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ABSTRACT 
This article investigates a mechanism to tolerate omission failure 

in moving sequencer based atomic broadcast at distributed 

systems. Various mechanisms are already given for moving 

sequencer based atomic broadcast like RMP [1], DTP [2], Pin 

Wheel [3] and mechanism proposed by [4]. But none of these 

mechanisms are efficient to tolerate different failure. Scholarly 

observation is that, these algorithms can tolerate only crash 

failure but not capable to tolerate omission or byzantine failure. 

This work is an extension of [4]. This work proposes a 

mechanism to tolerate omission failure in moving sequencer 

based atomic broadcast. Hence this work is a refined version of 

[4]. This work relies on unicast broadcast hence it will introduce 

a very less number of messages in comparison to previous 

mechanisms [5]. 

B [6] has been used as formal technique for development of 

proposed model. B uses set theory as a modeling notation, 

refinements to represent system at different abstraction level. Pro 

B [7] has been used as model checker and animator for 

constraint based checking, to discover errors due to invariant 

violation and for deadlocks, thereby, validating the 

specifications.  

General Terms 

Distributed Systems, Model Verification 

Keywords  
Broadcast, Atomic Broadcast, Total Order, Unicast, Sequencer, 
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1. INTRODUCTION 
Atomic broadcast (also known as total order broadcast) is an 

important abstraction in fault tolerant distributed computing [8]. 

It ensures that messages broadcasted by different processes are 

delivered by all destination processes in same order [9]. Lamport 

has proposed state machine replication [10] for implementing 

fault tolerant services. Basically state machine replication is way 

to achieve highly available system. These systems are available 

in any case whether very high load or any failure. So the 

question arises that what is the role of atomic broadcast in 

context to highly available systems. To answer this question one 

has to understand the functioning of state machine replication. A 

state machine is set of state variable which implements its state 

and commands, which transform its state [11]. The client 

interacts with replicated servers by submitting same order of 

input commands. The replicas are in same initial state, after 

receiving input they will go through same state of execution and 

generate same result and finally go to same final state. The 

voting will be there for correctness of result and then correct 

result will be given back to client. In Distributed environment it 

is very difficult to achieve same order (or sequence) on input 

commands due to lackness of global clock in distributed 

systems.  To achieve this, variety of algorithms have been given 

by different scholars. Different scholars use to classify these 

algorithms on their own assumptions and requirements. 

Considering the criteria that “who is responsible for 

sequencing?” then one can classify theses algorithms in 

following categories[5]:  (a) fixed sequencer atomic broadcast 

(b) moving sequencer atomic broadcast (c) privilege based 

atomic broadcast (d) communication history based atomic 

broadcast and (e) destination agreement based atomic broadcast 

mechanisms. Fixed sequencer is the easiest, where one dedicated 

process is there for sequencing of messages but at high load or in 

case of sequencer failure the whole system will suffer. Though 

mechanisms like, Amoeba [12], MTP [13], Tandem [14], [15], 

Jia [16], ISIS [17], [18], Phoenix [19] and Rampart [20, 21] are 

fixed sequencer based and can tolerate crash but for any 

researcher it’s always a conundrum to face sequencer failure and 

bad performance at high load. So to get rid of this problem 

moving sequencer is a best option where not a fixed process will 

be sequencer. RMP[1], DTP[2] ,pin wheel[3] and [4] are based 

on moving sequencer and tolerate crash failure but not capable 

to tolerate the omission Failure. So this work has proposed a 

new mechanism to build atomic broadcast that is based on 

moving sequencer and will tolerate the omission failure.  

The process can be crash due to network disconnection, system 

restart, buffer overflow or due to any other temporary reasons. 

The system must be efficient enough to tolerate such type of 

failure so that the reliability should be maintained.  

The failure may be different types as (i) Crash failure; where 

process gets crashed at all and not responding. (ii) Omission 

failure; where process is omitting to do some work. (iii) Timing 

failure; it is due to time out. It occurs in synchronous system and 

(iv) Byzantine failure; where process is behaving completely 

maliciously. It means there is no fix pattern of its behavior.  

This paper focuses only on omission tolerance. Since this paper 

is extension of [4] hence it will also tolerate crash failure. 

