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ABSTRACT
Recent development in quantum technology have shown that quan-
tum computer can provide a dramatic advantage over classical com-
puters for some algorithms. In particular, a polynomial-time algo-
rithm for factoring, a problem which was previously thought to
be hard for classical computers, has recently been developed [13].
Similarly, a quantum algorithm searching for unsorted database
in square root of time it would take on a classical computer has
also been described by Grover [4] - [3]. Both algorithms rely upon
the inherent parallelism, superposition and entanglement property
of quantum computing to achieve their improvements. Since most
problems of real interest for genetic algorithms have a vast search
space, it seems appropriate how quantum parallelism can be ap-
plied to Genetic Algorithms. In this paper we provide a brief back-
ground of quantum computers. We explain why and how quan-
tum algorithms provides a fundamental improvements over classi-
cal ones for some problems. Further, we present here the Conven-
tional Genetic Algorithm and the quantum approach of Genetical
Algorithms(QGA) as well. The benefits and drawbacks of QGA
are also analyzed.
Moreover, this paper provides an improved version over the con-
ventional QGA. This improvement originates from the best partial
immigration technique applied to the quantum chromosomes. The
main objective of the best partial immigration is to consider the
string of qubits from the quantum chromosomes having best fit-
ness and transfer the same randomly to the chromosomes of next
generation for better mixing. The process is reiterated. To observe
the performance the best partial immigration technique we have
considered some popular optimization problems and performed the
experiment on it. These problems are namely Travelling Salesman
Problem(TSP), Binpacking Problem and Vertex Cover Problem. It
has been observed that the obtained results outperforms the con-
ventional QGA.

1. INTRODUCTION
In Quantum Computers informations are stored in the form of
qubits and processed through quantum mechanical principles.
Qubits are two-level quantum system represented by superposition
of two level basis sets with varying probability.

Quantum computation is contrary to classical computation. Quan-
tum algorithm exploits the laws of Quantum Mechanics in order to
perform computation. Further it exploits the properties of superpo-
sition, coherence, and the entanglement of different qubits of quan-
tum state to realize quantum computation. Quantum computation is
an integration of quantum mechanics applying in the field of algo-
rithm. The ability of parallelism is the essential difference between
quantum computation and classical computation. In the probability
calculation, the system is not in an invariable state. Conversely, it
has a certain probability, and the state probability vector is corre-
sponding to different possible states. Quantum computation is sim-
ilar to it, the probability amplitudes of quantum states is used in
quantum computation.
QC brings a new philosophy to optimization due to underlying con-
cepts. Recently, a practice has been started to realize the beauty of
quantum algorithm through classical computers. A growing the-
oretical and practical interest is devoted to researches on cultur-
ing evolutionary computation with the help of quantum computing
principle.
Unlike pure quantum computing, Quantum Genetical Algo-
rithm(QGA) does not require the presence of quantum hardware to
work with. Many quantum inspired algorithms have been used to
solve successfully many interesting problem which are well known
as intractable problems. Having many special merits, the study of
quantum computing and quantum computers has become very hot
in information science, especially after some good quantum com-
puting algorithms, such as Shors factorizing algorithm [13], were
explored. such as Grovers [4], [3], quantum search algorithm [4]
and
Quantum genetic algorithm (QGA), a new and promising genetic
algorithm developed in recent years, is the product of quantum
computing theory and genetic algorithm. It is a new evolutionary
algorithm of probability [13]. QGA is based on the concepts of
quantum computing (qubit, quantum superposition, and quantum
entanglement) and quantum theory, such as quantum logic gate. In
QGA, qubit encoding is used to represent the chromosome, and
evolutionary process is implemented by using quantum logic gate
operation on the chromosomes. Now, much attention is paid to
QGA because it has the characteristics of strong searching capabil-
ity, rapid convergence, short computing time, and small population
size, a great capability of global optimization and a good robust-
ness. Narayanan and Moore [12] presented quantum-inspired ge-
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netic algorithm (QIGA) to solve traveling salesman problem (TSP)
successfully, which introduced the concepts and theory of quantum
computing into genetic algorithm.
By introducing qubit representation and quantum logic gate op-
eration, Han and Kim [7] and Han et al. [6] presented genetic
quantum algorithm (GQA) and parallel quantum genetic algorithm
(PQGA) to solve an NP-hard combination optimization problem
(knapsack problem). Quantum crossover [12] and quantum muta-
tion were used to improve the performances of GQA [6] in [10].
An improved QGA based on multi-qubit encoding and dynamically
adjusting the rotation angle mechanism was presented to separate
the blind sources [8]. Li and Jiao [11] proposed a hybrid parallel
quantum evolutionary algorithm based on QGA [10] and parallel
algorithm. Zhang et al. [16] presented an improved QGA by in-
troducing population catastrophe operation and violent vibration.
They also proposed a novel PQGA [15] by using a novel evolu-
tionary strategy. The results [7] - [15] show that QGA and GQA
are greatly superior to conventional genetic algorithm (CGA). The
evolutionary strategy [7] - [16] is based on prior knowledge of the
best solution of optimization problems. For example, in knapsack
problem, the criterion of the optimal solution is that the number of
1 should be as big as possible within constraint conditions because
more number 1 means bigger fitness of chromosome. However, the
criterions of optimal solutions have not been gotten in continuous
function optimization problems and in most practical cases. This
paper an improved version of quantum genetic algorithm in which
qubit phase comparison method is used to update the rotation an-
gles of quantum logic gates, and the strategy of adjusting search
grid self-adaptively is employed. Details of the formulation and de-
scription of quantum computing and quantum genetic algorithms
are available in the references [2, 1]. To give the article a complete
shape following few sections have been described briefly and de-
tails of which are available in the references [14, 5, 17, 9].

