
International Journal of Computer Applications (0975 – 8887)

Volume 102– No.3, September 2014

27

Rigorous Design of Moving Sequencer Omission

Tolerant Atomic Broadcast

Prateek Srivastava
Department of Computer
Science and Engineering
Sir Padampat Singhania

University
Udaipur, Rajasthan, India

Prasun Chakrabarti
Department of Computer
Science and Engineering
Sir Padampat Singhania

University
Udaipur, Rajasthan, India

Avinash Panwar
Department of Computer
Science and Engineering
Sir Padampat Singhania

University
Udaipur, Rajasthan, India

ABSTRACT
This article investigates a mechanism to tolerate omission failure

in moving sequencer based atomic broadcast at distributed

systems. Various mechanisms are already given for moving

sequencer based atomic broadcast like RMP [1], DTP [2], Pin

Wheel [3] and mechanism proposed by [4]. But none of these

mechanisms are efficient to tolerate different failure. Scholarly

observation is that, these algorithms can tolerate only crash

failure but not capable to tolerate omission or byzantine failure.

This work is an extension of [4]. This work proposes a

mechanism to tolerate omission failure in moving sequencer

based atomic broadcast. Hence this work is a refined version of

[4]. This work relies on unicast broadcast hence it will introduce

a very less number of messages in comparison to previous

mechanisms [5].

B [6] has been used as formal technique for development of

proposed model. B uses set theory as a modeling notation,

refinements to represent system at different abstraction level. Pro

B [7] has been used as model checker and animator for

constraint based checking, to discover errors due to invariant

violation and for deadlocks, thereby, validating the

specifications.

General Terms

Distributed Systems, Model Verification

Keywords
Broadcast, Atomic Broadcast, Total Order, Unicast, Sequencer,

Crash, Omission, Model Checking, B formal method.

1. INTRODUCTION
Atomic broadcast (also known as total order broadcast) is an

important abstraction in fault tolerant distributed computing [8].

It ensures that messages broadcasted by different processes are

delivered by all destination processes in same order [9]. Lamport

has proposed state machine replication [10] for implementing

fault tolerant services. Basically state machine replication is way

to achieve highly available system. These systems are available

in any case whether very high load or any failure. So the

question arises that what is the role of atomic broadcast in

context to highly available systems. To answer this question one

has to understand the functioning of state machine replication. A

state machine is set of state variable which implements its state

and commands, which transform its state [11]. The client

interacts with replicated servers by submitting same order of

input commands. The replicas are in same initial state, after

receiving input they will go through same state of execution and

generate same result and finally go to same final state. The

voting will be there for correctness of result and then correct

result will be given back to client. In Distributed environment it

is very difficult to achieve same order (or sequence) on input

commands due to lackness of global clock in distributed

systems. To achieve this, variety of algorithms have been given

by different scholars. Different scholars use to classify these

algorithms on their own assumptions and requirements.

Considering the criteria that “who is responsible for

sequencing?” then one can classify theses algorithms in

following categories[5]: (a) fixed sequencer atomic broadcast

(b) moving sequencer atomic broadcast (c) privilege based

atomic broadcast (d) communication history based atomic

broadcast and (e) destination agreement based atomic broadcast

mechanisms. Fixed sequencer is the easiest, where one dedicated

process is there for sequencing of messages but at high load or in

case of sequencer failure the whole system will suffer. Though

mechanisms like, Amoeba [12], MTP [13], Tandem [14], [15],

Jia [16], ISIS [17], [18], Phoenix [19] and Rampart [20, 21] are

fixed sequencer based and can tolerate crash but for any

researcher it’s always a conundrum to face sequencer failure and

bad performance at high load. So to get rid of this problem

moving sequencer is a best option where not a fixed process will

be sequencer. RMP[1], DTP[2] ,pin wheel[3] and [4] are based

on moving sequencer and tolerate crash failure but not capable

to tolerate the omission Failure. So this work has proposed a

new mechanism to build atomic broadcast that is based on

moving sequencer and will tolerate the omission failure.

The process can be crash due to network disconnection, system

restart, buffer overflow or due to any other temporary reasons.

The system must be efficient enough to tolerate such type of

failure so that the reliability should be maintained.

