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ABSTRACT
Running inference algorithms on a huge quantity of data knows
some perturbations and looses performance. One of Big Data aims
is the design of fast inference algorithms able to extract hidden in-
formation on a big quantity of data. This paper proposes a new
low complexity algorithm for probability density estimation given
partial observations. In order to reduce the complexity of the algo-
rithm, a finite numerical data support is adopted in this work and
observations are classified by frequencies to reduce there number
without loosing significance. By frequency classification we mean,
the mapping from the space containing all observed values to a
space containing each observable value associated with its obser-
vation frequency. This approach relies on Lagrange interpolation
for approximating the frequencies with a polynomial function and
then build the probability density function. To prove the reliability
of the approach, a simulation is done and results shows the con-
vergence of discussed parameters to the expected values. Big Data
field can benefit considerably from proposed approach to achieve
density estimation algorithms goal with low cost.
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1. INTRODUCTION
In real life, there is some measurable physical phenomenons
needing monitoring and management permanently according
to [1] wrote by V. S. Kumar Samparthi and al (2010), while
the management of environments behaving randomly is harder
than deterministic ones. Probability density estimation (PDE)
is considered one of famous tools giving clear ideas about a
random process behavior. According to H. Cheol Cho and al
(2008) in [2], several parametric and non parametric probability
density estimator exists and widely applied in many engineering
fields such as artificial intelligence : machine learning, pattern
recognition and in econometric...

This paper presents a new method for probability density es-
timation based on Lagrange interpolation given partial data.
Proposed approach is implemented in algorithms and programmed

with C++ programming language. The program includes a sim-
ulation part emulating the random environment by the generation
of random observations and the estimation of the density... Com-
putational complexity in time is also optimized than traditional
approaches.

The content of his paper is organized as follows : the section
2 lists some related works and some critics and limits discus-
sion, while section 3 introduces the mathematical models of the
proposed approach eliminating limits discussed in section 2.
Algorithms design and computational complexity analysis are
reported to the section 4, while simulation results and discussions
are presented in section 5. Finally, a conclusion with some
perspectives in last section.

2. RELATED WORKS
A. Assenza and al (2008) summarizes, in [3], some probability
density estimation methods and affirms that density estimation
gives better results than traditional tools of data analysis like
Principal Component Analysis. In the same way, Adriano Z.
Zambom and al (2013) adds, in [4], that kernel density with
smoothing is the most used approach. All those approaches, treats
mathematical aspects but did not discussed implementation sides
and computational complexity aspects. A. Sinha and al (2008)
discussed in [5] algorithmic cost in time of those methods and
optimized computational complexity of Kernel density estimator
using clustring... Normally, the estimation of complexity in
time must includes costs of all functions in global expression.
Exponential function cost must be included in Kernel complexity
estimation whatever its complexity class.

On the other hand, L. Kamberi and al (2011) introduces ,in
[6], some application fields of interpolation functions. By in-
terpolation we mean, the building of a deterministic function
representing the data cloud (xi, yi) collected from an environment.
In addition, it is so evident that the Lagrange interpolation is a
quadratic complexity algorithm Θ(n2) for each computed point.

Real added value of mathematical models is in its imple-
mentation in a concrete field. It would be more interesting if it is
implemented economically with a low cost. The specificity this
work, in the one hand, is the use of Lagrange interpolation as
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a new way to build a probability density function. In the other
hand, developed models are implemented on algorithms and
computational complexity of all the process is optimized using
finite state approach and classification by frequencies.

3. MATHEMATICAL MODELS BUILDING
3.1 Probability Density Support
Let RX = {e1, ..., ep} be all possible observations set fixed from
the beginning of the process and ϕ : RX → N an application
associating each observation with an integer representing the
frequency of observation. By the frequency we mean, the number
of observation of each value in RX : if the value e3 is observed 10
times for example during all the process, then we have ϕ(e3) = 10.

Probability Density Support RX is the numerical interval
containing all observable values. Let RXmin

be the smallest
observable value and RXmax the biggest one. Formally, we write
RXmin

= min(RX) and RXmax = max(RX). It is evident so
that each observable value is smaller, or equals, than the upper
bound and greater, or equals, than the lower bound.

