
International Journal of Computer Applications (0975 – 8887)

Volume 102– No.4, September 2014

40

Dependency Mapper based Efficient Job Scheduling and

Load Balancing in Green Clouds

Jaswinder Kaur

Research Scholar, Sri Guru Granth Sahib World
University, Fatehgarh Sahib, Punjab, India

Supriya Kinger
Asst. Professor, Sri Guru Granth Sahib World

University, Fatehgarh Sahib, Punjab, India

ABSTRACT
Cloud computing is usually recognized as a technology which

has significant impact on IT. However, cloud computing still

has many crucial problems. In a cloud computing system, Load

balancing is the most central issue in the system i.e. to

distribute the load in an efficient manner. It plays a very

important role in the realization of efficient and robust cloud

computing platform. In this paper, new load balancing

mechanisms have proposed based on character/ nature of jobs

along with priority consideration. Furthermore Virtualization is

considered in more practical way to avoid the wastage of

resources over the network. Finally the performance of the

proposed algorithm is analyzed and compared with existing

Load balancing and Scheduling policies.

Keywords
Cloud Computing, Data centers, Virtualization, Load

Balancing, Dependency Mapper.

1. INTRODUCTION
Nowadays the concept of Cloud has become one leading

paradigm. The possibility of offering “everything as a service”

(platform, infrastructure and services) has allowed companies

to move their IT, previously in private, to external hosting. To

be more specific, Cloud computing is a model for enabling

convenient, on demand network access to a shared pool of

configurable resources (e.g. Networks, servers storage,

applications, and services) that can be rapidly provisioned and

released with minimal management efforts or service provider

interaction [1].

Fig 1: Cloud computing.

On a cloud computing platform, resources are provided as

service and by needs, and it guarantees to the subscribers that it

sticks to the Service Level Agreement (SLA). A cloud is

constituted by various nodes which perform computation

according to the requests of the clients as shown in figure1.

With the increasing popularity of cloud computing, the amount

of processing that is being done in the clouds is rising rapidly

[2].

As the requests of the clients can be random to the nodes and

they can also vary in quantity, thus result in load variation on

each node. Therefore, every node in a cloud can be unevenly

loaded of tasks according to the amount of work requested by

the clients. This can extremely reduce the working efficiency of

the cloud as some nodes are overloaded while other is under

loaded. Therefore, some load balancing mechanism is needed to

ensure that every computing resource is distributed efficiently

and fairly [3].

The problem of Load Balancing gets further complicated when

energy consumption comes in as an additional system objective.

The energy consumption also varies depending on the system

workload [4]. For instance, the system consumes higher energy

if there are numerous newly arriving tasks within a short time

interval. However, resource consumption can be kept to a

minimum with proper load balancing which not only helps in

reducing costs but making enterprises greener [5].

In this paper a new load balancing policy is presented based on

dependency mapping with priority concept, furthermore the

concept of virtualization is considered in more practical way to

avoid wastage of resources along with energy efficiency to the

system.

The remainder of this paper is organized as follows. In Section

2 an overview of load balancing concepts and work done by

other researchers is presented. Section 3, presents the

architecture of proposed algorithm and discusses its working in

detail. In Section 4, Experimental result and discussions are

summarizing. Finally, the paper concludes in Section 5.

2. RELATED WORK
Load balancing has been an active area of research over the

years with an objective to ensure that every computing resource

is distributed efficiently and fairly. There are numerous

research efforts that are going on in field of load balancing.

Researchers have proposed various scheduling algorithms to

balance load over the network. Since the performance of load

balancing algorithms are greatly influenced by number of

factors like dynamicity of workload, nature of jobs,

heterogeneous of resources, etc., so there is still a lot which can

be improved in field of load balancing.

In traditional computing environments of distributed

computing, parallel computing and grid computing, researchers

have proposed a series of static and dynamic and mixed

scheduling strategies [9]. Static scheduling algorithm, does not

International Journal of Computer Applications (0975 – 8887)

Volume 102– No.4, September 2014

41

take into account the previous state or behavior of a node while

distributing the load. This has a major impact on the overall

system performance due to the unpredictability of load

fluctuation of the distributed system. Dynamic load balancing

approach takes into account the current state of the system

during load balancing decisions and is more suitable for widely

distributed systems such as cloud computing.

