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ABSTRACT 
In this paper, we are implementing the Convolutional encoder 

and viterbi decoder with code rate 2/3 using verilog. 

The main issue of this paper is to implement the RTL level 

model of Convolutional encoder and viterbi decoder, with the 

testing results of behavior model. We tried to achieve a low 

silicon cost. The viterbi algorithm,  used for Convolutional 

codes extensively employed decoding algorithm for 

Convolutional codes. This paper is realized using verilog 

HDL. It is simulated and synthesized using Modelsim Altera 

10.1d.  

General Terms 
Convolutional codes were first introduced by Elias in 1955 as 

an alternative to block codes. Convolutional codes differ from 

block codes in that the encoder contains memory and the n 

encoder outputs at any time unit depend not only on the k 

inputs but also on m previous input block. In 1963, Massey 

proposed a less efficient but simpler to implement decoding 

method called threshold decoding. Then in 1967, Viterbi 

proposed a maximum likelihood decoding scheme that was 

easy to implement for codes. This scheme is called viterbi 

decoding. 
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1. INTRODUCTION 
A Convolutional encoder operates on the incoming message 

sequence continuously in a serial manner. 

The encoder of a binary Convolutional code with rate 1/n. 

measured in bits per symbol, may be viewed as a finite-state 

machine that consists of a M-stage shift register with 

prescribed connections to n modulo-2 adder, and a 

multiplexer that serializes the outputs of the adders. An 1-bit 

message sequence produces a coded output sequence of length 

n(L+M) bits[1]. The code rate is therefore given by 

                     r =
 

      
  bits/symbol  

Typically, we have L>>M. Hence, the code rate is 

r = 
 

 
     bits/symbol [2] 

The constraint length of a Convolutional code, expressed in 

terms of message bits, is defined as the number of shifts over 

which a single message bit can influence the encoder output. 

In an encoder with a M-stage shift register, the memory of the 

encoder equals M message bits, and K=M+1 shifts are 

required for a message bit to enter the shift register and finally 

come out. Hence, the constraint length of the encoder is K[4]. 

2. PROPOSED WORK AND 

METHODOLOGY 

2.1 Convolutional encoder 
A Convolutional code is generated by passing the information 

sequence to be transmitted through a linear finite-state shift 

Register. In General, the shift register consists of K (k-bit) 

stages and n Linear algebraic function generators[5]. 

Convolutional codes 

k = number of bits shifted into the encoder at one time 

k=1 is usually used!! 

n = number of encoder output bits corresponding to the k 

Information bits 

Rc = k/n = code rate 

K = constraint length, encoder memory. 

Each encoded bit is a function of the present input bits and 

their past ones[6]. 

Convolutional encoding is mostly used for satellite and other 

noise communication channels. There are two important 

components of a channel using Convolutional encoding: the 

viterbi encoder (at the transmitter) and the viterbi decoder (at 

the receiver)[7]. 
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Figure 1. Block Diagram of code rate 2/3 Convolutional 

encoder 

The generators are g1=[1011], g2=[1101], g3=[1010]. In octal 

form, these generators are (13, 15 and 12). 

The ratio of input to output information in an encoder is the 

rate of the encoder; this is a rate 2/3 encoder. The following 

equations relate the three encoder output bits (Y2N , Y1N , and 

Y0N ) to the two encoder input bits (X2N and X1N ) at a time 

nT: 

Y2N = X2N
   , Y1N = X1N xor X1N_2,   Y0N = X1N_1
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We can write the input bits as a single number. Thus, for 

example, if X2N = 1 and X2N = 0, we can write XN = 2. 

Equation defines a state machine with two memory elements 

for the two last input values for X1N: X1N_1 and X1N_2. These 

two state variables define four state s :{ X1N_1, X1N_2}, 

with S0 = {0, 0}, S1 = {1, 0}, S2 = {0, 1}, and S3 = {1, 1}. The 

3-bit output Yn is a function of the state and current 2-bit input 

Xn. 