2. QUANTUM VERSUS CLASSICAL
The significance differences between Quantum computer and Clas-
sical computer. The most fundamental difference is that the clas-
sical computer stores information through classical bits where as
quantum computer stores the information with quantum bits known
as qubits. The second one is quantum mechanical feature entangle-
ment, which allows a measurement on some qubits that effect the
value of the other qubits. A classical bit is one of the two states, 0
or 1. The qubit can stay in the superposition of 0 and 1 states. The
interesting fact is that until qubit is measured it is effectively in both
states. For example, any computation using this qubits produces as
an answer a superposition combining these results of the calcula-
tion having been applied to a 0 and to a 1. Thus the calculation
for both the 0 and the 1 is performed simultaneously. Interestingly,
when the result is measured only one value either 0 or 1 can be seen.
This is the collapse of superposition. The probability of measuring
the answer corresponding to original 0 bit is α2 and the probability
of measuring the answer corresponding to an original 1 bit is β2.
Quantum register differs much from classical register. The super-
position property of quantum mechanical states enables a quantum
register stores exponentially more data than a classical register of
the same size. Whereas a classical register with n bits can store
one values out of 2N , a quantum register can be in a superposi-
tion of all 2N values. An operation applied to the quantum register
produces one result. An operation applied to the quantum regis-
ter produces a superposition of all possible results. This is what is
meant quantum parallelism. Further, the difficulty is that a mea-
surement of quantum results collapse the superposition so that only

one result is measured. Depending upon the function being applied,
the superposition of answers may have common features. If these
features are ascertained by taking a measurements and then repeat-
ing the algorithm, it may be possible to divine the answer we are
searching for, probabilistically. Essentially this is how Shor’s algo-
rithm works [13]. First you produce a superposition and then apply
the desired functions.
The key feature of the quantum computation is to understand the
quantum entanglement. Entanglement is the quantum connection
among the superimposed states. In previous we have began with a
qubit which is the superposition of the 0 and 1 states. we applied a
calculation producing an answer which is the superposition of two
possible answers. Measuring the superimposed answers collapse
that answers into a single classical result. The quantum entangle-
ment produces a quantum connection between the original super-
imposed qubit and the final superimposed answers, so that when
the answers is measured, collapsing the superposition into one an-
swer or the other, the original qubit also collapse into the value,
0 or 1, that produces the measured answers. Given this very brief
introduction to superposition and entanglement, we now begin to
address our Quantum Genetical Algorithm(QGA).