The failure may be different types as (i) Crash failure; where

process gets crashed at all and not responding. (ii) Omission

failure; where process is omitting to do some work. (iii) Timing

failure; it is due to time out. It occurs in synchronous system and

(iv) Byzantine failure; where process is behaving completely

maliciously. It means there is no fix pattern of its behavior.

This paper focuses only on omission tolerance. Since this paper

is extension of [4] hence it will also tolerate crash failure.

2. CONTRIBUTION OF THE PAPER
The paper contributes a tranche in direction to achieve the fault

tolerant systems. It presents omission tolerance in moving

sequencer based atomic broadcast. The B [6] formal method is

used to design this model. Pro B [7] model animator and checker

tool is used to verify this model for any deadlock, constraint

violations, error and inconsistencies. The results are obtained in

sequential steps.

International Journal of Computer Applications (0975 – 8887)

Volume 102– No.3, September 2014

28

3. SYSTEM MODEL
This work assumes an asynchronous system composed of n

processes belongs to a set π = {P1, P2 ... Pn}. For simplicity, this

model considers a set of three processes as: Process belongs to π

and Process = {P0, P1, P2}. The processes communicate by

message passing over reliable channels. Message is a set of

messages, for simplicity, this model considers a set of three

messages as: Message = {M1, M2, M3}.

Since this work is an extension of [4] hence, Network is reliable,

uses unicast broadcast (UB) variant of fixed sequencer atomic

broadcast, based on moving sequencer and by default crash

tolerant.

3.1 Agreement Problem
The agreement problem considered in this paper is presented

below.

3.1.1 Atomic Broadcast
Atomic broadcast problem is defined by primitive [8]

a_broadcast and a_delivers, the processes have to agree on a

common order on a set of messages. Formally atomic broadcast

(uniform) can be defined by four properties [5];

Validity: if a correct process a_broadcast any message m then it

eventually a_delivers m.

Uniform agreement: If a process a_delivers m then all the

correct processes a_deliver m.

Uniform integrity: For any message m, every process p,

a_delivers m at most once and only if m was previously
a_broadcast.

Uniform total order: If some process, a_delivers m before m'

then every process a_delivers m' only after it has a_delivered m.

3.1.2 Sequencer Based Algorithms
The sequencer based atomic broadcast [3] is simplest one and

provides best delivery time (in absence of failure) while the

protocols based on privilege provide best stability time in system

where logical ring is formed and message is passed along with

token. This work relies on sequencer based approach where any

process can be elected as sequencer.

4. RELATED WORK
There is lot of work have been done since 25 years in area of

atomic broadcast. The RMP [1], DTP [2], Pin Wheel [3] and [4,

22] are the various mechanisms to achieve moving sequencer

based atomic broadcast. In moving sequencer mechanisms, there

must be some process that is responsible for sequencing. But this

sequencer will not be fixed for whole time. Each process will be

a sequencer in a rotation manner. It is somewhat easier that

privilege based atomic broadcast mechanisms. All these

mechanisms help to build atomic broadcast but they can tolerate

only crash failures.

 Different authors have given various mechanisms base on

communication history (where sender processes are itself

responsible for sequencing) to build atomic broadcast but most

of these algorithms can only tolerate crash failure. HAS [23] can

tolerate crash and omission both type of failures and Quick-S

[24] (for synchronous system) can tolerate crash, omission and

Byzantine failures.

A variety of algorithms are also given for atomic broadcast

based on destination agreement where the destination processes

are responsible for arranging the messages before delivery. But

most of these algorithms can tolerate only crash failure except

Le –Lann Bres [25] and Quick-A [24]. Le-Lann Bres [25] can

tolerate crash and omission both while Quick-A [24] (for

asynchronous system) is capable for tolerating byzantine failure

also. Rampart [20, 21] is based on fixed sequencer and can

tolerate crash, omission and byzantine failures. Scholarly

observation of these algorithms is that, there is still a space to

achieve omission and byzantine tolerance in case on moving

sequencer atomic broadcast. This work focuses on [4] and

present a mechanism to tolerate omission failures.

5. ARCHITECTURE OF PROPOSED

WORK
This work relies on incremental approach (see fig. 1) to design

a model of atomic broadcast. The work that has been done in [4]

will be used as abstract model. This work is a refinement of

abstract model [4] that tolerates omission failure.

