
International Journal of Computer Applications (0975 – 8887) 

Volume 102– No.2, September 2014 

11 

HDLC Implementation in Wireless Sensor Networks 

 

Deepika Sharma 
Electronics and Communication 
Engineering, Lovely Professional 

University 
Punjab, India 

 
 

Rajeev Kumar Patial 
Assistant Professor, Electronics and 
Communication Engineering, Lovely 

Professional University 
Punjab, India 

  

 

ABSTRACT 

The work aims the designing and implementing an efficient 

HDLC chip. We use pipelining technique in HDLC register 

module which increases the throughput of the system and also 

helps in decreasing the delay of the system. In pipeline technique, 

number of instructions has been executed at the same time. The 

HDLC chip designed here supports two way communications 

means it supports full duplex communications which means that 

it can transmit and receive continuously. In this paper we adopt 

Xilinx’s Spartan-3E for HDLC implementation and for hardware 

simulation we use Modelsim SE 6.2C.  

Keywords 

 Cloud Computing, Billing, SaaS, PaaS, IaaS  

1.  INTRODUCTION 

The WSN change the way by which the people interact with the 

physical world by using the new technologies. Wireless 

technologies for telecommunications, are Global System Mobile, 

Code Division Multiple Access, General Packet Radio Service 

and Wi-MAX etc. has great impacts on the personal 

communication[1]. As the complexity of environmental 

monitoring system e.g. temperature, humidity etc. is increasing, 

the information gathered by a WSN cannot meet the requirements 

of the human being’s. In order to achieve these requirements, we 

introduce image, videos, audio and some other multimedia 

information to WSN [2].  

In daily life PSTN is a commonly used voice 

communication network and acts as a bridge between telephone 

user’s and WMSN. To access interface to PSTN, HDLC protocol 

is used which provide the reliable information during 

transmissions. HDLC is a bit-oriented protocol. This protocol is 

defined in data link layer i.e. Layer 2 of OSI model. HDLC is a 

commonly used layer 2 protocol and was developed by the 

International Organization for Standardization (ISO). HDLC 

comes under the ISO standards ISO 3309, ISO 8885 and ISO 

4335. 

HDLC is a code transparent protocol which means that 

it can transmit any bit pattern between two flags. HDLC uses a 

special bit pattern 01111110 (0x7E) as a delimiter or also called 

as flag. This flag pattern can be found anywhere between two 

flags. HDLC has many subsets, out of which two are used as a 

Synchronous Data Link Control and Link Access Procedure- 

Balanced. 

 

Technically HDLC has following aspects [5]: 

1.1 Stations and Configurations 

1.2 Operational Modes 

1.3 Non-Operational Modes 
 

1.1 Stations and Configurations 
HDLC has three types of stations for data link control: 

1.1.1 Primary Station 

Primary Station acts as master stations which send command 

frame to secondary station and receive response frame from 

secondary station. It is responsible for data flow on the link and 

also takes care of error recovery at data link level. 

1.1.2 Secondary Station 
Secondary station acts as slave to primary station. It receive 

command frame from primary station and send response 

command to primary station. It is controlled by primary station 

and activated when receive command from primary station.  

1.1.3 Combined Station 
Combined Station takes care of functionality of primary and 

secondary station. These stations can communicate with two 

stations in balance mode and have capabilities of both primary 

and secondary station. These stations can transmit and receive 

both command frame and response frame. 

 Following three configurations are defined by HDLC 

as: 

1.1.4 Unbalanced Configuration 

1.1.5 Balanced Configuration 

1.1.6 Symmetrical Configuration 
 

1.2 Operational Modes 
In HDLC, mode is defined as the relationship between two 

devices involved in an exchange i.e. the mode describes who 

controls the link. Exchange of data between two stations using 

unbalanced configurations are always conducted in normal 

response mode. Different modes of operations in HDLC are: 

1.2.1 Normal Response Mode (NRM) 

1.2.2 Asynchronous Response Mode (ARM) 

1.2.3 Asynchronous Balanced Mode (ABM) 
 

1.3 Non- Operational Modes 
In non-operational mode there are two disconnected mode (NDM 

and ADM) which is totally different from operational mode. In 

disconnected mode, the secondary station is logically 

disconnected not physically from the link. HDLC also defines 

three non-operational modes as given below:  

1.3.1 Normal Disconnected Mode (NDM) 

1.3.2 Asynchronous Disconnected Mode (ADM)  

1.3.3 Initialization Mode (IM) 
In this paper, we adopt Xilinx’s Spartan-3E to implement the 

HDLC protocol controller. The rest of the paper is organized as 

follows. Section 2 briefly summarized the architecture of HDLC 

and Section 3 illustrates the design and architecture of HDLC on-

chip module. Section 4 describes the purposed scheme and 

methods we use and Section 5 states implementation of the 



International Journal of Computer Applications (0975 – 8887) 

Volume 102– No.2, September 2014 

12 

proposed architecture and simulations under the environment of 

Modelsim 6.2C. 