3. CONVENTIONAL GENETIC ALGORITHM
(GA)

GA is an exploration algorithm based on genetic evolution and
natural selection. It manipulates a population of individuals called
chromosomes. In each time step a new generation is constructed by
applying genetic operators between some selected chromosomes.
The simplest way for coding chromosomes is to represents them
by binary strings. The initial population has to start with random
chromosomes uniformly distributed over the entire search space.
The next step is the evaluation operation. Its role is to mark the
individuals of population. After that individuals will be sorted ac-
cording to their marks. The selection operation has a goal to elect
some numbers of individuals to enable reproduction. The cross over
operation can be performed by exchanging some parts of selected
individuals in random positions which leads to create a new set
of chromosomes replacing the old ones. Before repeating the pro-
cess it is recommended to perform a mutation to correct stochastic
error to avoid genetic drift and to ensure genetic diversity in the
population. It consists of changing some random positions of the
individuals according to a very small probability.

4. QUANTUM GENETIC ALGORITHM
4.0.1 Algorithm description. The smallest information unit in a
two-state quantum computer is called a qubit. A qubit may be in
the 0 state, in the 1 state, or in any superposition of the two. The
state of a qubit can be represented as:

|ψ〉 = α|0〉+ β|1〉 (1)

where α and β are the probability amplitudes of the corresponding
states and satisfy the following normalization:

|α|2 + |β|2 = 1 (2)

In eq. 2, |α|2 gives the probability that the qubit will be found in
the “0” state and |β|2 is in the “1” state. A system with m qubits
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contains information on 2m states. The linear superposition of all
possible states can be represented as

|ψi〉 =

2m∑
k=1

Ck|Sk〉 (3)

where Ck specifies the probability amplitude of the correspond-
ing states Sk and subjects to the normalization condition |C1|2 +
|C2|2 + · · ·+ |C2m |2 = 1.
Definition 1 The probability amplitude of one qubit is defined by a
pair of complex numbers, (α, β), as

[αβ]T (4)

where α and β satisfy 1 and 2.
Definition 2 The phase of a qubit is defined with an angle ζ as

ζ = arctan(|β|/|α|) (5)

and the product |α| · |β| is represented by the symbol d, i.e.

d = |α| · |β| (6)

where d stands for the quadrant of qubit phase ζ. If d is positive,
the phase ζ lies in the first or third quadrant; otherwise the phase ζ
lies in the second or forth quadrant.
The probability amplitude of m qubits are represented as

p =

[
α1

β1

α2

β2

· · ·
· · ·

αm

βm

]
(7)

where |α|2 + |β|2 = 1, i = 1, 2, · · · ,m. Hence, the phase of the
ith qubit is

ζ = arctan(|βi|/|αi|) (8)

Let the population size be n. The chromosomes are represented
with qubits as
P = (p1, p2, ......, pn), where pj(j = 1, 2, ......, n) is an individ-
ual of population shown in eq. 7. The quantum rotation gate G is
chosen as quantum logic gate and it is

G =

[
cos θ − sin θ
sin θ cos θ

]
(9)

where θ is the rotation angle of the quantum rotation gate and
whose expression is as follows:

θ = k.f(αi, βi) (10)

where k is the coefficient whose value influences the speed of con-
vergence and f(αi, βi) is a searching direction function of conver-
gence to a global optimum. The individuals are updated with the
following expression using quantum rotation gate

pt+1
i = G(t).pt

j . (11)

4.1 Structure of Quantum Chromosomes
Each biological cell contains a nucleus. In each nucleus chromo-
somes are present. Each chromosomes is a thread like structure

packed with DNA molecule. In a chromosome double-helix DNA
molecules are tightly coiled around a protein called histones. The
histone protein mainly supports the structure of the chromosome.
Chromosomes are visible under microscope during cell division
only. In human cell there are 23 pairs of chromosomes. 22 pairs
of these chromosomes look same for both males and females. 23rd
pair of the chromosome is called the sex chromosome. It differs in
male and female. Female has the two copies of X chromosomes
where as male has the one copy of X and one copy of Y chromo-
somes.
A Quantum Chromosomes is simply a string of m qubits that can
be stored in a quantum register, on the other way one can say that
it forms a quantum register on m bits.

4.2 Initializing the Population
The easiest way to create the initial population is to initialize all the
amplitudes of qubits by the value 1√

2
. This means that a chromo-

some represents all quantum superposition states with equal prob-
ability.