3.2 Occurrence Classification
Let S0 be the set containing all observed values during a process of
n observations. The goal if this subsection is the extraction of RX

from S0. For instance, let suppose all observed values are S0 =
{0, 0, 0, 1, 0, 2, 1}, We have 0 repeated 3 times and 1 two times
and 2 just one time... We must have finally RX = {0, 1, 2} and
ϕ(0) = 3, ϕ(1) = 2, ϕ(2) = 1.

3.3 Lagrange Approximation
During a process of a big number of observations, that gives
S0 with m values. The algorithm extracts RX and data
(ei, ϕ(ei))i=1...p. The use of Lagrange Theory concerning the ap-
proximation of data cloud with a polynomial function allows it to
build a function φ passing from each value of ϕ. Formally :

φ(x) =

p∑
i=1

ϕ(ei)
∏
j 6=i

x− ej
ei − ej

 (1)

3.4 Probability Density Function
The aim of this work is to estimate the probability density func-
tion given some historical observations using φ-function defined in
equation 1. A function f̂X is a probability density function if it is
positive for each value in the support in one hand, and the sum,
for discreet process, on all the support is equals to 1. Formally, if
f̂X(x) ≥ 0,∀x ∈ RX and

∑
xk∈RX

f̂X(xk) = 1 . To assure the

two conditions, let define f̂X as the following :

f̂X(x) =

{
1
m
.|φ(x)| , x ∈ RX

0 , x /∈ RX
(2)

The condition of positivity is verified because each value is posi-
tive due to the use of the absolute value. The seconde condition is
verified also due to the division by total observations m.

3.5 Main Parameters
Let f̂X be the density function obtained by the equation 2. This
subsection focuses on the newt main parameters : the expectation
denoted E(X), the variance denoted V (X) and FX the distribu-
tion function.

The expectation represents the average of all the population,
it is defined by the equation 3 :

E(X) =
∑

x∈RX

xf̂X(x) (3)

Moreover, the variance representing the homogeneity Classical def-
inition of variance if given by the equation 4 :

V (X) =
∑

x∈RX

(x− µX)2f̂X(x) (4)

The probability of observation of x0 is given by π(x0) = f̂X(x0)
and the classical definition of distribution function FX is given by
the probability of the event (X ≤ x). Formally :

FX(x) =
∑
xk≤x

π(xk) (5)

4. ALGORITHMS DESIGN
4.1 Observations Classifier Algorithm
This section focuses on algorithms implementing previous equa-
tions. The goal of the algorithm 1 is the extraction of the set RX

given S0 discussed in subsection 3.2. See the algorithm :

Algorithm 1: Observations Classifier
Input: S0 : All Observations
Output: RX : Probability Support

RX ← ∅
foreach i ∈ S0 do

Exists← False
foreach j ∈ RX do

if i = j then
// Frequency of j
ϕ(j)← ϕ(j) + 1
Exists← True

if Exists = False then
ϕ(i)← 1
RX ← RX ∪ i

4.2 Complexity Analysis
Let |RX | be the cardinal of RX : content number. The algorithm
1 classifies the observations by frequencies, that reduces the num-
ber from a very big number |S0| = m to a finite small one |RX |.
Computational complexity of this algorithm is Θ(m.|RX |) with
RX is finite state with small cardinal. It becomes as consequence
|RX |Θ(m) witch is approximated with linear class Θ(m).

4.3 Lagrange Fitting Algorithm
Lagrange fitting given by equation 1 will be computed with the the
algorithm 2 :
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Algorithm 2: Lagrange Fitting
Input: x : Variable
Output: φ(x) : Image of x

(p, s)← (1, 0)
for i = 1 to |RX | do

for j = 1 to |RX | do
if i 6= j then

p← p ∗ x−ej
ei−ej

s← s+ ϕ(ei) ∗ p
return s

4.4 Complexity Analysis
Lines 1 and 2 of the algorithm 2 contains two affectations and
line 6 contains 5 operations (one affectation and four arithmetic
operations) and one test at line 5, all repeated |RX |2 times. Line
7 contains 3 elementary operations and the cost of ϕ which costs
|RX | iterations. Last line containing the return instruction is
considered also an operation.

