.575321) (6.438261,-1.575305) (6.438270,-1.575308) (6.438301,-1.575289)
ε∗ 0.009930 0.009926 0.009933 0.009932 0.009929
β̆2 (6.438288,-1.575315) (6.438299,-1.575320) ( (6.438344,-1.575336) - (6.438280,-1.575313)
ε∗ 0.009929 0.009927 0.009920 - 0.009930
β̆3 (6.438240,-1.575297) (6.438289,-1.575315) (6.4382620,-1.575290) (6.438212,-1.575287) (6.438285,-1.575314)
ε∗ 0.009937 0.009929 0.009934 0.009941 0.009930
β̆4 (6.438325,-1.575329) (6.438273,-1.575310) (6.438348,-1.575338) (6.438283,-1.575313) (6.438287,-1.575316)
ε∗ 0.009923 0.009932 0.009920 0.009930 0.009929
β̆5 (6.438290,-1.575316) (6.438280,-1.575313) (6.438343,-1.575335) - (6.438285,-1.575314)
ε∗ 0.009929 0.009930 0.009920 - 0.009930

Table 4. Continuation 1 of Table 3
β∗=(6.5,-1.6) 3TCG-SR1 PR+ CG-DESCENT MPRP NA1
Initial points β̀ β̀ β̀ β̀ β̀

β̆6 (6.438257,-1.575303) (6.438313,-1.575324) (6.438277,-1.575311) (6.438329,-1.575331) (6.438285,-1.575314)
ε∗ 0.009934 0.009925 0.009931 0.009923 0.009930
β̆7 (6.438268,-1.575307) (6.438291,-1.575316) (6.438339,-1.575334) (6.438263,-1.575305) (6.438285,-1.575314)
ε∗ 0.009932 0.009929 0.009921 0.009933 0.009930
β̆8 (6.438259,-1.575304) (6.438255,-1.575303) (6.438267,-1.575308) (6.438290,-1.575316) (6.438285,-1.575314)
ε∗ 0.009933 0.009934 0.009932 0.009929 0.009930
β̆9 (6.438270,-1.575308) (6.438324,-1.575329) (6.438337,-1.575333) - (6.438285,-1.575314)
ε∗ 0.009932 0.009923 0.009921 - 0.009930
˘β10 (6.438275,-1.575310) (6.438274,-1.575310) (6.438330,-1.575331) - (6.438285,-1.575314)
ε∗ 0.009931 0.009931 0.009922 - 0.009930

Table 5. Numerical results for problem 2
β∗=(-1.33,3.46,-0.11) 3TCG-SR1 PR+ HS CG-DESCENT MPRP NA1
Initial points β̀ β̀ β̀ β̀ β̀ β̀

β̆1 (-1.331261,3.461709,-0.108710) - - - - (-1.296574,3.450247,-0.107896)
ε∗ 0.000664 - - - - 0.009407
β̆2 (-1.331294,3.461721,-0.108712) - - - - (-1.328742,3.460876,-0.108650)
ε∗ 0.000667 - - - - 0.000551
β̆3 (-1.331325,3.461729,-0.108711) - - - - (-1.328504,3.460798,-0.108646)
ε∗ 0.000682 - - - - 0.000585
β̆4 (-1.331291,3.461718,-0.108710) - - - - (-1.321726,3.458558,-0.108483)
ε∗ 0.000676 - - - - 0.002301
β̆5 (-1.331339,3.461735,-0.108712) - - - - (-1.331363,3.461742,-0.108712)
ε∗ 0.00686 - - - - 0.000690

Table 6. Continuation 1 of Table 5
β∗=(-1.33,3.46,-0.11) 3TCG-SR1 PR+ HS CG-DESCENT MPRP NA1
Initial points β̀ β̀ β̀ β̀ β̀ β̀

β̆6 (-1.331374,3.461747,-0.108712) - - - - (-1.331363,3.461742,-0.108712)
ε∗ 0.000693 - - - - 0.000690
β̆7 (-1.331388,3.461751,-0.108713) - - - - (-1.331363,3.461742,-0.108712)
ε∗ 0.000695 - - - - 0.000690
β̆8 (-1.331388,3.461750,-0.108713) - - - - (-1.331363,3.461742,-0.108712)
ε∗ 0.000695 - - - - 0.000690
β̆9 (-1.331372,3.461746,-0.108712) - - - - (-1.331363,3.461742,-0.108712)
ε∗ 0.000692 - - - - 0.000690
˘β10 (-1.331442,3.461768,-0.108714) - - - - (-1.331363,3.461742,-0.108712)
ε∗ 0.000706 - - - - 0.000690
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