 Figure 1 Architecture of proposed work

6. ABSATRACT MODEL
An abstract model represents the basic functionality of any

system. This became more accurate when refines in next

versions. Here, [4] has been considered as an abstract model (it

is based on unicast broadcast (UB) variant of fixed sequencer

and tolerates crash failure in order to build moving sequencer

based atomic broadcast) and introduced refined version that will

tolerate omission failure. Table 1 represents the various B

symbols used in model.

Table 1. B symbols used in model

B symbols Description
: Element of

/: Not element of

<: Subset

/<: Not subset of

! For every

X Cartesian product

POW Power Set

<-> Relation

+-> Partial function

--> Total Function

R~[A] Relational Inverse

\ / Set union

/ \ Set intersection

: = Assignment

| | Parallel substitution

PRE Pre-condition

BOOL Boolean

NATURAL1 Non zero natural number

Card Cardinality

Ran Range of realtion

Dom Domain of Relation

The following section presents the informal definition of

different events given in abstract model [4]. The B model is

build up with sets, constants, variables, Invariant and events. The

fig. 2 summarizes all the abstract machine variables with their

corresponding initial values and constraints (or invariant).

6.1 Events

This section presents informal definition of different events
given in [4].

First Refined Model

(Concrete model)

Abstract Model

(Basic functionalities)

International Journal of Computer Applications (0975 – 8887)

Volume 102– No.3, September 2014

29

6.1.1 Sequencer Selection Event

The sequencer selection event will elect any process as

sequencer. This event will ensure that no crashed process will

participate in election.

6.1.2 Check Sequencer’s Heartbeat Event

This event is used by all processes (except sequencer) to decide

sequencer is crashed or alive.The processes will check heartbeat

of sequencer and cast their vote for sequencer to confirm

whether sequencer is alive or crashed.

6.1.3 Voting for Sequencer Event
After casting of vote for sequencer this event comes into
existence. Based on votes it decides whether sequencer is alive or
not.

If more processes are casting their vote for alive nature of
sequencer than crash nature then it will be a trusted sequencer
and ready to accept messages.

6.1.4 Unicast Event
If any process (except sequencer) needs to broadcast any message
then at first it will use unicast event to unicast its message to
sequencer.

6.1.5 Acknowledgement By Sequencer Event
After receiving the message sequencer will send an
acknowledgement to sender.

6.1.6 Check Heartbeat Event
Before any broadcast sequencer will check heartbeat of all the
processes (receivers) such that it can prepare list of alive and
crashed receivers.

6.1.7 Broadcast Event
Broadcast event will be used by trusted sequencer to broadcast

all acknowledged messages with proper sequence number to all

alive processes.

6.1.8 Deliver Event
This event will occur at every alive process to deliver the

messages. The messages will deliver in same order and this

order is specified by follow variable.

6.1.9 Crash Event
This event is used to introduce crash nature of processes. Any

process can be crash due to system shutdown, network

disconnection or due to some other temporary reasons.

If any process has been crashed then it is not suppose to send or

receive any message.

6.1.10 Get Alive Event
This event is used to recover any crashed process. As any crash

process get recover it will intimate sequencer (if exists) about its

recovery, and ask to sequencer for all previously broadcasted

messages. If it founds any difference between its receiving list

and sequencer’s “sent message” list then it will deliver all old

messages, if there is no difference in messages then still it will

work as usual.

Figure 2 Variables, Invariants and their initial value in

abstract model

7. REFINED MODEL
The different events, variables and invariants (see fig. 2)

discussed in section VI constitutes moving sequencer atomic

broadcast that tolerates crash failure. This refined version

presents omission tolerance. For this purpose this work has

introduced some new constants and variables (see fig. 3).

The unicast_message_size is a new constant that will put a

restriction on sequencer’s buffer to control the send omission.

MACHINE Abstract1

SETS

Process= {P1, P2, P3}; Message={M1, M2, M3}

VARIABLES

selected_sequencer,sequencer_selection, unicast_message,

temporary_receive, follow, sent, seq_no, receive,

msg_with_seq_no, acknowledged_message

INVARIANT

selected_sequencer : POW(Process)

sequencer_selection : BOOL

unicast_message : Process <-> Message

temporary_receive : Process <-> Message

follow : NATURAL1<->NATURAL1

sent : (Process<->Message)<->NATURAL1

seq_no : NATURAL1

receive : (Process <-> Message)<-> NATURAL1

msg_with_seq_no :Message<-> NATURAL1

acknowledged_message:Process<->Message

crash_list:POW(Process)

alive_list:POW(Process)

crash_list /\ alive_list={}

trusted_sequencer:POW(Process)

