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ABSTRACT 

Fast Fourier transform (FFT) is a sound tool for computation 

of Discrete Fourier transform (DFT). It is widely used for 

analysis of digital spectrums, FIR filters, and autocorrelation 

and pattern recognition applications [1]. FFT is based on 

violation the input sample sequence into smaller sample 

sequences and mingling them to get the total output order or 

transform. FFT reduces the computation time required to 

compute a DFT and thus improves speed of computation. In 

this paper FFT computations will be done using a different 

method known as distributed arithmetic algorithm. Method is 

designed in VHDL. Simulation of the code is done in 

ModelSim 6.4. 
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1. INTRODUCTION 
Prevailing FFT processors use different transformation 

algorithms to analyze the signals. Signals are made of various 

fundamental signals with different frequencies, amplitudes 

and phases [1]. Frequency transformation is used for 

transformation of a signal from time domain to frequency 

domain. When a Fourier Transform is computed for a sample 

of discrete frequency sequence, it is called as a DFT. DFT 

involves large number of computations. These computations 

can further be reduced by FFT, another transforming 

algorithm. 

FFT is used for computing the DFT of a finite series. It also 

reduces the number of computations required for evaluation of 
DFT. 

The DFT of a sequence is written as, 

X(k)=∑nx(n)e–j2πn/N  ,  0≤k≤N-1  (1)  
 

    Or, 

X (k) = ∑ nx(n)(WN) nk   (2) 

   

Where X (k) = Fourier transform of discrete time domain 
signal x(n), 

      K= 0, 1, 2 ………N-1, and        

           (WN) nk = twiddle factor 

This expression is known as N-point DFT as this involves 

summation running for N points. Discrete time domain 

sequence can be computed from its frequency domain 

sequence using inverse of this method known as IDFT. In 

direct evaluation of DFT, to evaluate one value of X(k), it 

requires N multiplications and (N-1) complex addition. Thus, 

to evaluate N values of X(k), it require NxN multiplications 

and N(N-1) complex additions. Direct evaluation of DFT is 

inefficient in utilizing symmetry and periodicity properties of 

the twiddle factor. On the other hand FFT exploits the two 
basic properties of the twiddle factor which are as follows [1]: 

WN
k+N/2  = -WN

k  Symmetry property 

      WN
k+N  = WN

k     Periodicity property 

DFT can be represented in the matrix form as; 

          XN
 = [ WN

 ] * xN   (3) 

Where XN =     X(0) 

                        X(1)        

 

                        X(N-1) N*1   (4) 

 

 and,      xN  =     X(0) 

                          X(1)        

 

                         X(N-1) N*1   (5) 

 

                           n=0     n=1           n=N-1 

and   WN
kn

  =k=0      W0       W0     - - - - - -W0 

               k=1      W0      W1    - - - - - - WN-1 

                                

                       

 

     k=N-1  W0        WN-1  - - - - - - - - - WN
(N-1)2     

    (6)                                                                               

WN
kn is represented as NxN matrix where each value of WN

kn 

is calculated by multiplication of ‘k’ and ‘n’. twiddle factor 

contains an exponent term which can be resolved by Euler’s 
Identity. 

Present paper worked on 8-point FFT. The structure obtained 

due to such divisions is similar to a butterfly and thus known 

as butterfly structure. The butterfly structure for an 8-point 

FFT is depicted in fig.1.  

The block diagram of a 8-point FFT shows eight inputs.  Each 

input has a real part and an imaginary part. Real and 

imaginary parts are used separately for resolving the butterfly 

structure. Thus FFT calculations were done for sixteen points 

(eight real and eight imaginary). 
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Figure 1.  Eight-point decimation-in-time FFT algorithm 

2. PERIODICITY PROPERTY OF      

TWIDDLE FACTOR 
Twiddle factor (WN

kn ) repeats its value after some period of 

time as shown in table below. This shows values of twiddle 

factor at a time period of ‘8’ repeats itself. This property is 

known as periodicity and twiddle factor is said to have 
periodic property [1].  

 

              Table1. Twiddle Factor Values 

    
Kn 

        

WN
kn 

    

  VALUE 

    

0 

 

W8
0 

     

  1 - j0 

    
1 

 

W8
1 

 

  0.707 – j0.707 

    
2 

 

W8
2 

 

  0 – j 

   
3 

 

W8
3 

 

 -0.707 – j0.707 

   
4 

 

W8
4 

 

 -1 

 

And symmetric when it satisfies the following condition; 

                 WN
k+N/2 = - WN

k   (7) 

 

Based on these properties and values of twiddle factor, some 

of the calculations are repeated. Therefore the entire FFT 

requires (N/2)log2N  complex multiplications and Nlog2N 

complex additions. The FFT is calculated by decomposing the 

given sequence of N-length into smaller sequences and then 

combining them to get the total transform. There are two 

algorithms for FFT, Decimation In Time (DIT) and 

Decimation In Frequency (DIF). In this paper DIT is 
considered. 

3. BIT-REVERSAL 
The input sequence has to be bit retreated so that output 

sequence is obtained in normal order. To do this the input 

sequence is separated into even and odd parts on the basis of 

index. Then even part is further separated into again even and 

odd parts [2]. Similarly same is done to the odd part. This 

process is continued until only two points are left at the end. 

In this paper FFT realization was done using DIF. The input 

samples are divided into group of even and odd sequence 

based on sample index position. Here the sequence is 
separated in time domain.   