2. CONTRIBUTION OF THE PAPER 
The paper contributes a tranche in direction to achieve the fault 

tolerant systems. It presents omission tolerance in moving 

sequencer based atomic broadcast. The B [6] formal method is 

used to design this model. Pro B [7] model animator and checker 

tool is used to verify this model for any deadlock, constraint 

violations, error and inconsistencies. The results are obtained in 

sequential steps. 
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3. SYSTEM MODEL 
This work assumes an asynchronous system composed of n 

processes belongs to a set π = {P1, P2 ... Pn}. For simplicity, this 

model considers a set of three processes as: Process belongs to π 

and Process = {P0, P1, P2}. The processes communicate by 

message passing over reliable channels. Message is a set of 

messages, for simplicity, this model considers a set of three 

messages as: Message = {M1, M2, M3}. 

Since this work is an extension of [4] hence, Network is reliable, 

uses unicast broadcast (UB) variant of fixed sequencer atomic 

broadcast, based on moving sequencer and by default crash 

tolerant.  

3.1 Agreement Problem 
The agreement problem considered in this paper is presented 

below. 

3.1.1 Atomic Broadcast 
Atomic broadcast problem is defined by primitive [8] 

a_broadcast and a_delivers, the processes have to agree on a 

common order on a set of messages. Formally atomic broadcast 

(uniform) can be defined by four properties [5];  

Validity: if a correct process a_broadcast any message m then it 

eventually a_delivers m. 

Uniform agreement: If a process a_delivers m then all the 

correct processes a_deliver m. 

Uniform integrity: For any message m, every process p, 

a_delivers m at most once and only if m was previously 
a_broadcast.  

Uniform total order: If some process, a_delivers m before m' 

then every process a_delivers m' only after it has a_delivered m. 

3.1.2 Sequencer Based Algorithms 
The sequencer based atomic broadcast [3] is simplest one and 

provides best delivery time (in absence of failure) while the 

protocols based on privilege provide best stability time in system 

where logical ring is formed and message is passed along with 

token. This work relies on sequencer based approach where any 

process can be elected as sequencer. 

4. RELATED WORK 
There is lot of work have been done since 25 years in area of 

atomic broadcast. The RMP [1], DTP [2], Pin Wheel [3] and [4, 

22] are the various mechanisms to achieve moving sequencer 

based atomic broadcast. In moving sequencer mechanisms, there 

must be some process that is responsible for sequencing. But this 

sequencer will not be fixed for whole time. Each process will be 

a sequencer in a rotation manner. It is somewhat easier that 

privilege based atomic broadcast mechanisms. All these 

mechanisms help to build atomic broadcast but they can tolerate 

only crash failures. 

 Different authors have given various mechanisms base on 

communication history (where sender processes are itself 

responsible for sequencing) to build atomic broadcast but most 

of these algorithms can only tolerate crash failure. HAS [23] can 

tolerate crash and omission both type of failures and Quick-S 

[24] (for synchronous system) can tolerate crash, omission and 

Byzantine failures. 

A variety of algorithms are also given for atomic broadcast 

based on destination agreement where the destination processes 

are responsible for arranging the messages before delivery. But 

most of these algorithms can tolerate only crash failure except 

Le –Lann Bres [25] and Quick-A [24]. Le-Lann Bres [25] can 

tolerate crash and omission both while Quick-A [24] (for 

asynchronous system) is capable for tolerating byzantine failure 

also.   Rampart [20, 21] is based on fixed sequencer and can 

tolerate crash, omission and byzantine failures. Scholarly 

observation of these algorithms is that, there is still a space to 

achieve omission and byzantine tolerance in case on moving 

sequencer atomic broadcast. This work focuses on [4] and 

present a mechanism to tolerate omission failures. 

5. ARCHITECTURE OF PROPOSED 

WORK 
This work relies on incremental approach (see fig. 1) to design 

a model of atomic broadcast. The work that has been done in [4] 

will be used as abstract model. This work is a refinement of 

abstract model [4] that tolerates omission failure.  

 

 

 

 

 
 Figure 1 Architecture of proposed work 

6. ABSATRACT MODEL 
An abstract model represents the basic functionality of any 

system. This became more accurate when refines in next 

versions. Here, [4] has been considered as an abstract model (it 

is based on unicast broadcast (UB) variant of fixed sequencer 

and tolerates crash failure in order to build moving sequencer 

based atomic broadcast) and introduced refined version that will 

tolerate omission failure. Table 1 represents the various B 

symbols used in model. 