Receiver_is_Crashed:POW(Process)

Receiver_is_OK:POW(Process)

Receiver_is_OK /\ Receiver_is_Crashed={}

received_msg:Process<->Message

Heart_Beat_Check: Process<->Process

Re_Unicasted_msg:Process<->Message

Crash_Recoverd_Ack : POW(Process)

Message_diff:Process+->INTEGER

check_seq_heartbeat:Process+->(Process<->BOOL)

vote_for_sequencer:INTEGER

Positive_vote_for_sequencer:INTEGER

Negative_vote_for_sequencer:INTEGER

Start_unicast:BOOL

Sequencer_heart_beat_check_is_over:BOOL

voting_at_final_stage_for_process:POW(Process)

INITIALISATION

selected_sequencer :={} ||sequencer_selection :=FALSE ||

unicast_message :={} || temporary_receive :={} ||

follow :={} || sent :={} seq_no :=1 ||receive :={}||

msg_with_seq_no :={}||crash_list:={}|| alive_list:=Process ||

trusted_sequencer:={} ||Receiver_is_Crashed:={} ||

Receiver_is_OK:={} ||received_msg:={}||

Heart_Beat_Check:={} ||Re_Unicasted_msg:={} ||

Crash_Recoverd_Ack:={} ||Message_diff:={} ||

check_seq_heartbeat:={} ||vote_for_sequencer:=0 ||

Positive_vote_for_sequencer:=0

|| Negative_vote_for_sequencer:=0 ||

Start_unicast:=FALSE||

Sequencer_heart_beat_check_is_over:=FALSE ||

voting_at_final_stage_for_process:={}

International Journal of Computer Applications (0975 – 8887)

Volume 102– No.3, September 2014

30

The Receiver_buffer_size is a constant that will put a restriction

on receiving processes’ buffer to control receive omission.

Variable Receiver_buffer_size_counter contains the list of

receiver processes along with available buffer.

Variable final_updated_msg_list contains finally delivered

message corresponding to each process.

Variable local_order is similar to follow variable but contains

the sequence of messages at receiver end. It helps during final

updation of messages in total order at receivers. The sequence of

delivered message list and final updated message list must be

same and in Total order.

Omission failure can be of three types; (i) Send omission: due to

sender’s buffer overflow. (ii) Receive omission: due to receiver’s

buffers overflow. (iii) Network omission: due to unreliable

network.

Since this work assumes reliable network hence it will not

consider network omission.

Figure 3 Variables, Invariants and their initial value in first

refined version

7.1 Procedure TO Tolerate Send Omission
Sequencer is responsible for broadcast hence this work has been

focused on sequencer for any send omission. This model has

been designed in such a way that sequencer will never be in such

a case where buffer will overflow.

The sequencer has limited size of buffer where it keeps the

acknowledged messages. Any process can unicast its message to

sequencer but sequencer cannot receive all such messages since

it has limited buffer. When any process unicast its message this

message stores into unicast message list.

The acknowledged message list is sequencer’s buffer and size of

acknowledge message list varies from zero

unicast_message_size. Initially sequencer picks some messages

(maximum upto unicast_message_size) from unicast message

list and keeps into acknowledged message list. If there is no free

space at acknowledged message list (means if size of

acknowledged message list is equals to unicast_message_size)

then it will not pick any more messages from unicast message

list. As sequencer broadcasts any message it clears its entry from

acknowledged message list.

In this way buffer will available to receive some more message

from unicast message list. So there will be no case of sequencer

buffer overflow and hence no send omission.

7.1.1 Strengthening of Acknowledgement by

Sequencer Event
Before any acknowledgement sequencer will check its buffer.

For this new guard has been introduced to strengthen the

acknowledgment by sequencer event.

Guard:

Cardinality (acknowledged_message)<=unicast_message_size

7.1.2 Strengthening of Broadcast Event
As sequencer will broadcast any message it will clear its entry

from acknowledged message list. For this new functionality has

been added to broadcast event.

Action:

acknowledged_message:=acknowledged_message-{p|->m}

As it will delete messages from acknowledged message list the

free space will be there to keep another message.