4.3 Evaluation of Individuals
The role of this phase is quantifying the quality of each quantum
chromosome in the population to make a reproduction. The eval-
uation is based on an objective function that corresponds to each
individual, after measuring, an adaptation value. It permits to mark
individuals in the population.

4.4 Quantum Genetic Operations

(1) Measuring Chromosomes: In order to exploit effectively su-
perposed states of qubits, we have to observe each qubit. This
leads to convert each chromosomes to a binary string of rea-
sonable length.

(2) Interference: This operation allows modifying the amplitudes
of individuals in order to improve performance. It mainly con-
sists of moving the state of each qubit in the sense of the value
of the best solution. This is useful for intensifying the search
around the best solution. It can be performed using a unit trans-
formation that allows a rotation whose angle is a function of
the amplitudes and the value of the corresponding bit in the
reference solution. The value of the rotation angle δθ has to be
chosen so that to avoid premature convergence. It is often em-
pirically determined and its direction is determined as a func-
tion of the values of amplitudes and the value of the qubit lo-
cated at the particular position position in the individual being
modified.

(3) Qubit Rotation Gates Strategy: The rotation of individual’s
amplitudes is performed by quantum gates. Quantum gates can
also be designed in accordance with the present problem. The
population Q(t) is updated with a quantum gates rotation of
qubits constituting individuals. The rotation strategy adopted
is given by the following equation:

[
αt+1
i

βt+1
i

]
=

[
cos(∆θi)− sin(∆θi)
sin(∆θi) cos(∆θi)

][
αt
i

βt
i

]
(12)

Where ∆θi is the rotation angle of qubit quantum gate i of each
quantum chromosome. It is often obtained from a lookup table that
ensures convergence.
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5. NEW FORMULATION OF QUBITS AND ITS
APPLICATION TO QUANTUM GENETIC
ALGORITHM(QGA)

The qubit is the smallest form of information in quantum computer
and has been expressed in eq.(1) as follows:

|ψ〉 = α|0〉+ β|1〉 (13)

where α and β are the probability amplitudes of the corresponding
states and satisfy the following normalization:

|α|2 + |β|2 = 1 (14)

We express here the qubit as

|φ〉 = cos θ|0〉+ sin θ|1〉 (15)

Here cos2 θ and sin2 θ indicate the probabilities that qubit will be
found in the state “0” and “1” respectively. So a qubit can be en-
coded as [

cos θ
sin θ

]
(16)

A chromosome as a string of m qubit can be expressed as:[
cos(θ1) cos(θ2) · · · cos(θm)
sin(θ1) sin(θ2) · · · sin(θm)

]
(17)

where cos2 θ and sin2 θ are the probability amplitudes of the states
”0” and ”1” respectively. In this formulation cos2 θ and sin2 θ car-
ries very significant role. The quantum chromosomes are defined in
the space Sm = [−1,1]. Each quantum chromosomes are defined
as two gene chains. The cos2 θ and sin2 θ are no longer probabil-
ity amplitudes. Each gene chain contains two gene chains. Obvi-
ously (from the expression) every gene chain represents an indi-
viduals and each gene consists of two individuals. In this manner
we redefine here the quantum chromosome. The present technique
of defining the qubit brilliantly avoid the randomicity and blind-
ness in the process of measurement, and save massive translation
among quantum coding, binary coding and real number coding. In-
terestingly, the chromosomes with two individuals could accelerate
the optimizing speed.

5.1 Best Partial Immigration Technique
To incorporate some improvements over conventional Quantum
Genetic Algorithm(QGA) one may consider a qubit string ran-
domly from the best chromosome of a certain generation. This best
chromosome means a quantum chromosome having maximum fit-
ness value. This string of qubits from a best chromosomes is set
in into a chromosome having lesser fitness value. Obviously same
numbers of qubits are removed from the improved chromosomes.
In this way getting some part of the best fit chromosome, lesser fit
chromosome can improve its fitness value. We termed this proce-
dure as Best Partial Immigration Technique (BPI). Here, some
qubits of the best chromosome are immegrated. This procedure ac-
tually helps to improve the entire population towards optimal solu-
tion.
Define quantity is the percentage of chromosomes upon which the
best partial immigration will be applied and partiality represents
the percentage of qubits in chromosomes which will be immigrated