Table 1.  B symbols used in model 

B symbols Description 
: Element of 

/: Not element of 

<: Subset 

/<: Not subset of 

! For every 

X Cartesian product 

POW Power Set 

<-> Relation 

+-> Partial function 

--> Total Function 

R~[A] Relational Inverse 

\ / Set union 

/ \ Set intersection 

: = Assignment 

| | Parallel substitution 

PRE Pre-condition 

BOOL Boolean 

NATURAL1 Non zero natural number 

Card Cardinality 

Ran Range of realtion 

Dom Domain of Relation 

The following section presents the informal definition of 

different events given in abstract model [4]. The B model is 

build up with sets, constants, variables, Invariant and events. The 

fig. 2 summarizes all the abstract machine variables with their 

corresponding initial values and constraints (or invariant).  

6.1 Events 

This section presents informal definition of different events 
given in [4]. 

First Refined Model 

(Concrete model) 

 

Abstract Model 

(Basic functionalities) 
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6.1.1 Sequencer Selection Event  

The sequencer selection event will elect any process as 

sequencer. This event will ensure that no crashed process will 

participate in election. 

6.1.2 Check Sequencer’s Heartbeat Event  

This event is used by all processes (except sequencer) to decide 

sequencer is crashed or alive.The processes will check heartbeat 

of sequencer and cast their vote for sequencer to confirm 

whether sequencer is alive or crashed.  

6.1.3 Voting for Sequencer Event  
After casting of vote for sequencer this event comes into 
existence. Based on votes it decides whether sequencer is alive or 
not.  

If more processes are casting their vote for alive nature of 
sequencer than crash nature then it will be a trusted sequencer 
and ready to accept messages.    

6.1.4 Unicast Event  
If any process (except sequencer) needs to broadcast any message 
then at first it will use unicast event to unicast its message to 
sequencer.  

6.1.5 Acknowledgement By Sequencer Event  
After receiving the message sequencer will send an 
acknowledgement to sender. 

6.1.6 Check Heartbeat Event  
Before any broadcast sequencer will check heartbeat of all the 
processes (receivers) such that it can prepare list of alive and 
crashed receivers. 

6.1.7 Broadcast Event  
Broadcast event will be used by trusted sequencer to broadcast 

all acknowledged messages with proper sequence number to all 

alive processes. 

6.1.8 Deliver Event  
This event will occur at every alive process to deliver the 

messages. The messages will deliver in same order and this 

order is specified by follow variable. 

6.1.9 Crash Event 
This event is used to introduce crash nature of processes. Any 

process can be crash due to system shutdown, network 

disconnection or due to some other temporary reasons.  

If any process has been crashed then it is not suppose to send or 

receive any message. 

6.1.10 Get Alive Event 
This event is used to recover any crashed process. As any crash 

process get recover it will intimate sequencer (if exists) about its 

recovery, and ask to sequencer for all previously broadcasted 

messages. If it founds any difference between its receiving list 

and sequencer’s “sent message” list then it will deliver all old 

messages, if there is no difference in messages then still it will 

work as usual. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Variables, Invariants and their initial value in 

abstract model 

7. REFINED MODEL 
The different events, variables and invariants (see fig. 2) 

discussed in section VI constitutes moving sequencer atomic 

broadcast that tolerates crash failure. This refined version 

presents omission tolerance. For this purpose this work has 

introduced some new constants and variables (see fig. 3). 

The unicast_message_size is a new constant that will put a 

restriction on sequencer’s buffer to control the send omission. 