2. ARCHITECTURE OF HDLC 
The block diagram of HDLC is off-chip modules and on-chip 

modules. The off-chip modules consist of clock, power and SLB 

(Simple Local Bus) and on-chip module contain different sub-

modules. In this architecture, data transmitted by the CPU is 

transmitted and received through different sub-modules. The 

detailed explanation of the architecture is given as below [12]: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 HDLC architecture 

 

 

Fig. 1 HDLC architecture 
 

 

 

 

 

2.1 Design of Off-Chip Interface Module  
The off-chip modules consist of clock, power and SLB (Simple 

Local Bus). The interface of Power, Clock and SLB to HDLC 

chip is explained as: 

2.1.1 Interface between CPU and HDLC chip 

The CPU and HDLC chip are connected through SLB interface. 

HDLC’s registers are used by CPU for implementation and data 

transmission. 

2.1.2 Receiving and sending interfaces of HDLC 
Data is transmitted between two HDLC chips simply by 

connecting two chips together. The transmission mode supported 

by HDLC chips are Bus mode and TDM mode. 

2.1.3 HDLC Chip Clock 
The clock is generated by crystal oscillator. The transmission and 

reception of data is done on the basis of the rising and falling 

edge of the clock. The HDLC chip supports multiple clock 

modes. 

 

2.2 Design of On-Chip Module 
The on-chip module contain different sub-modules like controller 

module, Transmit FIFO Module, Transmit Module, Receive 

FIFO Module, Receive Module, Clock Controller Module, Time-

slot Module. 

2.2.1 Controller Module 
The chip controller module includes R/W access to control 

registers and IRQ module. 

 

2.2.2 Transmit FIFO Module 
Transmit FIFO is an asynchronous dual-port FIFO. CPU 

implements FIFO writing via SLB’s write clock. After the read 

clock is generated by Transmit FSM, FIFO data is transmitted to 

HDLC Transmitter. 

2.2.3 Transmit Module 
This module includes two sub-modules i.e. HDLC Transmitter 

and Transmit FSM. HDLC transmitter transmits the data and 

Transmit FSM transmits the state i.e. ideal state or next state. 

2.2.4 Receive FIFO Module 
In this module, several blocks build up a queue, and every Block 

is an asynchronous dual-port FIFO. CPU implements FIFO 

reading via read clock. Data in Receiver is transmitted to Receive 

FIFO after the write clock is generated by Receive FSM. 

Receiving FIFO can adjust the size of every Block as per 

requirement. Small frame can be stored in every single block and 

large frame can be stored in several Blocks. 

2.2.5 Receive Module 
This module includes two modules, HDLC Receiver and Receive 

FSM. 

3. DESIGN AND IMPLEMENTATION 

OF   HDLC’S ON-CHIP MODULES 

The implementation of HDLC’s On-chip modules is given as 

below:  

3.1 Design and Implementation of HDLC 

Controller 

CPU is connected to HDLC chip via SLB Bus. By SLB Bus, 

CPU can operate FPGA HDLC chip’s registers through the chip-

select and address lines. Through EMC (External Memory 

Controller) module, CPU maps register address to the chip's 

address space, and software only needs to read and write the 

appropriate address. CPU is connected with HDLC chip by CS, 

OE, WE, Address, Data, INT etc.  

3.2 Design and Implementation of 

Transmit Module  

Transmit Module is consists of two sub-modules i.e. HDLC 

transmitter and Transmit FSM. Transmit is of 8-bit and send 

control signal, frame head, address and FCS etc to HDLC 

transmitter and also send the frame data in the same sequence as 

stored in FIFO. HDLC transmitter checks for the state of transmit 

FSM. After receiving the data, the HDLC transmitter counts the 

number of 1’s in the data signal. If there are five consecutive 1’s, 

then it assert extra zero to the transmitted data to differentiate 

data from the flag bit i.e.01111110 (0x7E). 

