
International Journal of Computer Applications (0975 – 8887)

Volume 102– No.2, September 2014

7

PI-RTOS: Platform Independent RTOS

Julia Andrews
Mtech Scholar

Government Engineering College
Idukki

Philumon Joseph
Assistant professor

Government Engineering College
Idkki

ABSTRACT

This paper proposes a Real-Time Operating System kernel for

the 32-bit Leon3 processor. A system is said to be Real Time

if it is required to complete its work and deliver its services on

time. In a real-time system the correctness of its output, is an

important factor, depends not only the logical computations

carried out but also the time at which the results were

delivered to the external interface. A Real time operating

system (RTOS) is a class of operating system intended for real

time applications. The requirements for developing an RTOS

include RMS scheduling algorithm, file management scheme,

interrupt handling, Timer etc. Most of these functions are in

POSIX 1003.1b compliant. tsim simulator is used for

compilation and debugging..

General Terms

Interrupt handling, File management, Timer.

Keywords

PI-RTOS, Leon3, RTOS, Rate monotonic scheduling.

1. INTRODUCTION
The primary role of an operating system’s (OS) is to manage

its resources to meet the demands of target applications. The

target application environment of Traditional Timesharing

operating systems demands fairness and high resource

utilization whereas Real-time applications demand timeliness

and predictability. A late or a missed response from real-time

systems shall leads to the failure of the total system. For hard

real-time system, a failure would end up in catastrophic

consequences up to and including loss of human life. Aircraft

collision avoidance, anti-lock brake, pacemaker and anti-

missile systems are some hard real-time system. In the case of

soft real-time applications like communication switching

systems and streaming audio or video, predictable response is

required but occasional failures can be tolerated.

The ability of the operating system to provide a required level

of service in a bounded response time (POSIX Standard

1003.1) is the real-time in operating systems [1]. The RTOS is

designed in such a way that it maintains a balance between a

reasonably rich feature set for application development and

deployment, thereby not sacrificing predictability and

timeliness. Too late or too early correct output could be

useless, or dangerous.

An advanced algorithm is used by an RTOS for scheduling

and the flexibility of scheduler is what enables a wider and

computer-system orchestration of process priorities; but a

real-time OS is more frequently dedicated to a small set of

applications. A real-time OS is concerned, with minimal

interrupt and thread switching latency; and is valued more for

how quickly or how predictably it can respond than for the

amount of work it can perform in a given period of time.

The main differences of an RTOS compared to an ordinary

Operating System (OS) are that they have a predictive time

management and they are deterministic. An ordinary OS often

tries to perform all actions with average throughput in mind;

this in turn reduces the average case at the cost of the worst-

case. An RTOS must try to manage all system calls and task

switches in an analysable, predictive manner by providing a

known worst-case behaviour oftenly. There are different

RTOS present with different features like LynxOS [2], VRTX

[3], VxWorks [4], Win-CE [5] etc. LynxOS [2] is one of the

RTOS, which uses non-pre-emptive, FIFO, and Round Robin

Scheduling algorithms. LynxOS only checks the correctness

of the output without bothering about timeliness. But in PI-

RTOS the scheduling is done based on the periodicity, and

importance is given for time taken to complete the execution

and correctness of the output.

The kernel of an OS consists of core components for

computing, including CPU scheduling as well as process

management. It consists of mainly the Resource Management

subsystem and the Process Management subsystem. The

resource management subsystem is a set of supporting

functions for various system resources and user interfaces and

the process management subsystem is a set of transition

manipulation mechanisms for processes and threads

interacting with the system kernel and resources. The main

features of an RTOS are its scheduling algorithm (RMS) [6]

which work based on periodicity. Interrupt handling which

includes context switch operations. File management that

includes different file related operations like file close, file

open, fstat, stat etc.

The remainder of the paper is organised as follows. Section II

explains the Architecture of the PI-RTOS. Section III contains

the Features of the proposed RTOS and in Section IV

Performance evaluation of the proposed RTOS is given.

2. ARCHITECTURE
PI-RTOS is designed for handling different tasks, time, file

operations and interrupts as a platform independent structure

real-time system. But, the context switching carried out in

case of an RTOS is platform dependent. The conceptual

architecture of PI-RTOS is as shown in Figure 1, where

interactions between system resources, components, and

internal control models are illustrated. The architecture of PI-

RTOS is mainly divided into 2: an Application layer and a

System layer. The system layer in turn consists of the

Hardware Dependent part and the Hardware Independent part.

Hardware Dependent part is the one which depends on the

processor which is used to run that particular code

(application). In PI-RTOS, LEON3 [7] processor is used and

it is a 32-bit processor based on the SPARC V8 [8]

architecture. Hardware Independent part in comparison to its

counterpart does not change the code even if the processor

that is used to execute them is changed.

