
International Journal of Computer Applications (0975 – 8887)

Volume 102– No.15, September 2014

22

Fast Fourier Transformation Realization with Distributed

Arithmetic

Renu Bala

Department of Electronics and Communication
Engineering

Indira Gandhi Technical University Delhi, India

Shamim Aktar
Department of Electronics and Communication

Engineering
JIIT, Noida, India

ABSTRACT

Fast Fourier transform (FFT) is a sound tool for computation

of Discrete Fourier transform (DFT). It is widely used for

analysis of digital spectrums, FIR filters, and autocorrelation

and pattern recognition applications [1]. FFT is based on

violation the input sample sequence into smaller sample

sequences and mingling them to get the total output order or

transform. FFT reduces the computation time required to

compute a DFT and thus improves speed of computation. In

this paper FFT computations will be done using a different

method known as distributed arithmetic algorithm. Method is

designed in VHDL. Simulation of the code is done in

ModelSim 6.4.

General Terms

DFT, FFT, Distributed arithmetic, Model Sim.

Keywords

Discrete Fourier Transform (DFT), Fast Fourier Transform

(FFT), Distributed arithmetic (DA), Model Sim.

1. INTRODUCTION
Prevailing FFT processors use different transformation

algorithms to analyze the signals. Signals are made of various

fundamental signals with different frequencies, amplitudes

and phases [1]. Frequency transformation is used for

transformation of a signal from time domain to frequency

domain. When a Fourier Transform is computed for a sample

of discrete frequency sequence, it is called as a DFT. DFT

involves large number of computations. These computations

can further be reduced by FFT, another transforming

algorithm.

FFT is used for computing the DFT of a finite series. It also

reduces the number of computations required for evaluation of
DFT.

The DFT of a sequence is written as,

X(k)=∑nx(n)e–j2πn/N , 0≤k≤N-1 (1)

 Or,

X (k) = ∑ nx(n)(WN) nk (2)

Where X (k) = Fourier transform of discrete time domain
signal x(n),

 K= 0, 1, 2 ………N-1, and

 (WN) nk = twiddle factor

This expression is known as N-point DFT as this involves

summation running for N points. Discrete time domain

sequence can be computed from its frequency domain

sequence using inverse of this method known as IDFT. In

direct evaluation of DFT, to evaluate one value of X(k), it

requires N multiplications and (N-1) complex addition. Thus,

to evaluate N values of X(k), it require NxN multiplications

and N(N-1) complex additions. Direct evaluation of DFT is

inefficient in utilizing symmetry and periodicity properties of

the twiddle factor. On the other hand FFT exploits the two
basic properties of the twiddle factor which are as follows [1]:

WN
k+N/2 = -WN

k Symmetry property

 WN
k+N = WN

k Periodicity property

DFT can be represented in the matrix form as;

 XN
 = [WN

] * xN (3)

Where XN = X(0)

 X(1)

 X(N-1) N*1 (4)

 and, xN = X(0)

 X(1)

 X(N-1) N*1 (5)

 n=0 n=1 n=N-1

and WN
kn

 =k=0 W0 W0 - - - - - -W0

 k=1 W0 W1 - - - - - - WN-1

 k=N-1 W0 WN-1 - - - - - - - - - WN
(N-1)2

 (6)

WN
kn is represented as NxN matrix where each value of WN

kn

is calculated by multiplication of ‘k’ and ‘n’. twiddle factor

contains an exponent term which can be resolved by Euler’s
Identity.

Present paper worked on 8-point FFT. The structure obtained

due to such divisions is similar to a butterfly and thus known

as butterfly structure. The butterfly structure for an 8-point

FFT is depicted in fig.1.

The block diagram of a 8-point FFT shows eight inputs. Each

input has a real part and an imaginary part. Real and

imaginary parts are used separately for resolving the butterfly

structure. Thus FFT calculations were done for sixteen points

(eight real and eight imaginary).

International Journal of Computer Applications (0975 – 8887)

Volume 102– No.15, September 2014

23

Figure 1. Eight-point decimation-in-time FFT algorithm

2. PERIODICITY PROPERTY OF

TWIDDLE FACTOR
Twiddle factor (WN

kn) repeats its value after some period of

time as shown in table below. This shows values of twiddle

factor at a time period of ‘8’ repeats itself. This property is

known as periodicity and twiddle factor is said to have
periodic property [1].