3.3 Design and implementation of Rx 

Module 

Rx Module adopts the state machine with double-layer 

architecture. That is to divide the whole sending procedure into 

two layers, and two relatively independent state machines run in 

the two separate layers. The upper state machine represents the 

Receive FSM, while the underlying state machine stands for the 

HDLC Receiver.  

Receive FSM receives various kinds of control signals and data, 

implements state transition by various kinds of control signals, 

decides the operations required in the current state, and transmits 

the operating instructions to underlying state machine HDLC 

Receiver. Having received the data, the underlying state machine 

HDLC Receiver determines whether to implement zero-remove 

D[0

:7] 

Clock Power 

SLB
 

Receive FSM 

Transmit FSM 

HDLC Receiver 

HDLC 

Transmitter 

Clock Controller 

Tx FIFO 

Rx FIFO 

Time 

Slot 

Control 

TxD 

RcClk/TxClk 

RxD 

A[0

:7] 

/OE 

/WE 

/W

E 

Reg 

IRQ 

/CS 



International Journal of Computer Applications (0975 – 8887) 

Volume 102– No.2, September 2014 

13 

to the received data, according to the instructions of the upper 

layer. The processed data will be transmitting to the upper layer 

state machine and the receiving FIFO. 

 

4. PROPOSED SCHEME 

4.1 Motivation 
Central Processing Units are derived by a clock. Each clock pulse 

are not assume to do the same thing; rather, logic in the CPU 

directs pulses to different places to perform a useful work. There 

are many reasons that the whole execution of a machine 

instruction cannot suppose to be at once. For example, if one 

clock pulse stores a value into a register, it will take some time 

for the value to be stable at the outputs of the register. As another 

example, reading an instruction from a memory unit cannot be 

done at the same time that an instruction writes a result into the 

same memory unit. In pipelining, effects that cannot happen at 

the same time are made the dependent steps of the instruction.  

 

4.2 Proposed method 
In HDLC, pipelining technique has been used which increases the 

performance by increasing the throughput and speed of the 

HDLC controller by performing multiple operations at the same 

time, but does not reduce instruction latency (the time to 

complete a single instruction from start to finish) as it still must 

go through all steps. Wireless sensor networks can increase the 

spatial and temporal resolution of operational data from pipeline 

infrastructures and thus address the challenge of near real-time 

monitoring and eventually control. The use of WSNs for 

monitoring large diameter bulk-water transmission pipelines has 

been focused. In pipeline architecture we cannot only speed up 

the clock but also the time taken by the design to process millions 

of instruction. In simple architecture without pipeline the next 

input have to wait until the current processing is completed where 

as in pipeline the whole process is divided into small process and 

next input will start after the current input is processed by first 

stage and also reduce the critical path.  
In this paper, pipelining technique has been used with HDLC 

chip based on FPGA for better performance and throughput. In 

pipelining architecture N number of inputs are processed at the 

same time parallel. Pipelining Technique is applied in register 

module, where we use 8-bit register out of which each register is 

used for different purpose. 

 

5. PIPELINING 
In a typical system speedup is achieved through parallelism at all 

stages such as multi-user, multitasking, multi-processing, multi-

programming, and multi-threading. A technique used in advanced 

microprocessors where the microprocessor begins executing a 

second instruction before the first instruction has been completed. 

A Pipelining is a series of stages, where some work is done at 

each stage. To finish the work or any instruction, it has to pass 

through all stages. It does not reduce instruction latency i.e. the 

time to complete a single instruction from start to finish until it 

goes through all steps. Instead, it may increase latency by 

breaking the computation into separate steps and, the pipeline 

may stall further increasing latency. Pipelining is frequently used 

in CPUs, but avoided in real time systems, where latency is a 

hard constraint.  

In pipelining we split each instruction into a sequence of steps 

and process each instruction parallel instead of processing one 

instruction at a time and finishing one at a time. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Pipeline architecture 

 

5.1 Data Flow in Pipelining 
The data flow chat of pipelining is composed of six steps i.e. 

Instruction Fetch (IF), Instruction Decode (ID), Read Operands, 

Operation, Write Back Results, and fetching the next instruction 

from memory. 

5.1.1 Instruction Fetch 
The first step is Instruction Fetch. In this step instruction is 

fetched form the memory. The instruction and program counter 

(which is incremented) are stored in pipelined registers 

temporally. 

