
International Journal of Computer Applications (0975 – 8887)

Volume 102– No.4, September 2014

31

Simulation of Convolutional Encoder and Viterbi

Decoder using Verilog

Nehul Mathur

M.Tech. Scholar, Digital Communication, Pacific
University

Udaipur, Rajasthan

Sunil Sharma
Assistant Professor, Department of Electronics and

Communication
Pacific University

Udaipur, Rajasthan

ABSTRACT
In this paper, we are implementing the Convolutional encoder

and viterbi decoder with code rate 2/3 using verilog.

The main issue of this paper is to implement the RTL level

model of Convolutional encoder and viterbi decoder, with the

testing results of behavior model. We tried to achieve a low

silicon cost. The viterbi algorithm, used for Convolutional

codes extensively employed decoding algorithm for

Convolutional codes. This paper is realized using verilog

HDL. It is simulated and synthesized using Modelsim Altera

10.1d.

General Terms
Convolutional codes were first introduced by Elias in 1955 as

an alternative to block codes. Convolutional codes differ from

block codes in that the encoder contains memory and the n

encoder outputs at any time unit depend not only on the k

inputs but also on m previous input block. In 1963, Massey

proposed a less efficient but simpler to implement decoding

method called threshold decoding. Then in 1967, Viterbi

proposed a maximum likelihood decoding scheme that was

easy to implement for codes. This scheme is called viterbi

decoding.

Keywords

Convolutional encoder, viterbi decoder, Modelism10.1d,

viterbi algorithm, trellis diagram, simulation.

1. INTRODUCTION
A Convolutional encoder operates on the incoming message

sequence continuously in a serial manner.

The encoder of a binary Convolutional code with rate 1/n.

measured in bits per symbol, may be viewed as a finite-state

machine that consists of a M-stage shift register with

prescribed connections to n modulo-2 adder, and a

multiplexer that serializes the outputs of the adders. An 1-bit

message sequence produces a coded output sequence of length

n(L+M) bits[1]. The code rate is therefore given by

 r =

 bits/symbol

Typically, we have L>>M. Hence, the code rate is

r =

 bits/symbol [2]

The constraint length of a Convolutional code, expressed in

terms of message bits, is defined as the number of shifts over

which a single message bit can influence the encoder output.

In an encoder with a M-stage shift register, the memory of the

encoder equals M message bits, and K=M+1 shifts are

required for a message bit to enter the shift register and finally

come out. Hence, the constraint length of the encoder is K[4].

2. PROPOSED WORK AND

METHODOLOGY

2.1 Convolutional encoder
A Convolutional code is generated by passing the information

sequence to be transmitted through a linear finite-state shift

Register. In General, the shift register consists of K (k-bit)

stages and n Linear algebraic function generators[5].

Convolutional codes

k = number of bits shifted into the encoder at one time

k=1 is usually used!!

n = number of encoder output bits corresponding to the k

Information bits

Rc = k/n = code rate

K = constraint length, encoder memory.

Each encoded bit is a function of the present input bits and

their past ones[6].

Convolutional encoding is mostly used for satellite and other

noise communication channels. There are two important

components of a channel using Convolutional encoding: the

viterbi encoder (at the transmitter) and the viterbi decoder (at

the receiver)[7].

 input

Figure 1. Block Diagram of code rate 2/3 Convolutional

encoder

The generators are g1=[1011], g2=[1101], g3=[1010]. In octal

form, these generators are (13, 15 and 12).

The ratio of input to output information in an encoder is the

rate of the encoder; this is a rate 2/3 encoder. The following

equations relate the three encoder output bits (Y2N , Y1N , and

Y0N) to the two encoder input bits (X2N and X1N) at a time

nT:

Y2N = X2N
 , Y1N = X1N xor X1N_2, Y0N = X1N_1

Outp

ut1

Outp

ut2

Output3

International Journal of Computer Applications (0975 – 8887)

Volume 102– No.4, September 2014

32

We can write the input bits as a single number. Thus, for

example, if X2N = 1 and X2N = 0, we can write XN = 2.

Equation defines a state machine with two memory elements

for the two last input values for X1N: X1N_1 and X1N_2. These

two state variables define four state s :{ X1N_1, X1N_2},

with S0 = {0, 0}, S1 = {1, 0}, S2 = {0, 1}, and S3 = {1, 1}. The

3-bit output Yn is a function of the state and current 2-bit input

Xn.