MACHINE Abstract1 

SETS 

Process= {P1, P2, P3};  Message={M1, M2, M3} 

VARIABLES  

selected_sequencer,sequencer_selection, unicast_message, 

temporary_receive, follow, sent, seq_no, receive, 

msg_with_seq_no,  acknowledged_message 

INVARIANT 

selected_sequencer :           POW(Process) 

sequencer_selection :          BOOL  

unicast_message :               Process <-> Message  

temporary_receive :            Process <-> Message  

follow : NATURAL1<->NATURAL1 

sent :  (Process<->Message)<->NATURAL1 

seq_no :          NATURAL1  

receive :  (Process <-> Message)<-> NATURAL1  

msg_with_seq_no :Message<-> NATURAL1 

acknowledged_message:Process<->Message 

crash_list:POW(Process)  

alive_list:POW(Process)  

crash_list /\ alive_list={} 

trusted_sequencer:POW(Process)  

Receiver_is_Crashed:POW(Process)  

Receiver_is_OK:POW(Process) 

Receiver_is_OK /\ Receiver_is_Crashed={}  

received_msg:Process<->Message  

Heart_Beat_Check: Process<->Process  

Re_Unicasted_msg:Process<->Message  

Crash_Recoverd_Ack : POW(Process)  

Message_diff:Process+->INTEGER   

check_seq_heartbeat:Process+->(Process<->BOOL)  

vote_for_sequencer:INTEGER 

Positive_vote_for_sequencer:INTEGER  

Negative_vote_for_sequencer:INTEGER  

Start_unicast:BOOL  

Sequencer_heart_beat_check_is_over:BOOL  

voting_at_final_stage_for_process:POW(Process) 

INITIALISATION 

selected_sequencer :={} ||sequencer_selection :=FALSE || 

unicast_message :={} || temporary_receive :={} ||  

follow :={} || sent :={} seq_no :=1 ||receive :={}||   

msg_with_seq_no :={}||crash_list:={}|| alive_list:=Process || 

trusted_sequencer:={} ||Receiver_is_Crashed:={} || 

Receiver_is_OK:={} ||received_msg:={}|| 

Heart_Beat_Check:={} ||Re_Unicasted_msg:={} || 

Crash_Recoverd_Ack:={} ||Message_diff:={} || 

check_seq_heartbeat:={} ||vote_for_sequencer:=0 || 

Positive_vote_for_sequencer:=0 

|| Negative_vote_for_sequencer:=0                                    || 

Start_unicast:=FALSE|| 

Sequencer_heart_beat_check_is_over:=FALSE || 

voting_at_final_stage_for_process:={} 
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The Receiver_buffer_size is a constant that will put a restriction 

on receiving processes’ buffer to control receive omission. 

Variable Receiver_buffer_size_counter contains the list of 

receiver processes along with available buffer. 

Variable final_updated_msg_list contains finally delivered 

message corresponding to each process. 

Variable local_order is similar to follow variable but contains 

the sequence of messages at receiver end. It helps during final 

updation of messages in total order at receivers. The sequence of 

delivered message list and final updated message list must be 

same and in Total order. 

Omission failure can be of three types; (i) Send omission: due to 

sender’s buffer overflow. (ii) Receive omission: due to receiver’s 

buffers overflow. (iii) Network omission: due to unreliable 

network. 

Since this work assumes reliable network hence it will not 

consider network omission. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Variables, Invariants and their initial value in first 

refined version 

7.1 Procedure TO Tolerate Send Omission 
Sequencer is responsible for broadcast hence this work has been 

focused on sequencer for any send omission. This model has 

been designed in such a way that sequencer will never be in such 

a case where buffer will overflow. 

The sequencer has limited size of buffer where it keeps the 

acknowledged messages. Any process can unicast its message to 

sequencer but sequencer cannot receive all such messages since 

it has limited buffer. When any process unicast its message this 

message stores into unicast message list.  

The acknowledged message list is sequencer’s buffer and size of 

acknowledge message list varies from zero 

unicast_message_size. Initially sequencer picks some messages 

(maximum upto unicast_message_size) from unicast message 

list and keeps into acknowledged message list. If there is no free 

space at acknowledged message list (means if size of 

acknowledged message list is equals to unicast_message_size) 

then it will not pick any more messages from unicast message 

list. As sequencer broadcasts any message it clears its entry from 

acknowledged message list.  

In this way buffer will available to receive some more message 

from unicast message list. So there will be no case of sequencer 

buffer overflow and hence no send omission. 

7.1.1 Strengthening of Acknowledgement by 

Sequencer Event 
Before any acknowledgement sequencer will check its buffer. 

For this new guard has been introduced to strengthen the 

acknowledgment by sequencer event.  