5.1.2  Instruction Decode 
The second step is Instruction Decode. The fetched instruction is 

decoded and various control lines are send to various part of the 

processor.  

5.1.3 Instruction Execution 
The third step is Instruction Execution or read operands. In this 

step any calculations are performed by ALU. 

5.1.4 Memory Access 
The fourth step is Memory Access or operation. In this stage 

storing and loading the values to and from the memory. 

5.1.5 Write Back 
The fifth step is Register Write Back. In this step the writing the 

results of a calculations to the register. 

The sixth step is again fetching the instruction from the memory. 

And follow all the steps again for the next instruction 

 

5.2 Design Consideration 
The list of design consideration is given as below:  

5.2.1 Speed 
Pipelining reduces the processor cycle time and increase the 

throughput of instruction. The speed advantage is diminished to 

the extent that execution encounters hazards that require 

execution to slow below its ideal rate. A non-pipelined processor 

is a processor that executes only one instruction at a time. The 

next instruction will start after the completion of first instruction.  

5.2.2 Economy 
 Pipelining make each step dependent and perform complex 

operations more economically. However, a processor that 

declines to pursue increased speed with pipelining may be 

simpler and cheaper to manufacture.  

5.2.3 Predictability  

Compared to environments where the programmer needs to avoid 

the hazards that come in pipelining, use of a non-pipelined 

processor may make it easier to program and to train 

programmers. The non-pipelined processor makes it easy by 

predicting the exact timing of a sequence of instructions [20]. 

 

6. RESULTS AND DISCUSSION 
HDLC implementation is done on Xilinx’s Spartan-3E and 

hardware simulation of HDLC chip based on FPGA is done on 

Modelsim SE 6.2c. The HDLC chip designed here supports two 

way communications simultaneously. Various real life scenarios 

have been created to see how different factors such as delay, 

Stage 

1 

Stage 

2 

Stage 

3 

R

E

G 

R

E

G 

Pipeline Register 

I/P O/P 



International Journal of Computer Applications (0975 – 8887) 

Volume 102– No.2, September 2014 

14 

frequency and area affect the performance of HDLC chip based 

on FPGA and Pipelining. Simulation of performance is carried 

out for HDLC chip based on FPGA in wireless sensor network. 

Throughput, average delay is used as performance metrics in this 

study. 

Throughput: Throughput is defined as number of items such as 

cars, instructions and operations that exit the pipeline per unit 

time.  

Stage time: In general stage time is defined as the time taken by 

an instruction on non-pipelined machine per number of stages. 

The area (peak memory) of the chip gets increased because we 

need pipelined registers between different stages to store the 

values.  

 

Table 1 Comparison between Base Paper and Improved 

Work 

Parameter Result of Base 

Paper 

Result of 

Improved Work 

Number of Slices 1294 540 

Total Number Slice 

Registers 

383 122 

Number of 4 input 

LUTs 

2201 993 

Peak Memory 330 MB 345 MB 

Total REAL time to 

MAP completion 

8 sec 5 sec 

Delay 1 ns 0.6 ns 

Frequency 200 MHz 200 MHz 

 

 
 

Fig. 3 Simulation Waveform of Register Module 

 

 

 
 

Fig. 4 Simulation Waveforms for HDLC Chip 1 

 

 
 

Fig. 5 Simulation Waveforms for HDLC Chip 2 

 

Simulation results show that the HDLC chip successfully realizes 

bidirectional data communication protocol with increased 

throughput of the overall circuit. The average throughput in 

pipeline is much better and delay and net skew is also reduced. 

The implementation of pipelining technique in HDLC Chip 

increases the speed of the circuit by implementing multiple 

instructions at the same time and not increasing the clock cycle. 

          We adopt pipelining technique in our existing design which 

is operated at the same clock frequency but this technique 

increase the speed of our system and reduce the delay and also 

increase the area of chip used. We reduce most of all the 

parameter by using this technique like delay and completion time 

etc. 

7. CONCLUSIONS 
The paper presents the design and implementation of HDLC chip 

based on FPGA for wireless sensor networks using Pipelining 

Technique on Xilinx’s Spartan-3E and for hardware simulation of 

HDLC Chip we adopt Modelsim SE 6.2C. Simulation results 

show that the HDLC chip is successfully realizes bidirectional 

data communication protocol with increased throughput of the 

overall circuit. The average throughput in pipeline is much better 

and delay and net skew is also reduced. We implement pipelining 

technique in HDLC Chip which increases the speed of the circuit 

by implementing multiple instructions at the same time and not 

increasing the clock cycle.  