7.2 Procedure to Tolerate Receive Omission
Each receiver has a limited buffer capacity. Receive omission

occurs at receivers due to overflow of receive buffer. This model

has been designed in such a way that no receive omission will

occur.

Before any delivery the receiver will check its available buffer.

If there is free space then it will deliver that message otherwise

wait until space will free. As any message has been delivered by

each process that message will be finally updated at each site. As

any message will finally update at any site the space taken by it

at receiver buffer will get free and it can deliver new message.

To achieve this; the receiver’s buffer size has been represented

with a constant (i.e. Receiver_buffer_size), Variable

Receiver_buffer_size_counter that contains the list of receiving

processes with corresponding free buffer size. Informally, if

Receiver_buffere_size_counter is zero means there is no free

space to deliver and if Receiver_buffere_size_counter is equal to

Receiver_buffer_size then it means buffer at corresponding

process is completely free to deliver.

For each process buffer size (Receiver_buffer_size_counter)

varies from zero to Receiver_buffer_size.

Initially Receiver_buffere_size_counter has been initialized by

receiver_buffer_size (it means initially the buffer of all receivers

is empty).

Before any delivery processes will check their available buffer

(Receiver_buffere_size_counter); if it is zero then it will not

deliver (since buffer is full) otherwise it can deliver. After

delivery of each message it will decrease its buffer size by one.

In this way there will be no case of receiver’s buffer overflow

and hence no receive omission.

7.2.1 Strengthening of Deliver Event
To strengthen deliver event such that receive omission can be

tolerated this work introduces new guard.

Gurad: (p|->0) /: Receiver_buffer_size_counter

Guard ensures that if some process p having available buffer size

is zero (i.e. p|->0), it cannot deliver message. Two new

functionalities have been added to deliver event.

REFINEMENT Refine2_Omission_Tolerant

REFINES Abstract1

CONSTANTS

unicast_message_size, Receiver_buffer_size

PROPERTIES

unicast_message_size:NATURAL1 &

Receiver_buffer_size:Process-->NATURAL1

VARIABLES

Receiver_buffer_size_counter,

final_updated_msg_list,local_order

INVARIANT

Receiver_buffer_size_counter:Process+->NATURAL

final_updated_msg_list:Process<->Message

local_order:Message<->Message

card(acknowledged_message)<=unicast_message_size

INITIALISATION

Receiver_buffer_size_counter:=Receiver_buffer_size||

final_updated_msg_list:={}|| local_order:={}

International Journal of Computer Applications (0975 – 8887)

Volume 102– No.3, September 2014

31

Action 1:

IF m/: ran(received_msg) THEN local_order:=local_order\/

{m} * ran(received_msg) END

Received_msg, variable (see fig. 1) keeps the list of processes

and corresponding delivered messages. This action 1 specifies

that for every newly delivering message there will be a

precedence relationship with previously delivered messages will

build, and this relationship is represented with local_order. For

example local_order {m2|->m1} indicates that m2 is proceeding

to m1; m2 will deliver only after delivery of m1 at any process.

The local_order will helpful for final updation of messages.

Since local delivery and final delivery must be in same order

such that total order should be maintained.

Action 2:

Receiver_buffer_size_counter(p):=Receiver_buffer_size_counter

(p)-1

As any process deliver any message it will decrease its available

buffer size by one.

7.2.2 Final Updation Event
As any message will locally deliver by each process then it will

finally update at each process (see fig.4). Final updation means

message is finally delivered at the process.

Figure 4 Final updation event

Guard 1 and 2: p: Process & p: dom(received_msg) illustrates

that any process in system that is participating in delivery

(means it must not be crashed process) will deliver message.

Guard 3 and 4: m: ran(received_msg) &

card(received_msg~[{m}])=card(alive_list)

These guards ensure that final updation event will occur only for

those messages that have been delivered by each processes.

Guard 5: (p|->m)/: final_updated_msg_list

This guard ensures that any process cannot repeatedly deliver

same message.

Guard 6:

!(mm).(mm:Message &(m|->mm):local_order =>(p|-

>mm):final_updated_msg_list)

This guard ensures that message will finally deliver in total

order.

Action 1:

final_updated_msg_list:=final_updated_msg_list\/{p|->m}

As any process will finally deliver any message then

final_updated_msg_list will be updated.

Action2:

Receiver_buffer_size_counter(p):=Receiver_buffer_size_counter

(p)+1

As any process will finally deliver any message then buffer will

be free to receive new message.