Guard: 

Cardinality (acknowledged_message)<=unicast_message_size 

7.1.2 Strengthening of Broadcast Event 
As sequencer will broadcast any message it will clear its entry 

from acknowledged message list. For this new functionality has 

been added to broadcast event. 

Action: 

acknowledged_message:=acknowledged_message-{p|->m}  

As it will delete messages from acknowledged message list the 

free space will be there to keep another message. 

7.2 Procedure to Tolerate Receive Omission 
Each receiver has a limited buffer capacity. Receive omission 

occurs at receivers due to overflow of receive buffer. This model 

has been designed in such a way that no receive omission will 

occur. 

Before any delivery the receiver will check its available buffer. 

If there is free space then it will deliver that message otherwise 

wait until space will free. As any message has been delivered by 

each process that message will be finally updated at each site. As 

any message will finally update at any site the space taken by it 

at receiver buffer will get free and it can deliver new message.  

To achieve this; the receiver’s buffer size has been represented 

with a constant (i.e. Receiver_buffer_size), Variable 

Receiver_buffer_size_counter that contains the list of receiving 

processes with corresponding free buffer size. Informally, if 

Receiver_buffere_size_counter is zero means there is no free 

space to deliver and if Receiver_buffere_size_counter is equal to 

Receiver_buffer_size then it means buffer at corresponding 

process is completely free to deliver.  

For each process buffer size (Receiver_buffer_size_counter) 

varies from zero to Receiver_buffer_size.  

Initially Receiver_buffere_size_counter has been initialized by 

receiver_buffer_size (it means initially the buffer of all receivers 

is empty).  

Before any delivery processes will check their available buffer 

(Receiver_buffere_size_counter); if it is zero then it will not 

deliver (since buffer is full) otherwise it can deliver. After 

delivery of each message it will decrease its buffer size by one.  

In this way there will be no case of receiver’s buffer overflow 

and hence no receive omission.  

7.2.1 Strengthening of Deliver Event 
To strengthen deliver event such that receive omission can be 

tolerated this work introduces new guard. 

Gurad:  (p|->0) /: Receiver_buffer_size_counter 

Guard ensures that if some process p having available buffer size 

is zero (i.e. p|->0), it cannot deliver message.  Two new 

functionalities have been added to deliver event. 

REFINEMENT Refine2_Omission_Tolerant 

REFINES Abstract1 

CONSTANTS  

unicast_message_size, Receiver_buffer_size 

PROPERTIES 

unicast_message_size:NATURAL1 & 

Receiver_buffer_size:Process-->NATURAL1  

VARIABLES 

Receiver_buffer_size_counter, 

final_updated_msg_list,local_order 

INVARIANT 

Receiver_buffer_size_counter:Process+->NATURAL 

final_updated_msg_list:Process<->Message  

local_order:Message<->Message  

card(acknowledged_message)<=unicast_message_size 

INITIALISATION 

Receiver_buffer_size_counter:=Receiver_buffer_size|| 

final_updated_msg_list:={}|| local_order:={} 
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Action 1: 

IF m/: ran(received_msg) THEN local_order:=local_order\/  

{m} * ran(received_msg) END 

Received_msg, variable (see fig. 1) keeps the list of processes 

and corresponding delivered messages. This action 1 specifies 

that for every newly delivering message there will be a 

precedence relationship with previously delivered messages will 

build, and this relationship is represented with local_order. For 

example local_order {m2|->m1} indicates that m2 is proceeding 

to m1; m2 will deliver only after delivery of m1 at any process.  

The local_order will helpful for final updation of messages. 

Since local delivery and final delivery must be in same order 

such that total order should be maintained.    

Action 2: 

Receiver_buffer_size_counter(p):=Receiver_buffer_size_counter

(p)-1  

As any process deliver any message it will decrease its available 

buffer size by one. 

7.2.2 Final Updation Event 
As any message will locally deliver by each process then it will 

finally update at each process (see fig.4). Final updation means 

message is finally delivered at the process.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 Final updation event 

Guard 1 and 2: p: Process & p: dom(received_msg) illustrates 

that any process in system that is participating in delivery 

(means it must not be crashed process) will deliver message.                                                     

Guard 3 and 4: m: ran(received_msg) & 

card(received_msg~[{m}])=card(alive_list) 

These guards ensure that final updation event will occur only for 

those messages that have been delivered by each processes.  