H. Mahalle et al. [6][7] discussed Round Robin algorithm in

which jobs are divided evenly between all processors in a round

robin order without considering the work load. Here the time

slicing mechanism is used, which divides the time into multiple

slices and each node is given a particular time slice or time

interval in which they have to perform their task. Though the

work load distributions between processors are equal but the

job processing time for different processes are not same. So at

any point of time, some nodes may be heavily loaded and

others remain idle.

S. Mulay et al. [16] proposed an algorithm which handles the

requests with priorities. It is a distributed algorithm by which

the load can be distributed not only in balanced manner but also

it allocates the load systematically by checking the counter

variable of each data center. After checking it transfer the load

accordingly i.e. the minimum value of the counter variable will

be chosen and the request is handled easily and takes less time

and gives maximum throughput.

Central Queue Algorithm [12] works on the principle of

dynamic distribution. It stores new activities and unfulfilled

requests as a cyclic FIFO queue on the main host. Each new

activity arriving at the queue manager is inserted into the queue.

Then, whenever a request for an activity is received by the

queue manager, it removes the first activity from the queue and

sends it to the requester. If there are no ready activities in the

queue, the request is buffered, until a new activity is available.

Virtualization provides an effective solution to the management

of dynamic resources in cloud data centers. Server

virtualization makes it possible to execute concurrently several

virtual machines (VM) on top of a single physical machine

(PM), each VM hosting a complete software stack (operating

system, middleware, applications) and being given a partition

of the underlying resource capacity (mainly CPU power and

RAM size).

R.Wang et al. [17] proposed an algorithm to addresses the

problem with a policy for creating load balancing method in

both Physical Machines layer and Virtual Machines layer

migration, moreover it also introduced prediction method to

ensure the transient spike does not trigger needless migration,

and in Virtual Machines layer benefit estimate model is used in

order to decide whether the migration of jobs in Virtual

Machines of same Physical Machine is benefit for whole

system. This algorithm gives better performance and thus

ensures higher QoS.

Khanna et al. [8] proposed a model based on the cloud service

and VMs, which monitor the resources (CPU and memory) of

physical and virtual machines. If a resource exceeds a

predefined threshold and some SLA is at risk, then the system

migrate a virtual machine to another physical host.

In [10], a new load balancing technique is proposed, which is

combination of technologies such as virtualization and

consolidation (to move tasks between hosts). Machine learning

and data mining is also used to build models from examples of

past behaviors. Experimental results show that machine

learning algorithms can predict system behavior with

acceptable accuracy, and end-users receive quality of service,

with least power consumption.

Fei. Ma et al. [11] proposed a new model for distributed load

balancing allocation of virtual machine in cloud data center

using the TOPSIS method-one of the most efficient Multi

Criteria Decision Making (MCDM) techniques. This method

can find the most suitable PM in the data center for the

migration of problematic VMs. Results show that system can

achieve better load balancing in large-scale cloud computing

environment with less VM migration.

As technology scales, energy in modern high performance

VLSI circuits has moved up dramatically due the burden of

maintaining a large computing infrastructure. The problem of

Load Balancing gets further complicated when energy

consumption comes in as an additional system objective.

A task consolidation technique is proposed in [13] aiming to

maximize resource utilization. The approach contributes for

promising energy-saving capability as the energy consumption

is significantly reduced when the task is consolidated with one

or more tasks. These approaches have demonstrated the

effectiveness in minimizing energy consumption while still

meeting certain performance goals. However, the efficiency of

these approaches in dealing with system dynamicity is limited

to a certain level.

The scope of energy efficiency also should be stretched further

incorporating dynamicity and heterogeneity of both resources

and tasks. For the case of large-scale dynamic environment, it is

much beneficial for a scheduler to measure its performance and

adapt accordingly. The scheduler typically, tries for minimizing

response time and ensuring fairness among the running tasks in

the system. The impending widespread usage of multiple

processor cores appears to be an excellent opportunity for

realizing performance and energy benefits [14]. Due to the fact

that cores in a processor are in a very close proximity to each

other [15], load balancing can be done very effectively reducing

idle time of processors

From above description it is clear that above mentioned

algorithms or policies lack in consideration of nature of jobs

along with energy efficient consideration to system. In most

cases, the tasks are related to each other, and the relationships

between the tasks are called "dependencies", which determine

the order in which activities need to be performed.