8. RESULT
The model has been verified by Pro B [7] model checker and

animator tool. No invariant violations, errors and deadlock have

been found. The B model animated through Pro B worked very

well. The Pro B managed to explore the entire state space of the

B-machine in 59 seconds, covering 37322 states and 58329

transitions. This model has been animated for various numbers

of random operations. The table 2 presents the status of various

variables after 500 random operations.

The model has randomly assumed the size of constant

unicast_message_size = 2 (it is sequencer’s buffer size) and

Receiver_buffer_size = {(p1|->2),(p2|->3),(p3|->1),(p4|->1)}

(i.e. Process p1 has been assigned with receive buffer

capacity=2, similarly p2 with 3, p3 with 1 and p4 with 1).
selected_sequencer = {p3} and trusted_sequencer = {p3}

indicates that p3 is a trusted sequencer. The sent = {({(p4|-

>m1)}|->4),({(p4|->m2)}|->3),({(p4|->m3)}|->2),({(p4|-

>m4)}|->1)} indicates that previous trusted sequencer p4 has

broadcasted m4 with sequence number 1, m3 with sequence

number 2, m2 with sequence number 3 and m1 with sequence

number 4. The follow = {(2|->1),(3|->1),(3|->2),(4|->1),(4|-

>2),(4|->3)} variables shows a precedence relationship among

the different sequence numbers. As (2|->1) indicates sequence

number 2 is following to sequence number 1. And at receiver,

message having sequence number 2 will only deliver to some

receiver if that receiver has delivered message having sequence

number 1. The follow variable guaranties delivery of messages

in same sequence to each receiver.

Investigate the final_updated_msg_list = {(p1|->m1),(p1|-

>m2),(p1|->m3),(p1|->m4),(p2|->m1),(p2|->m2),(p2|-

>m3),(p2|->m4),(p3|->m1),(p3|->m2),(p3|->m3),(p3|-

>m4),(p4|->m1),(p4|->m2),(p4|->m3),(p4|->m4)}, this list

clearly indicates that messages delivered at each process are

same.

And investigation of receive= {({(p1|->m1)}|->4),({(p1|-

>m2)}|->3),({(p1|->m3)}|->2),({(p1|->m4)}|->1),({(p2|-

>m1)}|->4),({(p2|->m2)}|->3),({(p2|->m3)}|->2),({(p2|-

>m4)}|->1),({(p3|->m1)}|->4),({(p3|->m2)}|->3),({(p3|-

>m3)}|->2),({(p3|->m4)}|->1),({(p4|->m1)}|->4),({(p4|-

>m2)}|->3),({(p4|->m3)}|->2),({(p4|->m4)}|->1)} list reports

that messages have been delivered to each process and in same

order (or sequence); hence confirming to atomic broadcast

definition.

final_updation(p,m)=

PRE

p:Process & p:dom(received_msg) & m:ran(received_msg)&

card(received_msg~[{m}])=card(alive_list) &

(p|->m)/:final_updated_msg_list

& !(mm).(mm:Message &(m|->mm):local_order =>(p|-

>mm):final_updated_msg_list)

THEN

Action1:

final_updated_msg_list:=final_updated_msg_list\/{p|->m}

Action 2:

Receiver_buffer_size_counter(p):=Receiver_buffer_size_coun

ter(p)+1

END END

International Journal of Computer Applications (0975 – 8887)

Volume 102– No.3, September 2014

32

Table 2. Evaluation view

No invariant violation, error or deadlock has been observed.

During animation buffer overflow has been introduced at sender

and receivers but this model has successfully tolerated such

problems; Hence also confirming to omission tolerance.

9. CONCLUSION
This paper presents mechanism to tolerate omission failure in

moving sequencer atomic broadcast. Since this paper is an

extension of [4] hence it rely upon unicast broadcast (UB)