Guard 5: (p|->m)/: final_updated_msg_list  

This guard ensures that any process cannot repeatedly deliver 

same message. 

Guard 6:  

!(mm).(mm:Message &(m|->mm):local_order   =>(p|-

>mm):final_updated_msg_list) 

This guard ensures that message will finally deliver in total 

order.  

Action 1: 

final_updated_msg_list:=final_updated_msg_list\/{p|->m} 

As any process will finally deliver any message then 

final_updated_msg_list will be updated.  

Action2: 

Receiver_buffer_size_counter(p):=Receiver_buffer_size_counter

(p)+1  

As any process will finally deliver any message then buffer will 

be free to receive new message.  

8. RESULT 
The model has been verified by Pro B [7] model checker and 

animator tool. No invariant violations, errors and deadlock have 

been found. The B model animated through Pro B worked very 

well. The Pro B managed to explore the entire state space of the 

B-machine in 59 seconds, covering 37322 states and 58329 

transitions. This model has been animated for various numbers 

of random operations. The table 2 presents the status of various 

variables after 500 random operations.  

The model has randomly assumed the size of constant 

unicast_message_size = 2 (it is sequencer’s buffer size) and 

Receiver_buffer_size = {(p1|->2),(p2|->3),(p3|->1),(p4|->1)} 

(i.e. Process p1 has been assigned with receive buffer 

capacity=2, similarly p2 with 3, p3 with 1 and p4 with 1). 
selected_sequencer = {p3} and trusted_sequencer = {p3} 

indicates that p3 is a trusted sequencer. The sent = {({(p4|-

>m1)}|->4),({(p4|->m2)}|->3),({(p4|->m3)}|->2),({(p4|-

>m4)}|->1)} indicates that previous trusted sequencer p4 has 

broadcasted m4 with sequence number 1, m3 with sequence 

number 2, m2 with sequence number 3 and m1 with sequence 

number 4. The follow = {(2|->1),(3|->1),(3|->2),(4|->1),(4|-

>2),(4|->3)} variables shows a precedence relationship among 

the different sequence numbers. As (2|->1) indicates sequence 

number 2 is following to sequence number 1. And at receiver, 

message having sequence number 2 will only deliver to some 

receiver if that receiver has delivered message having sequence 

number 1. The follow variable guaranties delivery of messages 

in same sequence to each receiver. 

Investigate the final_updated_msg_list = {(p1|->m1),(p1|-

>m2),(p1|->m3),(p1|->m4),(p2|->m1),(p2|->m2),(p2|-

>m3),(p2|->m4),(p3|->m1),(p3|->m2),(p3|->m3),(p3|-

>m4),(p4|->m1),(p4|->m2),(p4|->m3),(p4|->m4)}, this list 

clearly indicates that messages delivered at each process are 

same.  

And investigation of receive= {({(p1|->m1)}|->4),({(p1|-

>m2)}|->3),({(p1|->m3)}|->2),({(p1|->m4)}|->1),({(p2|-

>m1)}|->4),({(p2|->m2)}|->3),({(p2|->m3)}|->2),({(p2|-

>m4)}|->1),({(p3|->m1)}|->4),({(p3|->m2)}|->3),({(p3|-

>m3)}|->2),({(p3|->m4)}|->1),({(p4|->m1)}|->4),({(p4|-

>m2)}|->3),({(p4|->m3)}|->2),({(p4|->m4)}|->1)} list  reports 

that messages have been delivered to each process and in same 

order (or sequence); hence confirming to atomic broadcast 

definition.

 

 

 

final_updation(p,m)= 

PRE  

p:Process & p:dom(received_msg) & m:ran(received_msg)& 

card(received_msg~[{m}])=card(alive_list) &   

(p|->m)/:final_updated_msg_list  

& !(mm).(mm:Message &(m|->mm):local_order   =>(p|-

>mm):final_updated_msg_list)  

THEN 

Action1: 

final_updated_msg_list:=final_updated_msg_list\/{p|->m} 

Action 2: 

Receiver_buffer_size_counter(p):=Receiver_buffer_size_coun

ter(p)+1    

END   END 
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Table 2. Evaluation view

 

No invariant violation, error or deadlock has been observed. 