Table 2.      A sequence of transmitted signals for the rate 

2/3 Convolutional encoder 

Pre

sent 

stat

e  

Inputs  State 

variables 

outputs Next state 

 X

2

n 

X

1

n 

X1

n_1 

X1

n_2 

Y2

n 

Y1

n 

Y0

n 

X1

n_1 

X1

n_2 

     Y2

n 

=X

2n 

Y1

n = 

X1

n 

xor 

X1

n_2 

Yo

n = 

X1

n_1 

X1

n_1 

X1

n_2 

S0 0 0 0 0 0 0 0 00 S0 

S0 0 1 0 0 0 1 0 10 S1 

S0 1 0 0 0 1 0 0 00 S0 

S0 1 1 0 0 1 1 0 10 S1 

S1 0 0 1 0 0 0 1 01 S2 

S1 0 1 1 0 0 1 1 11 S3 

S1 1 0 1 0 1 0 1 01 S2 

S1 1 1 1 0 1 1 1 11 S3 

S2 0 0 0 1 0 1 0 00 S0 

S2 0 1 0 1 0 0 0 10 S1 

S2 1 0 0 1 1 1 0 00 S0 

S2 1 1 0 1 1 0 0 10 S1 

S3 0 0 1 1 0 1 1 01 S2 

S3 0 1 1 1 0 0 1 11 S3 

S3 1 0 1 1 1 1 1 01 S2 

S3 1 1 1 1 1 0 1 11 S3 

Table 1.         State table for 2/3 rate Convolutional encoder 

As an example, the repeated encoder input sequence XN=0, 1, 

2, 3 produces the encoder output sequence YN=1, 0, 5, 4 

repeated. 

Inputs  State 

variables 

Outputs  Prese

nt 

state 

Ne

xt 

stat

e 

X2

n 

X1

n 

X1n_

1 

X1n_

2 

Y2

n 

Y1

n 

Y0

n 

  

1 1 X  X  1 X  X  S? S? 

1 1 0 0 1 1 0 S0 S1 

0 0 1 0 0 0 1 S1 S2 

0 1 0 1 0 0 0 S2 S1 

1 0 1 0 1 0 1 S1 S2 

1 1 0 1 1 0 0 S2 S1 

0 0 1 0 0 0 1 S1 S2 

0 1 0 1 0 0 0 S2 S1 

1 0 1 0 1 0 1 S1 S2 

1 1 0 1 1 0 0 S2 S1 

0 0 1 0 0 0 1 S1 S2 

0 1 0 1 0 0 0 S2 S1 

 

Next I have transmit the eight possible encoder outputs (Yn 

= 0-7) as signals over our noisy communications channel 

(perhaps a microwave signal to a satellite) using the signal 

constellation. Typically this is done using phase-shift keying 

(PSK) with each signal position corresponding to a different 

phase shift in the transmitted carrier signal. 

The noise signal enters the receiver, so my task to discover the 

8 possible signals was transmitted at each time step. First I 

have calculated the distance of each received signal from each 

of known 8 positions according to signal constellation. The 

distance between signals in the 8PSK constellation. I am 

assuming that there is no error or noise in the channel to 

illustrate the operation of viterbi decoder, so that the distances 

in the table 3 represent the possible distance measures of 

received signal from the 8PSK signal. 

Table 3. Representation of the possible distance measures 

of received signals from the 8PSK signals 

Sign

al  

Algebr

aic 

distanc

e from 

signal 

0  

X = 

distan

ce 

from 

signal 

0 

Euclid

ean 

distanc

e E = 

X2 

B = 

binary 

quantiz

ed 

value 

of E  

D = 

deci

mal 

value 

of B  

Q 

=D-

1.75

E 

0 2

       
 ) 

0.00 0.00 000 0 0 

1 2

       
 ) 

0.77 0.59 001 1 -

0.03

25 
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2 2

       
 ) 

1.41 2.00 100 4 0.5 

3 2

       
 ) 

1.85 3.41 110 6 0.03

25 

4 2

       
 ) 

2.00 4.00 111 7 0 

5 2

       
 ) 

1.85 3.41 110 6 0.03

25 

6 2

       
 ) 

1.41 2.00 100 4 0.5 

7 2

       
 ) 

0.77 0.59 001 1 -

0.03

25 

 