variant of fixed sequencer to build moving sequencer atomic

broadcast and also tolerates crash failures. However in future

there is also a good scope to work with byzantine failures. For

Constants Variables Values Variables Values

unicast_messag

e_size

 2 Message_diff {(p1|->0),(p2|->0),(p4|->0)}

Receiver_buffe

r_size

 {(p1|->2),(p2|->3),(p3|-

>1),(p4|->1)}

check_seq_heartbeat {(p1|->{(p3|->TRUE)}),(p2|->{(p3|-

>TRUE)}),(p4|->{(p3|->TRUE)})}

 selected_sequencer {p3} vote_for_sequencer 0

 sequencer_selection TRUE Positive_vote_for_seque

ncer

0

 unicast_message {} Negative_vote_for_sequ

encer

0

 temporary_receive {} Start_unicast TRUE

 follow {(2|->1),(3|->1),(3|-

>2),(4|->1),(4|->2),(4|-

>3)}

Sequencer_heart_beat_c

heck_is_over

FALSE

 sent {({(p4|->m1)}|->4),({(p4|-

>m2)}|->3),({(p4|->m3)}|-

>2),({(p4|->m4)}|->1)}

voting_at_final_stage_fo

r_process

{}

 seq_no 5 non_deletable_ack_msg_

log

{}

 Receive {({(p1|->m1)}|->4),({(p1|-

>m2)}|->3),({(p1|->m3)}|-

>2),({(p1|->m4)}|-

>1),({(p2|->m1)}|-

>4),({(p2|->m2)}|-

>3),({(p2|->m3)}|-

>2),({(p2|->m4)}|-

>1),({(p3|->m1)}|-

>4),({(p3|->m2)}|-

>3),({(p3|->m3)}|-

>2),({(p3|->m4)}|-

>1),({(p4|->m1)}|-

>4),({(p4|->m2)}|-

>3),({(p4|->m3)}|-

>2),({(p4|->m4)}|->1)}

final_updated_msg_list

{(p1|->m1),(p1|->m2),(p1|->m3),(p1|-

>m4),(p2|->m1),(p2|->m2),(p2|-

>m3),(p2|->m4),(p3|->m1),(p3|-

>m2),(p3|->m3),(p3|->m4),(p4|-

>m1),(p4|->m2),(p4|->m3),(p4|->m4)}

 msg_with_seq_no {(m1|->4),(m2|->3),(m3|-

>2),(m4|->1)}

Receiver_buffer_size_co

unter

{(p1|->2),(p2|->3),(p3|->1),(p4|->1)}

 acknowledged_mess

age

{} local_order {(m1|->m2),(m1|->m3),(m1|-

>m4),(m2|->m3),(m2|->m4),(m3|-

>m4)}

 crash_list {} Receiver_is_Crashed {}

 alive_list {p1,p2,p3,p4} Receiver_is_OK {p1,p2,p4}

 trusted_sequencer {p3} received_msg

{(p1|->m1),(p1|->m2),(p1|->m3),(p1|-

>m4),(p2|->m1),(p2|->m2),(p2|-

>m3),(p2|->m4),(p3|->m1),(p3|-

>m2),(p3|->m3),(p3|->m4),(p4|-

>m1),(p4|->m2),(p4|->m3),(p4|->m4)}

International Journal of Computer Applications (0975 – 8887)

Volume 102– No.3, September 2014

33

any message loss one can also use negative and positive

acknowledgement [26] to recover it. Pro B [7] model checker

and animator tool has been used for modeling and step by step

checking. This model has been checked for invariant violation or

for any deadlock occurrence. The B machine animated through

Pro B worked very well. On injecting a subtle fault into the

specifications, to verify the model, Pro B captured them

automatically thereby substantiating the results.

10. ACKOWLEDGMENT
We are grateful to Dr. Divakar singh yadav for his valuable

guidance. It gives us immense pleasure to express our deep sense

of gratitude to Dr. S. L. Srivastava for encouragements during

work. Last but not the least; we extend our heartiest gratefulness

to our parents and all family members.

11. REFERENCES
[1] Jia, W., Kaiser, J., and Nett, E. 1996. RMP: Fault–Tolerant

GroupCommunication. Micro, IEEE, Oxford, Clarendon,

16(2) , 59 – 67.

[2] Kim, J., and Kim C. 1997. A total ordering protocol using

a dynamic token-passing scheme. Distributed System

Engineering. 4(2), 87–95.

[3] Cristian, F., Mishra, S., and Alvarez, G. 1997. High

performance asynchronous atomic broadcast. Distributed

System Engineering 4(2), pp. 109-128.

[4] Srivastava, P., Lakhtaria, K., Panwar A., and Jain, A. 2014.

Rigorous design of moving sequencer crash tolerant atomic

broadcast with unicast broadcast. IEEE International

Conference on Recent Advances and Innovations in

Engineering – ICRAIE, Rajasthan, India.