 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 102– No.2, September 2014 

15 

8. ACKNOWLEDGMENT 
The paper has been written with the kind assistance, guidance 

and active support of my department who have helped me in this 

work. I would like to thank all the individuals whose 

encouragement and support has made the completion of this work 

possible. 

9. REFERENCES 
[1] L.Q. Zhauang, K. M. Goh and J. B. Zhang “The wireless        

sensor network factory automation: issues and challenges” 

IEEE International Conference 2007. 

[2] Hong Luo, Cheng Chang, Yan Sun “Advanced Sensor 

Gateway based on FPGA for Wireless Multimedia Sensor 

Networks” IEEE International Conference 2011. 

[3] Xilinx Application Note: “HDLC Controller Solutions with 

Spartan-II FPGAs” (v1.0) February 1, 2000. 

[4] ISO/IEC 3309: 1993 (E), “Telecommunication and 

information exchange between system-high-level data link 

control (HDLC) procedures-Frame structure”. 

[5] Ben Dewey “HDLC Derived Protocols” Xilinx Application 

Note SBE, Inc. 2001. 

[6] Ms. Kshitija S. Patil, Prof. G. D. Salunke, Mrs. Bhavana L. 

Mahajan, Dr. A. S. Hiwale “Implementation of HDLC 

Protocol Using FPGA” International Journal of Engineering 

Science & Advanced Technology 2012. 

[7] Jun Wang, Wenhao Zhang, Yuxi Zhang, Wei Wu “Design 

and Implementation of HDLC Procedures Based on FPGA” 

IEEE International Conference. 

[8] Qasim, S.M.; Abbasi, S.A. “FPGA implementation of a 

single-channel HDLC Layer-2 protocol transmitter using 

VHDL” Microelectronics, 2003. ICM 2003 Proceedings of 

the 15th International Conference on 9-11. 

[9] Gaurav Chandil;Priyanka Mishra;”Study and performance 

evaluation of Xilinx HDLC Controller and FCS 

Calculator”,vol.2,issue 10 (October 2012),PP 41-50. 

[10] William Stallings, 2007. Data and Computer 

Communications, Eight Edition, Prentice Hall, pp: 222 

[11] Amit Dhir, 2000. “HDLC Controller Solutions with Spartan-

II FPGAs,” Xilinx Inc. 

[12] Hong Luo Cheng Chang Yan Sun “Advanced Sensor 

Gateway based on FPGA for Wireless Multimedia Sensor 

Networks” IEEE internal Conference 2011. 

[13] ZigBee Alliance, http://www.zigbee.org/. 

[14] J. Song, S. Han, A. K. Mok et al., “WirelessHART: applying 

wireless technology in real-time industrial process control,” 

in Proceedings of the 14th IEEE Real-Time and Embedded 

Technology and Applications Symposium (RTAS '08), pp. 

377–386, St. Louis, Mont, USA, April 2008. View at 

Publisher · View at Google Scholar · View at Scopus 

[15] IPv6 over low power WPAN working group,    

http://tools.ietf.org/wg/6lowpan/.  

[16] “ISA100, Wireless Systems for 

Automation,”http://www.isa.org/MSTemplate.cfm? 

MicrositeID=1134&CommitteeID=6891.  

[17] P. Stig and C. Simon, “A survey of wireless sensor networks 

for industrial applications,” in The Industrial Electonics 

Handbook, Industrial Communication Systems, chapter 12, 

pp. 1–10, CRC Press, 2nd edition, 2011. 

[18] D. M. Toma, J. del Rio, and A. Manuel-Lazaro, “Self-

powered high-rate wireless sensor network for underground 

high voltage power lines,” in Proceedings of the 2012 IEEE 

International Instrumentation and Measurement Technology 

Conference (I2MTC '12), pp. 1881–1885, Graz, Austria, 

May 2012. View at Publisher · View at Google Scholar.  

[19] Jakob Engblom “Processor Pipelines and Static Worst-Case 

Execution Time Analysis” ACTA Universitatis Upsaliensis 

Uppsala 2002.  

[20] A description of the advanced scientific computer system, 

By: Austin, TEXAS INSTRUMENTS Inc. 

[21] Sequencing strategies in pipeline computer systems By: S. 

S. REDDI.  

 

 

IJCATM : www.ijcaonline.org 

http://www.zigbee.org/
http://tools.ietf.org/wg/6lowpan/