 Table1. Twiddle Factor Values

Kn

WN
kn

 VALUE

0

W8
0

 1 - j0

1

W8
1

 0.707 – j0.707

2

W8
2

 0 – j

3

W8
3

 -0.707 – j0.707

4

W8
4

 -1

And symmetric when it satisfies the following condition;

 WN
k+N/2 = - WN

k (7)

Based on these properties and values of twiddle factor, some

of the calculations are repeated. Therefore the entire FFT

requires (N/2)log2N complex multiplications and Nlog2N

complex additions. The FFT is calculated by decomposing the

given sequence of N-length into smaller sequences and then

combining them to get the total transform. There are two

algorithms for FFT, Decimation In Time (DIT) and

Decimation In Frequency (DIF). In this paper DIT is
considered.

3. BIT-REVERSAL
The input sequence has to be bit retreated so that output

sequence is obtained in normal order. To do this the input

sequence is separated into even and odd parts on the basis of

index. Then even part is further separated into again even and

odd parts [2]. Similarly same is done to the odd part. This

process is continued until only two points are left at the end.

In this paper FFT realization was done using DIF. The input

samples are divided into group of even and odd sequence

based on sample index position. Here the sequence is
separated in time domain.

X(k) =

 x(2n)WN

2kn +

 x(2n+1)WN

k(2n+1)

 Even Odd

X(k) =

 x(2n)WN/2

kn+ WN
k

 x(2n+1)WN/2

kn

Separating the input sequence into even and odd sub-

sequences continues until 2 point sequence is reached [2].This

work is done on 8-point FFT. The structure obtained due to

such divisions is similar to a butterfly and thus known as

butterfly structure. The butterfly structure for an 8-point FFT

is depicted in fig.1. The block diagram of a 8-point FFT

shows eight inputs. Each input has a real part and an

imaginary part. Real and imaginary parts are used separately

for resolving the butterfly structure. Thus FFT calculations for
sixteen points (eight real and eight imaginary) is needed.

4. FIXED-POINT NUMBERS
Many arithmetic computations deal with real numbers with

fractional parts. When working with real numbers in VHDL,

it does not result in a synthesizable design. So a representation

for fractional numbers to design some synthesizable code is

required. There are two options, fixed points and floating

points. Fixed point number representation is used in

arithmetic calculations for numbers having fixed number of

digits [3]. These are used for representing the fractional

values. Use of fixed point representation in arithmetic design
improves performance and accuracy.

For getting the fixed point representation of a decimal

number, say for example 0.70710, The key point here is to

keep a track of the decimal point. Decimal point is also called

the radix point. The procedure of converting the 0.70710 into

binary is to multiply it by 2 and take the magnitude as the first

bit after the radix point. Next, further multiply the new

fractional part by 2 and assigning the next position after the

first bit. Repeat this until the same pattern appears or as per
the bit format chosen.

So if 8-bits for magnitude and 8-bits for representing the

fractional part are chosen, then the decimal number 0.70710
can be represented as;

0.70710 = 00000000. 10110100

This representation is known fixed<8, 8> that means ‘8’

magnitude and 8 bits after the radix. Fixed point values for
different values of twiddle factor are displayed in the table 2.

Table2. fixed point representation for twiddle factor

Twiddle

factor

Twiddle

factor value

Fixed-point

representation

rW8
0 1 00000010 00000000

iW8
0 0 00000000 00000000

rW8
1 0.707 00000000 10110100

iW8
1 -j0.707 10000000 10110100

rW8
2 0 00000000 00000000

iW8
2 -j 10000001 00000000

rW8
3 -0.707 10000000 10110100

iW8
3 -j0.707 10000000 10110100

International Journal of Computer Applications (0975 – 8887)

Volume 102– No.15, September 2014

24

5. DISTRIBUTED ARITHMETIC
Distributed arithmetic is a method that uses lookup table

schemes and modulo arithmetic [4]. It is based on a bit level

movement process. It replaces the complex multiplications.

The distributed arithmetic is can be applied in DSP and image

processing applications, frequency analysis and convolution
computation. The distributed arithmetic specifically purposes

its application on sum of product designs.

In this paper DA was applied on a single butterfly structure

[5]. Say for example a single butterfly structure is composed

of following elements which can be complex.

Inputs of single BF

 a = a_real + a_img (8)

 b = b_real + b_img (9)

outputs of single BF

A = (A_real + B_real) + (A_img + B_img) (10)

B=[(A_real + B_real)+(A_img + B_img)](W_real + jW_img)

 (11)

As twiddle factor is a known value, we can perform the above

calculations with fixed point representation Q8.8 and look up

tables.