Dependencies are the relationships of the preceding tasks to the

succeeding tasks. Hence, a new scheduling policy which

considers nature of jobs must be designed to meet processing

requirements while providing energy efficiency to the system.

Dynamic scheduling with dependency mapping can be of a very

effective approach for proper load balancing while tracking

energy consumption. While most previous energy efficiency

solutions deal with homogenous resources and/or adopt static

scheduling policy, proposed approach explicitly taking into

account processing priority with heterogeneous resources.

3. PROPOSED SYSTEM ARCHITECTURE

The target system used in proposed work consists of a number

of servers in each of which a set of heterogeneous processors is

fully interconnected. The system framework of proposed

algorithm is shown in figure 2. User can submit requests to

systems, and to be executed by available nodes. Incoming jobs

have to wait in waiting queue. After tasks dispatched from

waiting queue, dependency mapper module generates the

International Journal of Computer Applications (0975 – 8887)

Volume 102– No.4, September 2014

42

dependency between jobs on basis of relationship between jobs.

This result in formation of two queues, one is for dependent

tasks and other is for independent tasks. Next, Priority analyzer

module considers the priority concept to determine the jobs

execution sequence. A job with high priority has to be executed

first as compared to job of lower priority. At last executing

node executes the jobs and subsequently formed virtual

machine by consolidating virtual memory of different servers

for execution of unexecuted job/jobs.

Figure 2: System framework of proposed algorithm.

From the previously defined system design, the proposed

algorithm can also be represented in mathematical form as

shown in figure 3. Suppose S, J are the sets that represent the

set of systems s1, s2…, sn and jobs j1, j2…, .jn respectively. Each

job from job set J= {j1, j2…, .jn} is evaluated for dependency

existing between jobs, which result in formation of job groups

{(jx, jy) where jx represents base jobs and jy represents

dependent jobs. All the job groups are stored in a queue G.

Dynamicity allow new jobs arrive at any moment, it absolutely

effect dependency, so mapping of jobs is generate again and

again. G is further divided into sub-queues G+ and G- to

separately represent the base jobs and dependent jobs

respectively. G+ is sorted on decreasing requirement of RAM

and is executed. Then all jobs from G- set are executed. Next

step is to consider if any tasks remain unexecuted. If it is so,

then sorting of unexecution tasks is done and node makes a

broadcast of job requirement. If response is positive, job is

migrated to that node. Otherwise virtual memory of

heterogeneous nodes is consolidated to form virtual machine,

which executes the unexcuted job list.

Figure 3: Proposed Algorithm.

The working of proposed algorithm is given as follows:
At first, a dependency mapper which considers the type of

incoming jobs/tasks is set. Each incoming job has its own

nature i.e. a job may be independent or may be chances that it is

dependent on another job. In an ideal scenario, a dependent job

must execute only after execution of the job on which it

depends. So dependency mapper here analyzes the jobs and

generates groups of independent and dependent jobs. The

proposed cloud computing system offers dynamicity, so jobs

can arrive at any moment of time, but it can affect the

dependency of existing jobs. So dependency mapping is done

again and again. Once the jobs are divided into pairs of (Dep,

Indep) jobs, before execution priority of jobs is considered. A

job pair with low priority is executed after the execution of job

with high priority. Here Virtualization has been considered in

more practical way to avoid the wastage of resources over the

network. As each heterogeneous server have some virtual

memory, so in order to avoid wastage consolidation of virtual

memory is done to create virtual machine, which executes the

unexecuted jobs.

The flow of proposed algorithm is presented with the help of

flowchart shown in figure 4.

International Journal of Computer Applications (0975 – 8887)

Volume 102– No.4, September 2014

43

Figure 4: Proposed algorithm workflow

4. PERFORMANCE EVALUATION
This section, presents the experiment configuration and present

results for the proposed algorithm.

To evaluate the performance of proposed scheduling approach,

extensive simulations with real-workload have been conducted.