Table 2. A sequence of transmitted signals for the rate

2/3 Convolutional encoder

Pre

sent

stat

e

Inputs State

variables

outputs Next state

 X

2

n

X

1

n

X1

n_1

X1

n_2

Y2

n

Y1

n

Y0

n

X1

n_1

X1

n_2

 Y2

n

=X

2n

Y1

n =

X1

n

xor

X1

n_2

Yo

n =

X1

n_1

X1

n_1

X1

n_2

S0 0 0 0 0 0 0 0 00 S0

S0 0 1 0 0 0 1 0 10 S1

S0 1 0 0 0 1 0 0 00 S0

S0 1 1 0 0 1 1 0 10 S1

S1 0 0 1 0 0 0 1 01 S2

S1 0 1 1 0 0 1 1 11 S3

S1 1 0 1 0 1 0 1 01 S2

S1 1 1 1 0 1 1 1 11 S3

S2 0 0 0 1 0 1 0 00 S0

S2 0 1 0 1 0 0 0 10 S1

S2 1 0 0 1 1 1 0 00 S0

S2 1 1 0 1 1 0 0 10 S1

S3 0 0 1 1 0 1 1 01 S2

S3 0 1 1 1 0 0 1 11 S3

S3 1 0 1 1 1 1 1 01 S2

S3 1 1 1 1 1 0 1 11 S3

Table 1. State table for 2/3 rate Convolutional encoder

As an example, the repeated encoder input sequence XN=0, 1,

2, 3 produces the encoder output sequence YN=1, 0, 5, 4

repeated.

Inputs State

variables

Outputs Prese

nt

state

Ne

xt

stat

e

X2

n

X1

n

X1n_

1

X1n_

2

Y2

n

Y1

n

Y0

n

1 1 X X 1 X X S? S?

1 1 0 0 1 1 0 S0 S1

0 0 1 0 0 0 1 S1 S2

0 1 0 1 0 0 0 S2 S1

1 0 1 0 1 0 1 S1 S2

1 1 0 1 1 0 0 S2 S1

0 0 1 0 0 0 1 S1 S2

0 1 0 1 0 0 0 S2 S1

1 0 1 0 1 0 1 S1 S2

1 1 0 1 1 0 0 S2 S1

0 0 1 0 0 0 1 S1 S2

0 1 0 1 0 0 0 S2 S1

Next I have transmit the eight possible encoder outputs (Yn

= 0-7) as signals over our noisy communications channel

(perhaps a microwave signal to a satellite) using the signal

constellation. Typically this is done using phase-shift keying

(PSK) with each signal position corresponding to a different

phase shift in the transmitted carrier signal.

The noise signal enters the receiver, so my task to discover the

8 possible signals was transmitted at each time step. First I

have calculated the distance of each received signal from each

of known 8 positions according to signal constellation. The

distance between signals in the 8PSK constellation. I am

assuming that there is no error or noise in the channel to

illustrate the operation of viterbi decoder, so that the distances

in the table 3 represent the possible distance measures of

received signal from the 8PSK signal.

Table 3. Representation of the possible distance measures

of received signals from the 8PSK signals

Sign

al

Algebr

aic

distanc

e from

signal

0

X =

distan

ce

from

signal

0

Euclid

ean

distanc

e E =

X2

B =

binary

quantiz

ed

value

of E

D =

deci

mal

value

of B

Q

=D-

1.75

E

0 2

)

0.00 0.00 000 0 0

1 2

)

0.77 0.59 001 1 -

0.03

25

International Journal of Computer Applications (0975 – 8887)

Volume 102– No.4, September 2014

33

2 2

)

1.41 2.00 100 4 0.5

3 2

)

1.85 3.41 110 6 0.03

25

4 2

)

2.00 4.00 111 7 0

5 2

)

1.85 3.41 110 6 0.03

25

6 2

)

1.41 2.00 100 4 0.5

7 2

)

0.77 0.59 001 1 -

0.03

25

Now table 4 shows the distance measures for the transmitted

encoder output sequence Yn = 1, 0, 5, 4……. Corresponding

to the encoder input of Xn = 0, 1, 2, 3……

Table 4. Receiver distance measure for transmission

sequence

In

pu

t

Xn

Out

put

Yn

Pre

sent

stat

e

N

ex

t

sta

te

I

n

0

I

n

1

I

n

2

I

n

3

I

n

4

I

n

5

I

n

6

I

n

7

3 X S? S? X X X X X X X X

3 6 S0 S1 4 6 7 6 4 1 0 1

0 1 S1 S2 1 0 1 4 6 7 6 4

1 0 S2 S1 0 1 4 6 7 6 4 1

2 5 S1 S2 6 7 6 4 1 0 1 4

3 4 S2 S1 7 6 4 1 0 1 4 6

0 1 S1 S2 1 0 1 4 6 7 6 4

1 0 S2 S1 0 1 4 6 7 6 4 1

2 5 S1 S2 6 7 6 4 1 0 1 4

3 4 S2 S1 7 6 4 1 0 1 4 6

0 1 S1 S2 1 0 1 4 6 7 6 4

1 0 S2 S1 0 1 4 6 7 6 4 1

2.2 Viterbi decoder
The Viterbi decoder takes the distance measures and

calculates the most likely transmitted signal. It does this by

keeping a running history of the previously received signals in

a path memory. The path-memory length of this decoder is 12.