[5] D´efago, X., Schiper, A., and Urb´an, P. 2004. Total order

broadcast and multicast algorithms: Taxonomy and survey.

ACM Comput. Surv. 36(4), 372– 421.

[6] Abrial, J., R. 1996. The B-book: assigning programs to

meanings Cambridge University Press New York. USA,

ISBN:0-521-49619-5.

[7] Leuschel, M., Butler, M. 2003. Pro B: A model checker for

B. In: Araki, K., Gnesi, S., Mandrioli, D. (eds.) FME.

Springer, Heidelberg, LNCS, 2805, 855-874.

[8] Ekwall, R., and Schiper, A. 2011. A Fault-Tolerant Token-

Based Atomic Broadcast Algorithm. Dependable and

Secure Computing, IEEE Transactions. 8(5), 625–639.

[9] Hadzilacos, V., and Toueg, S. 1993. Fault-Tolerant

Broadcasts and Related Problems. Distributed systems (2nd

Ed.), ACM Press/Addison- Wesley Publishing Co., New

York, USA, 97-145.

[10] Lamport, L., 1978. The Implementation of Reliable

Distributed Multiprocess Systems. Computer Networks.

2(2), 95–114.

[11] Schneider., and F. B. 1990. Implementing fault tolerant

services using the state machine approach: a tutorial. ACM

Computing Survey. 22(4), 299-319.

[12] Kaashoek, M. F. and Tanenbaum, A. S. 1996. An

evaluation of the Amoeba group communication system. In

Proceeding of 16th International Conference on Distributed

Computing Systems (ICDCS-16). Hong Kong, 436–447.

[13] Armstrong, S., Freier, A., and Marzullo, K., 1992.

Multicast transport protocol. Network working group. RFC

1301, IETF.

[14] Carr, R., 1985. The Tandem global update protocol.

Tandem Systems Review. 74–85.

[15] Garcia-Molina, H. and Spauster, A. 1991. Ordered and

reliable multicast Communication. ACM Trans. Comput.

Syst. 9(3), 242–271.

[16] Jia, X. 1995. A total ordering multicast protocol using

propagation trees. IEEE Trans. Parall. Distrib. Syst. 6, 617–

627.

[17] Birman, K. P., Schiper, A., and Stephenson, P. 1991.

Lightweight causal and atomic group multicast. ACM

Trans. Comput. Syst. 9(3), 272–314.

[18] Navaratnam, S., Chanson, S. T., and Neufeld, G. W. 1988.

Reliable group communication in distributed systems. In

Proceeding of 8th International Conference on Distributed

Computing Systems (ICDCS-8). San Jose, CA, USA, 439–

446.

[19] Wilhelm, U. and Schiper, A. 1995. A hierarchy of totally

ordered multicasts. In Proc. 14th Symp. on Reliable

Distributed Systems (SRDS), Bad Neuenahr, Germany,

106–115.

[20] Reiter, M. K. 1994. Secure agreement protocols: Reliable

and atomic group multicast in Rampart. In Proceeding of

2nd ACM Conference on Computer and Communications

Security (CCS-2). 68–80.

[21] Reiter, M. K. 1996. Distributing trust with the Rampart

toolkit. Communications of the ACM. 39(4), 71–74.

[22] Srivastava, P.,Lakhtaria, K., Jain, A. 2013. Rigorous design

of moving sequencer atomic broadcast with unicast

broadcast. In Proceeding of International Conference on

Advances in computer science. Elsevier. 484-491.

[23] Cristian, F., Aghili, H., Strong, R., and Volev, D. 1995.

Atomic broadcast: From simple message diffusion to

Byzantine agreement. IEEE, Proceeding of FTCS-25, 431.

[24] Berman, P., and Bharali, A. A. 1993. Quick Atomic

broadcast. Springer Berlin Heidelberg. LNCS. 725, 189-

203.

[25] Le Lann, G. and Bres, G. 1991. Reliable atomic broadcast

in distributed systems with omission faults. ACM

Operating Systems Review. SIGOPS 25, 80–86.

[26] Chang, J. M., and Maxemchuk, N. F. 1984. Reliable

broadcast protocols. ACM Trans. Comput. Syst. 2(3), 251–

273.

IJCATM : www.ijcaonline.org