during best partial immigration technique. The value of quantity
and partiality depends on the problem. Observe, when qunatity or
partiality or both are zero, then it is becoming conventional QGA,
becuase nothing are immegrated. In Section 6, we shall discuss con-
vergence rate on changing the value of quantity and partiality.
On the other way some variants of this strategy can be as instead of
taking the best chromosome one may choose some better chromo-
somes because it may happen that in case of the best chromosome,
we actually choose some part of the best chromose that may have
insignificant contribution toward the fitness value, so choosing bet-
ter chromosome is a better option in that case.
Another variant of the improvement of the technique can be the
frequency of applying this procedure in the quantum genetic eval-
uation. We may apply this procedure after every f generations.
Choosing the value of f is problem dependent, because some prob-
lem may require frequent immigration or some problem do not. For
example, in optimizing a function, keeping f high may yield better
result.
It is to be noted that we can apply best immigration after or before
quantum gate rotation because this operation includes immigrated
qubits in its updation procedure.

6. EXPERIMENT AND DISCUSSION
We have considered here 0/1 Knapsack Problem, Binpacking
Problem, Vertex Cover Problem and Travelling Salesman Prob-
lem(TSP) as test cases for our experiment. Table I, Table II, Table
III and Table IV represent respectively the results of 0/1 Knapsack
Problem, Binpacking Problem, Vertex Cover Problem and Travel-
ling Salesman Problem(TSP).

6.1 0/1 Knapsack Problem
Given a set {a1, a2, . . . , an} of n items with specified size,
size(ai) ∈ Z+ and profit, profit(ai) ∈ Z+ for each item i =
1, 2, . . . , n and a ”Knapsack Capacity” B, the problem is to find a
subset of given items whose total size is bounded by B and profit
is maximized.
For this problem the quantum chromosome formation is very easy
and direct. For each item there will be a qubit in the chromosome
corresponding this item. If the qubit is measured to be 1 then the
corresponding item is choosed, otherwise it would not be choosed.
Therefore, each chromosome will represent a solution. In each gen-
eration, we find the chromosome (after measurement) that gives
maximum profit as well as bounded by ”Knapsack Capacity” and
this chromosome must have maximum fitness.
Here, we have taken 100 chromosomes and 80 items and ”Knap-
sack Capacity” to be 500.
The Table 1 is showing the convergence nature of Knapsack Prob-
lem. In first row quantity and partiality both are zero, hence it is
only Quantum Genetic Algorithm. We can see that only 0.341375
fitness is achived in 4293 number of generations. But when we are
applying BPI it is converging fast, i.e., taking lesser number of gen-
erations to achieve fitness more than the fitness achived in QGA.
From the table, it is also clear that if quantity and partiality near
to 50% then it is converging fast with slightly lesser fitness than
maximum achivable fitness.
In the Fig. 1, we are showing the convergence nature of Knapsack
Problem with respect to Genetic Algorithm (GA) and QGA and
QGA with BPI.
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Table 1. “Convergence nature of Knapsack Problem”
Quantity Partiality Maximum Fitness Generation

0 0 0.341375 4293
0.2 0.2 0.367203 1713
0.2 0.45 0.381207 2226
0.2 0.85 0.383207 3212

0.45 0.2 0.353492 3521
0.45 0.5 0.365210 823
0.45 0.9 0.368918 2674
0.89 0.2 0.356818 1981
0.89 0.45 0.370010 1240
0.89 0.85 0.369299 4080
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Fig. 1. Convergence nature of Knapsack Problem.

6.2 Vertex Cover Problem
Here, we have considered non-weighted version of vertex cover
porblem. Given a non-weighted graph G = (V,E), find a mini-
mum size V ′ ⊆ V such that every edge has at least one end-point
in V ′.
Chromosome formulation of vertex cover problem is also very easy
and direct. For every vertex in the graph there will be a correspond-
ing qubit in the chromosome. If the measure value of the qubit is 1
then the corresponding vertex will be included, otherwise not. Es-
sentially, each chromosome will represent a subset of vertices. In
each generation, for each chromosome we have to find that whether
the subset represented by the chromosome is vertex cover or not
and it size. Obviously, the chromosome representing a vertex cover
with minimum size will be of maximum fitnes.
Here, we have considered a graph with 50 vertices and 800 edges.
In Table 2, the first row represent the result of application of QGA.
QGA achieved only .670859 fitness in 782 generations. The subse-
quent rows showing the improved result obtained by applying QGA
with BPI. We can see that if quantity is high and partiality is low
then the fitness achives higher value and it also converges fast, i.e.,
in 16 generations.
In Fig. 2, we can see that QGA with BPI converges so fast with
respect to GA and QGA.