By keeping a history of possible sequences and using the

knowledge that the signals were generated by a state machine,

it is possible to select the most likely sequences.

The system input or message, X[1:0] , is driven by a counter

that repeats the sequence 0, 1, 2, 3, ... incrementing by 1 at

each positive clock edge (with a delay of one time unit),

starting with X equal to 3 at t= 0. The active-high reset signal,

Res, is asserted at t = 60 for 10 time units. The encoder

output, Y [2:0], changes at t = 151, which is one time unit (the

positive-edge-triggered D flip-flop model contains a one-time-

unit delay) after the first positive clock edge (at t = 150)

following the dissertation of the reset at t = 70. The encoder

output sequence beginning at t= 151 is 2, 5, 4, 1, 0, and then

the sequence 5, 4, 1, 0, repeats. This encoder output sequence

is then imagined to be transmitted and received. The receiver

module calculates the distance measures and passes them to

the decoder. After 13 positive clock-edges (1300 time ticks)

the transmitted sequence appears at the output, Out [2:0],

beginning at t = 1451 with 2, 5, 4, 1, 0, exactly the same as the

encoder output.

The Viterbi decoder model presented in this work is written

for both simulation and synthesis. The Viterbi decoder makes

extensive use of vector D flip-flops (registers). Early versions

of Verilog-XL did not support vector instantiations of

modules. In addition the inputs of UDPs may not be vectors

and there are no primitive D flip-flops in Verilog. This makes

instantiation of a register difficult other than by writing a

separate module instance for each flip-flop.

3. SIMULATION RESULT ANALYSIS

ON MODELSIM 10.1d

Figure 2 Simulation Wave form of D flip-flop using

Modelsim 10.1d.

Figure 3 Simulation waveform of Convolutional encoder

using Modelsim 10.1d

Figure 4 Simulation waveform of test bench using

modelsim 10.1d

International Journal of Computer Applications (0975 – 8887)

Volume 102– No.4, September 2014

34

4. CONCLUSION
The main air was to implement convolution encoder and

viterbi decoder with code rate 2/3 in compact verilog style. As

verilog implementation works in module form and it is

comparatively simple than other HDL language. Second, the

design of viterbi decoder is in the receiver end so that,

implementation would take less memory space. While tracing

path back towards front end, look up method saves lot of time

and complexity.

The modulation scheme 8 PSK was used here for faster

coding with three bit input frame.

By building the Convolutional encoder and viterbi decoder in

the behavior model, the Modelsim simulation result give us a

light on its performance.

In future it will be used to measure & improve the

performance of designed encoder-decoder pair. The next level

implementation will also consist power saving coding style.

Here the code is written in specific way to make the design

low power design.

It can also be prefered for comparatively low power

consumption with other rtl code.

5. ACKNOWLEDGMENTS
The author would like to express their sincere thanks to T.A.

Kaji Director, Pacific Institute of Technology, Udaipur, for

his support during research. Mr. Ashok Kherodia, HOD,

Dept. of ECE, Mr. Sunil Sharma, Assistant Professor, Dept. of

ECE from Pacific university Udaipur, Rajasthan for the

encouragement given throughout this development.

6. REFERENCES
[1] Simon Haykin and Michael Moher: Modern wireless

communications; Pearson Prentice Hall, 2005

[2] Simon Haykin; Digital communications; Wiley, cop. 1988

[3] Samir Palnitkar: Verilog HDL a Guide to Digital Design

and Synthesis; sun soft press (1996);

[4] Chip Fleming: A Tutorial on Convolutional Coding with

Viterbi Decoding; Spectrum Application; Jun, 2003;

[5] Pravallika.kolakaluri, R.Suryaprakash: HDL

Implementation of Convolutional encoder and viterbi

decoder; July, 2012;

[6] Rohan M. Pednekar, Dayanand B M: Design and

Implementation of Convolutional encoder and viterbi

decoder; 2013;

[7] Swati Gupta, Rajesh Mehra: FPGA Implementation of

viterbi decoder using track back architecture; June, 2011;

[8] Mahe Jabeen, Salma Khan: Design of Convolutional

encoder and Reconfigurable viterbi decoder; (sept 2012);

IJCATM : www.ijcaonline.org