Say

 (B_real + B_img)*W_real = K1 (12)

 (B_real + B_img)*W_img = K2 (13)

Each bit of K1 and K2 is evaluated and value from the Table

3 is used for the respective combinations. These way real and
imaginary values are calculated.

 Table.3 LookUp Table (LUT) for solving SOP

6. INPUT/OUTPUT MATCHING
This FFT processor was run for input sequence,

 x(n)={-1,0,2,0,-4,0,2,0}

Output was recorded as,

X(N)={-1,3,-9,3,-1,3,-9,3}

Figure 3 displays the input sequence. Figure 4 shows the

output sequence. Figure 2 displays results with Matlab

program which can be used for result matching. Table 4
shows the output values in the result.

 Figure2. Output matching with Matlab software

 Figure3. Waveforms of input sequence

 Figure4. Waveform of output sequences

K1 K2 LUT VALUE

0 0 0

0 1 W_IMG

1 0 W_REAL

1 1 W_IMG-W_REAL

International Journal of Computer Applications (0975 – 8887)

Volume 102– No.15, September 2014

25

Table4. Resulted output values

Outputs Binary value Integer value

Rgo 01111111 -1

Rg1 00000011 3

Rg2 01110111 -9

Rg3 00000011 3

Rg4 01111111 -1

Rg5 00000011 3

Rg6 01110111 -9

Rg7 00000011 3

7. CONCLUSION
In this paper, an easier way is shown to realise Fast Fourier

Transformation with distributed arithmetic algorithm. As in

plain FFT, six adders and four multipliers are required in a

single butterfly; DA algorithm replaces multipliers with

adders, thus making the design simple and more efficient.

With the use of look up tables (ROM) the overall speed has

enhanced. This design uses eight point samples each sixteen

bits long; however, it can be used for higher sample rates.

8. REFERENCES
[1] R. A Barapate, “Digital Signal processing,” Edition

2010, Tech-Max Publications, Pune.

[2] P. Ramesh Babu, “Digital signal processing,” fourth

edition, Scitech publications(India).

[3] L. Erick Oberstar, “Fixed-point representation and

fractional math,” Oberstar consulting, revision August,

30, 2007.

[4] P.Augusta Sophi, R.Srinivasan, J. Raja, “Distributed

arithmetic based butterfly element for FFT processor in

45 nm technology,” ARPN Journal of Engineering and

Applied Sciences, vol.8, no.1, January 2013.

[5] M. Suhasini, K. Prabhu Kumar and P. Srinivas,

“Multiplier design and performance estimation with

distributed arithmetic algorithm,” IJCCT, Vol. 3, Issue-4,

2012.

[6] S.A. White, “A simple FFT butterfly arithmetic unit”,

IEEE Trans. Circuits system, vol.28 no.4, pp.352-355,

April 1981.

[7] S. A. White “ Applications of distributed arithmetic to

digital signal processing,” Analog and Digital Signal

processing, 1989, Vol. 12, no. 23, pp. 4-19.

[8] J. Cooley and J. Tuckey, “An algorithm for machine

calculation of the complex Fourier series,” Math.

Comput.,vol.19, 297-301, April. 1965.

[9] T. Thong and B. Liu, “Fixed-point fast fourier transform

error analysis, ” IEEE Trans. Acoust., Speech, Signal

Processing, vol.24, no.6, pp. 563-573, dec.1976.

[10] A.Wenzler and E.Luder, “New structure for complex

multipliers and their noise analysis,” in proceeding.

IEEE ISCAS, Seatle, WA, April.30-May3 1995, vol.2,

pp.1432-1435.

[11] J. Takala and K. Punkka, “Butterfly unit supporting

radix-4 and radix-2 FFT,” Tampere University of

Technology, P . O . Box 553, FIN-33101 Tampere,

FINLAND.

[12] S.G Smith and P.B Denyer, “Efficient bit-serial complex

multiplication and sum of product computation using

distributed arithmetic,” in proc. IEEE int. conf.

Acoustics, Speech and Signal processing, 1986, pp. 271-

276.

[13] A. Berkman, V. Owall, and Mats Torkelson, “A low

logic depth complex multiplier using distributed

arithmetic,” IEEE Journal of Solid State Circuits, vol. 35,

no.4, April 2000.

[14] T. Ranjith Kumar, “design and implementation of DDA

architecture for FIR Filters,” IJETT vol. 4, Issue 9,

September 2013.

IJCATM : www.ijcaonline.org