In simulation system, there are 5 to 8 heterogeneous physical

nodes, each of which its own specifications. Each node is

modelled to have one CPU core with performance equivalent to

1-10 GB of RAM and 1 TB of storage. The arrival times of jobs

over network are varied.

The performance of proposed scheduling approach is analyzed

for energy efficiency, time consumption and number of

overloaded nodes, that is compared with three other existing

algorithms, First Come First Serve, Round Robin and Priority

scheduling.

In the First Come First Serve, the first data which enters to the

queue first, gets executed first. The implementation of FCFS

policy is easily managed with FIFO queue. Round Robin

scheduling policy is one in which jobs are divided evenly

between all processors in a round robin order without

considering the work load. Here the time slicing mechanism is

used, which divides the time into multiple slices and each node

is given a particular time slice or time interval in which they

have to perform their task. In Priority scheduling Algorithm,

priority of each job is decided on the basis of the properties of

the tasks. The priority of the task may be judged on the basis of

the time consumption of the tasks or CPU scheduling burst time

of the tasks or any other parameter.

Performance metrics used for the experiment are Energy

consumption, Time consumption and Number of overloaded

nodes.

Experimental results are presented by increasing load factor

over the network and respectively calculating its impact over all

above stated parameters which are considered for evaluation.

This is presented in form of three experiments and results

obtained have been compared and presented.

Experiment 1: The impact of Increasing load on Time

Consumption

As shown in Figure 5, the proposed approach outperforms

others in terms of time consumption. Proposed algorithm has

achieved better performance because of task mapping which is

based on their type, leading to finding the dependent and

independent jobs, and then subsequently pairing dependent and

independent jobs together.

Figure 5: Time consumed by various algorithms.

In above scenario, variation of time consumption during

execution is analyzed with varying workload over the network.

From Figure 5, it can be seen that when the system load is

raised, the timing for execution shows appealing values.

Experiment 2: The impact of Increasing load on Number of

Overloaded Nodes.

From Figure 6, it is shown that Number of Overloaded Nodes

during execution in proposed algorithm is another compelling

strength. Experimental results show that proposed scheme gives

high stability in form of overloaded nodes, in comparison to

other traditional algorithms.

Figure 6: Overloaded Nodes during Execution of tasks.

The Figure 6 describes a situation of overloaded nodes with

varying loads over the network. The criteria for overloaded

node are calculated with help of written below formula. Noverload

is the number of overloaded nodes. N systems is the number of

nodes.

N overload = No. of Tasks/ N systems

0

1000

2000

3000

1 2 3 4 5 6 7

T
i
m

e

(
m

s
)

No. of jobs

FCFS

PRIORITY

ROUND
ROBIN

DEPENDENC
Y

0

1

2

3

4

1 2 3 4 5 6 7

N
o

.

o

f

O

v
e

r
l
o

a
d

e
d

N
o

d
e

s

No. of jobs

FCFS

PRIORITY

ROUND ROBIN

DEPENDENCY

International Journal of Computer Applications (0975 – 8887)

Volume 102– No.4, September 2014

44

Experiment 3: The impact of Increasing load on Number of

Energy Consumption.

 Figure 7: Energy consumption comparison.

Figure 7 shows the impact of increasing workload on the

energy consumption. Although the energy consumption by all

the four algorithms is almost the same in the beginning, but as

more and more jobs arrive with passage of time, energy

consumption by proposed algorithm is least. This result gives a

strong indication that consideration of dependency analysis and

subsequent pairing of jobs has great impact on load balancing.

5. CONCLUSION AND FUTURE SCOPE
Cloud computing system has widely been adopted by the

industry, through there are many issues existing like Load

Balancing, Migration of Virtual machines, Server Unification

which has not been yet fully addressed. Load balancing is one

of most central issue. Proposed work is adaptive to the dynamic

environments i.e. behavior adaptively according to the

workload variation on different nodes results in the change of

the dependency mapping of the jobs in the network, this leads

to a good performance in load balancing. Any job can randomly

add in the job list with little effect on the system performance,

and the load balancing can be quickly gain under the abnormal

emergence situations of the heavy workload. The results

obtained from comparative evaluation study clearly show that

proposed algorithm outperforms other schemes in terms of time

consumption, energy usage and number of overloaded nodes by

a noticeable margin.