The final cost in time of the algorithm 2 is Θ(7|RX |2 +3|RX |+3)
witch is equals to Θ(1). Note that |RX | is finite whatever the
observation number. Normally, the computational complexity of
Lagrange Polynomial Approximation is quadratic Θ(m2), but
the use of a finite state and frequency classification, allows to
have a constant complexity Θ(1).

4.5 Density Computer Algorithm
This subsection discussed the main algorithm using results of the
last two algorithms 1 and 2. Probability density expression is given
by equation 2, it will be computed with the the algorithm 3 :

Algorithm 3: Density Computer
Input: x : Variable
Output: f̂X(x) : Image of x

if (x ≤ RXmax) and (x ≥ RXmin
) then

return 1
m
|φ(x)|

return 0

4.6 Complexity Analysis
The line 1 is a test containing 3 partial tests, while line 2 contains
a return instruction and 2 arithmetic operations. The computational
complexity of the algorithm 3 includes the cost of algorithms 1 and
2 due to the call of φ-function. The absolute value function is esti-
mated with 3 elementary operations at worst : a test, inversion and a
return instruction. That gives totally 9 operations. Let suppose a big
number m of data. Let fT (m) be the total cost in time of the main
algorithm 3. We summarize final complexity, to compute one point
of the density function, as : 9 + Θ(m) + Θ(1). Complexity class
so is fT (m) = max(9,Θ(m),Θ(1)), that gives a linear complex-
ity class Θ(m) compared with traditional method with quadratic
complexity Θ(m2).

5. SIMULATION AND DISCUSSION
This section focuses on the simulation done in order to prove the
convergence of the method. It is developed with C++ and the pro-
gram generate a MATLAB script containing all necessary data to
plot curves. C++ programming technics are inspired from [7] of
B. Eckel (2000) and [8] of H. Schildt.

5.1 Density and Distribution Simulation
Simulation program generates, in the first step, a uniform prob-
ability density function as a referential density which is equals
to 1

b−a for each value in the interval I = [a, b] and null out
of it. Next step is generating three random uniform samples,
on the same interval I , with different sizes : small, medium
and big size sample. The agent making perception with the
proposed approach analyses the three samples and estimates
the density and the distribution function for each sample size in
order to show the influence of the size on the function convergence.

The figure 1 shows how density and distribution function es-
timation converges to the referential one for each sample size
:

Fig. 1: Density and Distribution Function

5.2 Variance and Average Simulation
The aim of this section is the proof, by simulation, that the expec-
tation and variance converges to referential ones. The principe of
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this simulation is generating many uniform samples with gradu-
ated sizes and for each one the program computes the average and
the variance with equations 3 and 4. The goal is to compare re-
sults with referential parameters for an uniform distribution given
by µ = 1

b−a and σ2 = (a+b)2

12
respectively. The residues between

real and simulated values are defined as δ(µ) and δ(σ) for the av-
erage and the variance respectively. The table 1 shows obtained
results :

n µ E(X) δ(µ) σ2 V (X) δ(σ2)
1 7.00 5.33 1.66 14.08 69.81 55.72
2 8.00 8.05 0.05 16.33 14.69 1.63
3 8.00 6.95 1.05 16.33 19.96 3.63
4 8.00 6.66 1.33 16.33 17.36 1.02
5 8.00 8.10 0.10 16.33 16.07 0.25
6 8.00 7.28 0.71 16.33 17.20 0.87
7 8.00 8.16 0.16 16.33 17.59 1.26
8 8.00 7.45 0.55 16.33 17.88 1.55
9 8.00 7.53 0.46 16.33 19.03 2.70
10 8.00 6.96 1.03 16.33 15.29 1.03
11 8.00 7.52 0.47 16.33 17.46 1.13
12 8.00 7.50 0.49 16.33 15.57 0.76
13 8.00 7.17 0.82 16.33 18.18 1.85
14 8.00 7.41 0.58 16.33 18.15 1.82
15 8.00 7.49 0.50 16.33 19.36 3.02
16 8.00 8.05 0.05 16.33 17.50 1.17
17 8.00 7.19 0.80 16.33 17.53 1.19
18 8.00 6.85 1.14 16.33 19.13 2.80
19 8.00 6.93 1.06 16.33 17.13 0.79
20 8.00 7.65 0.34 16.33 14.24 2.09
21 8.00 7.97 0.02 16.33 16.96 0.63
22 8.00 7.25 0.75 16.33 17.94 1.61
23 8.00 7.56 0.43 16.33 17.49 1.15
24 8.00 7.51 0.48 16.33 16.98 0.65
25 8.00 7.38 0.61 16.33 18.88 2.55
26 8.00 7.57 0.42 16.33 16.23 0.10
27 8.00 7.70 0.29 16.33 17.49 1.16
28 8.00 6.84 1.15 16.33 17.49 1.15
29 8.00 7.92 0.07 16.33 18.19 1.86
30 8.00 7.30 0.70 16.33 14.16 2.16
31 8.00 7.00 0.99 16.33 15.44 0.88
32 8.00 7.45 0.54 16.33 18.99 2.66
33 8.00 7.90 0.09 16.33 17.80 1.46
34 8.00 8.19 0.19 16.33 14.09 2.23
35 8.00 7.73 0.26 16.33 18.98 2.65
36 8.00 7.92 0.07 16.33 16.84 0.51
37 8.00 7.28 0.71 16.33 16.78 0.45
38 8.00 7.38 0.61 16.33 19.21 2.88
39 8.00 8.06 0.06 16.33 15.30 1.02
40 8.00 7.30 0.69 16.33 18.61 2.28