International Journal of Computer Applications (0975 – 8887)

Volume 102– No.2, September 2014

8

Fig 1: Architecture of PI-RTOS

In this RTOS, different tasks are maintained as a process

along with their periodic nature. Tasks that are having the

same periodicity are grouped as a single process and

execution of the tasks in a process is based on their priority

value.

Fig 2: RTOS Kernel Core

3. PI-RTOS FEATURES
The RTOS have the ability to schedule tasks and meet

deadlines, error recovery and low task switching latency,

small footprint and overheads. It is the kernel, which is the

core of an OS that provides task scheduling and task

dispatching. The main features of PI-RTOS are given below:

3.1 Scheduling

Fig 3: State transition diagram of the process scheduler

Most commonly used RTOS scheduling algorithms include

Cooperative scheduling, Preemptive scheduling, Rate-

monotonic scheduling, Round-robin scheduling, Fixed

priority pre-emptive scheduling, an implementation of

preemptive time slicing, Fixed-Priority Scheduling with

Deferred Preemption, Fixed-Priority Non-preemptive

Scheduling, Critical section preemptive scheduling, Static

time scheduling, Earliest Deadline First approach, Stochastic

digraphs with multi-threaded graph traversal etc.

The PI-RTOS proposed in this paper makes use of the RMS

scheduling algorithm. This is due to the periodicity in task

scheduling in RMS scheduling algorithm. The Rate-

Monotonic Scheduling (RMS) [6] is a scheduling algorithm

which is used to schedule different tasks in a periodic nature.

RMS is mainly used in real-time OS with a static-priority

scheduling class. The static priorities of the job are assigned

on the basis of the cycle duration. ie, the cycle duration is

shorter then job's priority is higher. These operating systems

have deterministic guarantees with regard to response times

and are generally pre-emptive. Rate monotonic analysis is

used in conjunction with those systems to provide scheduling

guarantees for a particular application. State transition

diagram of the process scheduler is given in figure 3.

In case of rate-monotonic scheduling algorithm, optimality

means the imposition of constraints upon the process system.

These include:

 Processes of fixed numbers;

 Periodic nature for all processes;

 Based on their period, all processes have

deadline;

 Before running subsequent instances, current

instance of a process must be complete;

 Their own known worst-case execution times

for all processes;

 No synchronisation is permitted between

processes;

 Initial release of all processes at time 0.

Fig 4: Flow chart of scheduler

International Journal of Computer Applications (0975 – 8887)

Volume 102– No.2, September 2014

9

3.2 Interrupt Handling
The highest priority task is blocked by an interrupt handler

from running and the interrupt handlers are kept as short as

possible so that the RTOS can keep thread latency to a

minimum. If possible, the interrupt handler defers all

interactions with the hardware. Typically all that is necessary

is to acknowledge or disable the interrupt, so that when the

interrupt handler returns this won't happen again, and notify a

task that work needs to be done. For this, a driver task needs

to be unblocked by releasing a semaphore thereby setting a

flag. A scheduler often provides the ability to unblock a task

from interrupt handler context.

Fig 5: Interrupt Handling in normal execution of a

program

Fig 6: Flow chart of interrupt handling

3.3 File Management
The data that works with on computers is kept in a

hierarchical file system. File system directories have files and

subdirectories beneath them. Although with the use of the

computer operating system the user can keep image data

organized; how the user can name files and folders, arrange

these nested folders and handle the files in these folders are

the fundamental aspects of file management. The organization

of data by the operating system can be enhanced by the use of

cataloging programs. These programs make organizing and

finding image files easier than simply relying on the

computer's directory structure. The other feature of catalog

programs is that they can streamline backup procedures for

better file protection.

3.4 Timer
A timer [8] is a specialized type of clock for measuring time

intervals. A stopwatch is a timer that counts upwards from

zero for measuring elapsed time. On the other hand, a device

which counts down from a specified time interval is usually

called a timer.

4. PERFORMANCE EVALUATION
The PI-RTOS proposed in this paper as well as most of the

paths are tested and verified using tsim simulator.

4.1 Test Cases
Some of the test cases identified for testing the scheduling and

working of interrupts are listed below:

Case 1: Process 1, 2, 3 complete in first period.

In Case 1 all processes complete within the first Interrupt,

because the execution time of all the process will be below the

first periodicity.

Fig 7: Case 1 graph

Case 2: Process 1 completes and Process 2 is suspended at 1st

interrupt and all processes complete before 2nd interrupt.