Future work can consider different types of application in

cloud, and establish a more detailed load assess system. Self-

learning, self-healing mechanism can be taken into

consideration. Issues like Carbon Emission can also be worked

upon.

6. REFERENCES
[1] Qi Zhang, Lu Cheng, R.Boutaba “Cloud Computing:

state-of-art and research challenges”, © The Brazilian

Computer Society 2010, 8 January 2010/ Accepted: 25

February 2010/ Published online: 20 April2010.

[2] M. Ahmed, A. Chowdhury, M. Ahmed, M. Rafee “An

Advanced Survey on Cloud Computing and State-of-the-

art Research Issues”, International Journal of Computer

Science Issues, Vol. 9, Issue 1, No 1, January 2012.

[3] P Mathur, N Nishchal, “Cloud Computing: New Challenge

to entire computer industry”, International conference on

parallel, Distributed and Grid computing, IEEE, 2010.

[4] M. Hussin, Y. Choon Lee, A. Zomaya, “Priority-based

scheduling for Large-Scale Distribute Systems with

Energy Awareness”, Ninth IEEE International Conference

on Dependable, Autonomic and Secure Computing, 2011,

pp 503.

[5] R. Mata-Toledo, and P. Gupta, “Green data center: how

green can we perform”, Journal of Technology Research,

Academic and Business Research Institute, Vol. 2, No. 1,

May 2010, pages 1-8.

[6] Wei Wang, “A reliable dynamic scheduling algorithm based

on Bayes trust model,” Computer Science, 2007.

[7] M.Nikita, “Comparative Analysis of Load Balancing

Algorithm in Cloud Computing”, International Journal of

Engineering and Science, vol.01.

[8] H.Mahalle, P.Kaveri, V.Chavan, “Load Balancing on

Cloud Data Centers”, international Journal of Advance

Research in computer Science and Software Engineering,

vol. 3, Jan. 2013.

[9] S.Mulay, S.Jain, “Enhanced Equally Distributed Load

Balancing Algorithm for Cloud Computing”, International

Journal of Engineering and Technology, vol.02, Jun. 2013.

[10] W. Leinberger, G. Karypis, V.Kumar, "Load Balancing

Across Near Homogeneous Multi- Resource Servers",

2000, IEEE.

[11] R.Wang, W.Le, X.Zhang, “Design and Implementation of

efficient Load Balancing method for virtual machine

cluster based on cloud service”, School of Information

Science and Engineering, Yunnan University, Kunming,

China.

[12] K. Xiong, H. Perros, "Service Performance and Analysis in

Cloud Computing," pp. 693-700, 2009.

[13] Josep Ll. Berral, Ricard Gavald`a, Jordi Torres ,”Adaptive

Scheduling on Power-Aware Managed Data-Centers using

Machine Learning”, Universitat Polit`ecnica de Catalunya

and Barcelona Supercomputing Center.

[14] Fei. Ma, Feng Lui, Zhen Lui, “Distributed Load Balancing

Allocation of Virtual Machine in Cloud Data Center” ,

2012 IEEE

 [15] Y. C. Lee, and A. Y. Zomaya, “Energy efficient utilization

of resources in cloud computing systems,” Journal of

Supercomputing, pp. 1-13, 2010.

[16] I. Ahmad, S. Ranka, and S. U. Khan, “Using game theory

for scheduling tasks on multi-core processors for

simultaneous optimization of performance and energy,” in

IEEE Int'l Sym. On Parallel and Distributed Processing

(IPDPS), Miami, FL, pp. 1-6, 2008.

[17] N. Aggarwal, P. Ranganathan, N. Jouppi, “Configurable

Isolation: Building High Availability Systems with

Commodity Multi-core Processors,” in Proc. of the 34th

Annual Int'l Sym. on Computer Architecture, pp. 470-481,

2007.

0

500

1000

1500

1 2 3 4 5 6 7

E
n
e
r
g

y

(

j
o
u
l
s

)

No. of jobs

FCFS

PRIORITY

ROUND
ROBIN

DEPENDENC
Y

IJCATM : www.ijcaonline.org