During animation buffer overflow has been introduced at sender 

and receivers but this model has successfully tolerated such 

problems; Hence also confirming to omission tolerance.   

9. CONCLUSION 
This paper presents mechanism to tolerate omission failure in 

moving sequencer atomic broadcast. Since this paper is an 

extension of [4] hence it rely upon unicast broadcast (UB) 

variant of fixed sequencer to build moving sequencer atomic 

broadcast and also tolerates crash failures. However in future 

there is also a good scope to work with byzantine failures. For 

Constants Variables Values Variables Values 

unicast_messag

e_size  

 2 Message_diff  {(p1|->0),(p2|->0),(p4|->0)} 

Receiver_buffe

r_size  

 {(p1|->2),(p2|->3),(p3|-

>1),(p4|->1)} 

check_seq_heartbeat  {(p1|->{(p3|->TRUE)}),(p2|->{(p3|-

>TRUE)}),(p4|->{(p3|->TRUE)})} 

 selected_sequencer  {p3} vote_for_sequencer  0 

 sequencer_selection TRUE Positive_vote_for_seque

ncer  

0 

 unicast_message {} Negative_vote_for_sequ

encer 

0 

 temporary_receive  {} Start_unicast TRUE 

 follow   {(2|->1),(3|->1),(3|-

>2),(4|->1),(4|->2),(4|-

>3)} 

Sequencer_heart_beat_c

heck_is_over  

FALSE 

 sent  {({(p4|->m1)}|->4),({(p4|-

>m2)}|->3),({(p4|->m3)}|-

>2),({(p4|->m4)}|->1)} 

voting_at_final_stage_fo

r_process  

{} 

 seq_no  5 non_deletable_ack_msg_

log 

{} 

 Receive {({(p1|->m1)}|->4),({(p1|-

>m2)}|->3),({(p1|->m3)}|-

>2),({(p1|->m4)}|-

>1),({(p2|->m1)}|-

>4),({(p2|->m2)}|-

>3),({(p2|->m3)}|-

>2),({(p2|->m4)}|-

>1),({(p3|->m1)}|-

>4),({(p3|->m2)}|-

>3),({(p3|->m3)}|-

>2),({(p3|->m4)}|-

>1),({(p4|->m1)}|-

>4),({(p4|->m2)}|-

>3),({(p4|->m3)}|-

>2),({(p4|->m4)}|->1)} 

final_updated_msg_list  

 

{(p1|->m1),(p1|->m2),(p1|->m3),(p1|-

>m4),(p2|->m1),(p2|->m2),(p2|-

>m3),(p2|->m4),(p3|->m1),(p3|-

>m2),(p3|->m3),(p3|->m4),(p4|-

>m1),(p4|->m2),(p4|->m3),(p4|->m4)} 

 msg_with_seq_no  {(m1|->4),(m2|->3),(m3|-

>2),(m4|->1)} 

Receiver_buffer_size_co

unter 

{(p1|->2),(p2|->3),(p3|->1),(p4|->1)} 

 acknowledged_mess

age  

{} local_order  {(m1|->m2),(m1|->m3),(m1|-

>m4),(m2|->m3),(m2|->m4),(m3|-

>m4)} 

 crash_list {} Receiver_is_Crashed  {} 

 alive_list  {p1,p2,p3,p4} Receiver_is_OK  {p1,p2,p4} 

 trusted_sequencer  {p3} received_msg  

 

{(p1|->m1),(p1|->m2),(p1|->m3),(p1|-

>m4),(p2|->m1),(p2|->m2),(p2|-

>m3),(p2|->m4),(p3|->m1),(p3|-

>m2),(p3|->m3),(p3|->m4),(p4|-

>m1),(p4|->m2),(p4|->m3),(p4|->m4)} 
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any message loss one can also use negative and positive 

acknowledgement [26] to recover it. Pro B [7] model checker 

and animator tool has been used for modeling and step by step 

checking. This model has been checked for invariant violation or 

for any deadlock occurrence. The B machine animated through 

Pro B worked very well. On injecting a subtle fault into the 

specifications, to verify the model, Pro B captured them 

automatically thereby substantiating the results. 
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