6.3 Bin Packing Problem
Given a set of n items with sizes a1, a2, . . . , an ∈ (0, 1], find a
packing in unit-sized bins that minimizes the number of bins.
In this problem chromosome formulation is easy but geting the fea-
sible solution from the chromosome is not direct. First we generate
a permutation of items from the chromosome. Then we pick each
item from the permutation one-by-one and pack the item in a bin

Table 2. “Convergence result of Vertex Cover Problem,
Number of vertices = 50”

Quantity Partiality Maximum Fitness Generation
0 0 0.670859 782

0.2 0.2 0.952373 143
0.2 0.5 0.946985 39
0.2 0.9 0.942860 20
0.5 0.2 0.942028 66
0.5 0.45 0.950663 30
0.5 0.9 0.943388 103
0.9 0.2 0.960959 16
0.9 0.45 0.941145 22
0.9 0.9 0.951641 22
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Fig. 2. Convergence nature of Vertex Cover Problem.

having enough empty space to pack the item, if there is no such
bin with enough empty space then we will open a new bin. There-
fore, the chromosome giving minimum number of bins will have
maximum fitness.
Here, we have taken 500 items to pack. Unlike, previous two prob-
lems, here, number of qubits is not depend on the problem instance.
Therefore, one can assume any number of qubits in the chromo-
somes. The result is obtained by taking 100 chromosomes having
64 qubits in each.
Table 3 shows the convergence result of bin-packing problem.
First row shows that 782 generations are required to achive fitness
0.670859 in case of applying QGA. Applying QGA with BPI, we
can see that maximum fitness 0.802366 achived when qunatity is
low, i.e., 20% and partiality is medium, i.e., 40%. But if keep both
parameter low (i.e., quantity and partiality both be equal to 20%)
then we achieve fast convergence with very less deviation from the
maximum fitness.
In Fig. 3 we can see that QGA with BPI is converging faster than
QGA or GA.

6.4 Travelling Salesman Problem
Given a non-negative weighted graph G = (V,E) the problem is
to find a minimum weight cycle visting every vertex exactly once.
Here, if between two vertices there is no edge then we put an edge
with infinite cost. Therefore, the graph becomes complete graph.
The chromosome formation in this problem is easy and not depen-
dent on the input instance but obtaining a solution from a chromo-
some is indirect. Initially, again like previous problem we gener-
ate a permutation of vertices from the chromosome. After that we
check whether this permutation is really a TSP tour or not. If it is
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Table 3. “Result obtained for Bin Packing problem”
Quantity Partiality Maximum Fitness Generation

0 0 0.670859 782
0.2 0.2 0.797314 10
0.2 0.4 0.802366 118
0.2 0.78 0.736022 169
0.2 0.9 0.765306 50
0.4 0.2 0.736022 59
0.4 0.4 0.781692 51
0.4 0.78 0.776320 69
0.4 0.92 0.717058 66
0.8 0.2 0.770859 60
0.8 0.45 0.776320 62
0.8 0.8 0.759658 35
0.8 0.92 0.742097 73
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Fig. 3. Convergence nature of Binpacking Problem.

a TSP tour then we find its weight. The chromosome exhibiting
minimum weight TSP tour on a generation is the chromosome of
maximum fitness. Observe that a permutaion can not be a TSP tour
when it contains edge with infinite weight. Now, in a generation
if there is no chromosome exhibiting a TSP tour then we consider
that chromosome with maximum fitness which has minimum infi-
nite cost edges.
We have taken a graph with 50 vertices and 700 edges. Number
of chromosomes is considered to be 100 with 64 qubits in each
chromosome.
The first row of the Table 4 is showing maximum fitnes 0.512382
achieved in 6695 generations when we used only QGA. The subse-
quent rows are showing the effect of applying QGA with BPI. We
see that when quantity is medium (i.e., 40%) and partiality is high
(i.e., 90%) then we achieve maximum fitness in only 415 genera-
tions.
In Fig. 4, we can see the convergin rate of QGA with BPI is faster
than conventional QGA or GA.