    

X(k) =  
     
   x(2n)WN

2kn +   
     
   x(2n+1)WN

k(2n+1)        

         Even                               Odd 

   

X(k) =  
     
   x(2n)WN/2

kn+ WN
k  

     
   x(2n+1)WN/2

kn        

 
Separating the input sequence into even and odd sub-

sequences continues until 2 point sequence is reached [2].This 

work is done on 8-point FFT. The structure obtained due to 

such divisions is similar to a butterfly and thus known as 

butterfly structure. The butterfly structure for an 8-point FFT 

is depicted in fig.1. The block diagram of a 8-point FFT 

shows eight inputs.  Each input has a real part and an 

imaginary part. Real and imaginary parts are used separately 

for resolving the butterfly structure. Thus FFT calculations for 
sixteen points (eight real and eight imaginary) is needed.  

 

4. FIXED-POINT NUMBERS 
Many arithmetic computations deal with real numbers with 

fractional parts. When working with real numbers in VHDL, 

it does not result in a synthesizable design. So a representation 

for fractional numbers to design some synthesizable code is 

required. There are two options, fixed points and floating 

points. Fixed point number representation is used in 

arithmetic calculations for numbers having fixed number of 

digits [3]. These are used for representing the fractional 

values. Use of fixed point representation in arithmetic design 
improves performance and accuracy. 

For getting the fixed point representation of a decimal 

number, say for example 0.70710, The key point here is to 

keep a track of the decimal point. Decimal point is also called 

the radix point. The procedure of converting the 0.70710 into 

binary is to multiply it by 2 and take the magnitude as the first 

bit after the radix point. Next, further multiply the new 

fractional part by 2 and assigning the next position after the 

first bit. Repeat this until the same pattern appears or as per 
the bit format chosen.  

 

So if 8-bits for magnitude and 8-bits for representing the 

fractional part are chosen, then the decimal number 0.70710 
can be represented as; 

0.70710 = 00000000. 10110100   

This representation is known fixed<8, 8> that means ‘8’ 

magnitude and 8 bits after the radix. Fixed point values for 
different values of twiddle factor are displayed in the table 2. 

Table2.  fixed point representation for twiddle factor  

Twiddle 

factor 

Twiddle 

factor value 

Fixed-point 

representation 

rW8
0 1 00000010 00000000 

iW8
0 0 00000000 00000000 

rW8
1 0.707 00000000 10110100 

iW8
1 -j0.707 10000000 10110100 

rW8
2 0 00000000 00000000 

iW8
2 -j 10000001 00000000 

rW8
3 -0.707 10000000 10110100 

iW8
3 -j0.707 10000000 10110100 
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5. DISTRIBUTED ARITHMETIC 
Distributed arithmetic is a method that uses lookup table 

schemes and modulo arithmetic [4]. It is based on a bit level 

movement process. It replaces the complex multiplications. 

The distributed arithmetic is can be applied in DSP and image 

processing applications, frequency analysis and convolution 
computation. The distributed arithmetic specifically purposes 

its application on sum of product designs.  

 

In this paper DA was applied on a single butterfly structure 

[5]. Say for example a single butterfly structure is composed 

of following elements which can be complex. 

Inputs of single BF 

 a = a_real + a_img     (8) 

 b = b_real + b_img     (9) 

outputs of single BF 

 

A = (A_real + B_real) + (A_img + B_img)  (10) 

B=[(A_real + B_real)+(A_img + B_img)](W_real + jW_img) 

     (11) 

As twiddle factor is a known value, we can perform the above 

calculations with fixed point representation Q8.8 and look up 

tables. 

Say 

  (B_real + B_img)*W_real = K1   (12) 

 

  (B_real + B_img)*W_img = K2   (13) 

Each bit of K1 and K2 is evaluated and value from the Table 

3 is used for the respective combinations. These way real and 
imaginary values are calculated. 

     Table.3 LookUp Table (LUT) for solving SOP  

 

6. INPUT/OUTPUT MATCHING 
This FFT processor was run for input sequence, 

 x(n)={-1,0,2,0,-4,0,2,0} 

Output was recorded as, 

X(N)={-1,3,-9,3,-1,3,-9,3} 

 
Figure 3 displays the input sequence. Figure 4 shows the 

output sequence. Figure 2 displays results with Matlab 

program which can be used for result matching. Table 4 
shows the output values in the result. 

 

 
             Figure2.   Output matching with Matlab software 

 

 
 Figure3.  Waveforms of input sequence 

 
 Figure4.  Waveform of output sequences 

  

 

 

 

 

K1 K2 LUT VALUE 

0 0 0 

0 1 W_IMG 

1 0 W_REAL 

1 1 W_IMG-W_REAL 
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Table4.  Resulted output values 

Outputs Binary value Integer value 

Rgo 01111111 -1 

Rg1 00000011  3 

Rg2 01110111 -9 

Rg3 00000011  3 

Rg4 01111111 -1 

Rg5 00000011  3 

Rg6 01110111 -9 

Rg7 00000011  3 

  

7. CONCLUSION 
In this paper, an easier way is shown to realise Fast Fourier 

Transformation with distributed arithmetic algorithm. As in 

plain FFT, six adders and four multipliers are required in a 

single butterfly; DA algorithm replaces multipliers with 

adders, thus making the design simple and more efficient. 

With the use of look up tables (ROM) the overall speed has 

enhanced. This design uses eight point samples each sixteen 

bits long; however, it can be used for higher sample rates.  
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