Now table 4 shows the distance measures for the transmitted 

encoder output sequence Yn = 1, 0, 5, 4……. Corresponding 

to the encoder input of Xn = 0, 1, 2, 3…… 

Table 4. Receiver distance measure for transmission 

sequence 

In

pu

t 

Xn 

Out

put 

Yn 

Pre

sent 

stat

e  

N

ex

t 

sta

te  

I

n

0  

I

n

1  

I

n

2  

I

n

3  

I

n

4  

I

n

5  

I

n

6 

I

n

7 

3 X  S? S? X  X  X  X  X  X  X  X  

3 6 S0 S1 4 6 7 6 4 1 0 1 

0 1 S1 S2 1 0 1 4 6 7 6 4 

1 0 S2 S1 0 1 4 6 7 6 4 1 

2 5 S1 S2 6 7  6 4 1 0 1 4 

3 4 S2 S1 7 6 4 1 0 1 4 6 

0 1 S1 S2 1 0 1 4 6 7 6 4 

1 0 S2 S1 0 1 4 6 7 6 4 1 

2 5 S1 S2 6 7 6 4 1 0 1 4 

3 4 S2 S1 7 6 4 1 0 1 4 6 

0 1 S1 S2 1 0 1 4 6 7 6 4 

1 0 S2 S1 0 1 4 6 7 6 4 1 

 

2.2 Viterbi decoder 
The Viterbi decoder takes the distance measures and 

calculates the most likely transmitted signal. It does this by 

keeping a running history of the previously received signals in 

a path memory. The path-memory length of this decoder is 12. 

By keeping a history of possible sequences and using the 

knowledge that the signals were generated by a state machine, 

it is possible to select the most likely sequences.  

The system input or message, X[1:0] , is driven by a counter 

that repeats the sequence 0, 1, 2, 3, ... incrementing by 1 at 

each positive clock edge (with a delay of one time unit), 

starting with X equal to 3 at t= 0. The active-high reset signal, 

Res, is asserted at t = 60 for 10 time units. The encoder 

output, Y [2:0], changes at t = 151, which is one time unit (the 

positive-edge-triggered D flip-flop model contains a one-time-

unit delay) after the first positive clock edge (at t = 150) 

following the dissertation of the reset at t = 70. The encoder 

output sequence beginning at t= 151 is 2, 5, 4, 1, 0, and then 

the sequence 5, 4, 1, 0, repeats. This encoder output sequence 

is then imagined to be transmitted and received. The receiver 

module calculates the distance measures and passes them to 

the decoder. After 13 positive clock-edges (1300 time ticks) 

the transmitted sequence appears at the output, Out [2:0], 

beginning at t = 1451 with 2, 5, 4, 1, 0, exactly the same as the 

encoder output. 

The Viterbi decoder model presented in this work is written 

for both simulation and synthesis. The Viterbi decoder makes 

extensive use of vector D flip-flops (registers). Early versions 

of Verilog-XL did not support vector instantiations of 

modules. In addition the inputs of UDPs may not be vectors 

and there are no primitive D flip-flops in Verilog. This makes 

instantiation of a register difficult other than by writing a 

separate module instance for each flip-flop. 

3. SIMULATION RESULT ANALYSIS 

ON MODELSIM 10.1d 

 
Figure 2 Simulation Wave form of D flip-flop using 

Modelsim 10.1d. 

 

 
Figure 3 Simulation waveform of Convolutional encoder 

using Modelsim 10.1d 

 

 
 

Figure 4 Simulation waveform of test bench using 

modelsim 10.1d 
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4. CONCLUSION 
The main air was to implement convolution encoder and 

viterbi decoder with code rate 2/3 in compact verilog style. As 

verilog implementation works in module form and it is 

comparatively simple than other HDL language. Second,  the  

design of viterbi decoder is in the receiver end so that, 

implementation would take less memory space. While tracing 

path back towards front end, look up method saves lot of time 

and complexity. 

The modulation scheme 8 PSK was used here for faster 

coding with three bit input frame. 

By building the Convolutional encoder and viterbi decoder in 

the behavior model, the Modelsim simulation result give us a 

light on its performance. 

In future it will be used to measure & improve the 

performance of designed encoder-decoder pair. The next level 

implementation will also consist power saving coding style. 

Here the code is written in specific way to make the design 

low power  design. 

It can also be prefered for  comparatively low power 

consumption  with other rtl code. 
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