6.5 Overall Discussion of Results
For a particular problem the formulation of quantum chromosomes
is problem dependent. But in general the input instances of each
problem are converted into quantum chromosomes. The technique
to obtain a (feasible) solution from quantum chromosomes is en-
tirely problem dependent. In many cases obtaining the solution
from the quantum chromosome are not so direct. For example, in
our study obtaining solution from quantum chromosomes in case
of TSP and Binpacking is not so easy. The ultimate result and the

Table 4. “Convergence Nature of Travelling Salesman
Problem”

Quantity Partiality Maximum Fitness Generation
0.0 0.0 0.512382 6695
0.2 0.2 0.581782 5356
0.45 0.2 0.637627 4485
0.9 0.2 0.690291 315
0.4 0.2 0.669126 3047
0.4 0.5 0.715462 844
0.4 0.9 0.747567 415
0.85 0.2 0.692995 532
0.85 0.44 0.691977 453
0.85 0.85 0.689163 532
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Fig. 4. Convergence nature of Travelling Salesman Problem.

rate of convergence of a problem depends upon the formulation of
quantum chromosomes and the technique to obtain a (feasible) so-
lution from the quantum chromosomes.
The experimental results for the problems considered here are
shown in the corresponding tables (Table 1, 2, 3 and 4) and the
comparison of results and the nature of convergence are equally
shown in the corresponding Figures(Figs. 1, 2, 3 and 4). We have
done each experiment 3 times. Average value of each experiment
is shown in the results. The present study represents shows that the
nature of convergence in case of Best partial immigration is much
better than the GA and the conventional QGA.

7. DIFFICULTIES WITH QUANTUM GENETIC
ALGORITHM(QGA)

There are some potential difficulties with the QGA presented here,
even as a theoretical model. Some fitness functions may require
”observing” the superimposed individuals in a quantum mechan-
ical sense. This would destroy the superposition of the individu-
als and ruin the quantum nature of the algorithm. Clearly it is not
possible to consider all fitness functions in this context. However,
since mathematical operations can be applied without destroying a
superposition, many common fitness functions will be usable. As
noted previously a one-to-one fitness function will also negate the
advantages of the QGA. Another, more serious difficulty, is that it
is not physically possible to exactly copy a superposition. This cre-
ates difficulties in both the crossover and reproduction stages of the
algorithm. A possible solution for crossover is to use individuals
consisting of a linked list rather than an array. Then crossover only
requires moving the pointers between two list elements rather than
copying array elements. However, without a physical model for our
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quantum computer it is unclear whether the notion of linked lists is
compatible with maintaining a quantum superposition. The diffi-
culty for reproduction is more fundamental. However, while it is
not possible to make an exact copy of a superposition, it is possi-
ble to make an inexact copy. If the copying errors are small enough
they can be considered as a ”natural” form of mutation. Thus, those
researchers who favor using only mutation may have an advantage
in the actual implementation of a QGA. All these difficulties in im-
plementing the QGA naturally flows to the implementing issues of
the improved version of QGA, as presented in this paper.

8. CONCLUSION
Quantum computing has the characteristics of strong parallelism.
How to combine the theory of quantum computing with the prin-
ciples of genetic algorithm is still a promising research problem.
By introducing qubit chromosome representation and the best par-
tial immigration technique this paper proposes an improved version
of QGA based on the concepts and principles of quantum comput-
ing. Because qubit can represent basic states and their superposition
states simultaneously, the improved version of QGA only needs a
small population size instead of degrading its performances. The
evolutionary operation that quantum rotation gates are updated us-
ing the quantum phase comparison method is simple and valid. In
essence it can be stated that the present improved version of QGA
has the characteristics of good search capability, rapid convergence,
short computing time, and ability to avoid premature convergence
effectively, which are also indicated in the experiment results ob-
tained during solving 0/1 Knapsack Problem, Binpacking Prob-
lem, Vertex Cover Problem and TSP. Experimental results obtained
so far indicates that the best partial immigration technique in quan-
tum chromosomes make the QGA more powerful in all dimensions.
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