In Case 2, first process completes within the first Interrupt,

second process is suspended and third process is therefore not

called. The first interrupt occurs in first period and the second

interrupt occurs in twice the time taken by the first period and

third interrupt occur in thrice the time taken by that of the first

period. In this case, execution time of first process is less than

first period. So before the first interrupt, second process is

started but not completed. At the first interrupt, a second

process is suspended; then the first process is reloaded and its

execution completed.

Case 3: Process 1, 2 completes and 3rdprocess is suspended at

the 1st interrupt. 3rdprocess completes before 2nd interrupt.

 In Case 3, first process and second process are completed

within the first Interrupt and third process is suspended. Total

execution time of the first and second process is below that of

the first interrupt.

International Journal of Computer Applications (0975 – 8887)

Volume 102– No.2, September 2014

10

Case 4: Process 1 completes and process 2 completes exactly

at the 1st interrupt.

In Case 4, first process and second process are completed

within the first Interrupt . The second process completes

exactly at the time of first interrupt. Total execution time of

the first and second process is exact first interrupt.

Case 5: Process 3 gets suspended 3 times while 1 and 2 gets

completed in the first period itself.

 In Case 5, first process and second process are

completed within the first Interrupt and the third process is

suspended in the next 3 interrupts.

Case 6: Process 1 completes, 2 and 3 gets suspended.

 In Case 6, first process is completed within the first

Interrupt but second process and third are suspended for the

next 3 interrupts.

Case 7: Processes does not finish executing before specified

periods.

 In case 7, the execution time of the process

increases because of some reasons, so the processes are not

completed within the time period.

4.2 Latency
Latency is a time interval between the stimulation and

response. From a more general point of view, it is the time

delay between the effect and the cause of some physical

change in the system being observed. Interrupt Latency is

the time that elapses from when an interrupt is generated to

when the source of the interrupt is serviced. Interrupt latency,

also called as the Interrupt Response Time, is the length of

time that it takes for a computer interrupt to be acted on, after

it has been generated.

Table 1. Interrupt Latency

Interrupt Latency

LynxOS 13

VRTX 4

VxWorks 3

Win-CE 9.5

PI-RTOS 4.5

In computing, a context switch is the process of storing and

restoring the state (context) of a process or thread so that

execution can be resumed from the same point at a later time.
Context Switch Latency is the time taken to perform context

switch. Context switch latency obtained for the proposed PI-

RTOS is 5.3 microsec.

5. CONCLUSIONS
In this paper the platform independency of PI-RTOS in Leon3

is presented. It mainly focuses on designing an RTOS with

high predictability and timeliness. This paper provides a

detailed overview for developing an embedded system using

Leon3 and provides the details about the features of PI-RTOS

like (inbuilt features) scheduling, interrupt handling, file

management and semaphore.

Tsim simulator is used for testing and compilation. Using

simulator testing is completed successfully.

6. ACKNOWLEDGEMENT
We would like to thank everyone in the Department of

Computer Science and Engineering, Govt Engineering

College, Idukki. Also would like to thank the research team at

VSSC, ISRO Trivandrum. Who helped in understanding the

RTOS systems concepts, and other concepts related to it .The

author would like to thanks the anonymous referees for their
valuable comments, which greatly improved the readability of

the paper.

7. REFERENCES
[1] “Standard for Information Technology—Portable

Operating System Interface (POSIX®),” IEEE Std

1003.1-2004, The Open Group Technical Standard Base

Specifications.

[2] ”LynxOS user’s guide”, LynxOS Release 4.0.

[3] “VRTX: A Real-Time Operating System for Embedded

Microprocessor Applications”, Ready, J.F., Micro, IEEE

(Volume: 6, Issue: 4).

[4] ” VxWorks RTOS”, Kosuru Sai Malleswar.

[5] Win-CE:”Assessing the real-time properties of Windows

CE 3.0“, Netter C.M, Baceller, L.F. Object-Oriented

Real-Time Distributed Computing,2001. ISORC-2001.

Proceedings 4th IEEE International Symposium on.

[6] “Rate Monotonic Analysis for Real-Time Systems”,Lui

Sha, Mark H. Klein, John B. Goodenough; The Springer

International Series in Engineering and Computer

Science Volume 141, 1991, pp 129-155.

[7] Leon3: M. Danˇek et al., UTLEON3: Exploring Fine-

Grain Multi-Threading in FPGAs,DOI 10.1007/978-1-

4614-2410-9 2, © Springer Science+Business Media,

LLC 2013.

[8] “Standard Products UT699 LEON3FT/SPARCV8

MicroProcessor”, Functional Manual February 2014,

www.aeroflex.com/LEON.

IJCATM : www.ijcaonline.org