Table 1. : Average and variance Simulation results

6. APPLICATION IN PREDICTION
M. Jakel (2013) describes in [9] predictor agent of a stock using ge-
netic algorithms and time series, that can benefits from probability
density estimation technics. Let define the next observation as the

element in RX having the highest probability. Let e? be the next
observation, it is given by :

e? = arg max
ek∈RX

π(ek) (6)

The popular element e? defined in the equation 6 is computed by
the algorithm 4 :

Algorithm 4: Popular Element Finder
Input: RX : Support
Output: e? : Popular Element

pV alue← 0
foreach x ∈ RX do

if pV alue ≤ π(x) then
e? ← x
pV alue← π(x)

return e?

L. Lebart and al (1995) talked, in [10], about classification methods
and that allows us to find a link between classification and predic-
tion capacity. The algorithm classifies all observable elements into
two classes : popular class and non popular one. By popular class
we mean, the subset frequently observed and this information al-
lows to increase the visibility about the behavior of a chaotic en-
vironment. Let define a popular class C∗75 with 75% of appearance
chance, formally :

C∗75 = {e ∈ RX |π(e) ≥ 0.75π(e?)} (7)

Based on the popular element e? found by the algorithm 4, the
algorithm 5 collects the popular class at 75% given by the equation
7. See the algorithm :

Algorithm 5: Popular Class Finder
Input: e? : Popular Element
Output: C∗75 : Popular Class at 75%

C∗75 ← ∅
foreach x ∈ RX do

if π(x) ≥ 0.75π(e?) then
C∗75 ← C∗75 ∪ x

return C∗75

7. CONCLUSION
This work proposes a new method for probability density esti-
mation, one of most important problems and widely applied in
telecommunication traffic analysis, predictor agent and more...
This work proposes, in addition to mathematical models, all
necessary algorithms in order to implement the approach easily in
specific domains. The specificity of the work is also the technics
of classification used to optimize the computational complexity in
time of algorithms witch adding to the new aspect an economical
additional aspect.

Next work will focuses the implementation of the approach
in order to estimate the interval of prediction with based on
estimated density.

4



International Journal of Computer Applications (0975 8887)
Volume 101 - No. 7, September 2014

Acknowledgment
I would like to express all my gratitude to my supervisors Dr
Mohamed OUZZIF, Dr Abderrahim HASBI and Dr Rachid
SAADANE for excellent human behavior and technical support.
Special thank to the Director of RITM Lab and the Director of
High School of Technology - Casablanca, Dr Mounir RIFI.

Authors would like also to thank all reviewers for helpful
comments and recommendations.

Thank to Dr Hafid GRIGUER, Mr Anis BOULAL, Miss As-
sya BENHIMA and Dr Hicham LAALAJ for all efforts done to
encourage scientific research in EMSI Rabat.

Biography
Smail TIGANI : Is a network and telecommunication systems
engineer and Phd Student in artificial intelligence and systems
modelling. He worked as software engineer and now an infor-
mation systems engineer and professor at Moroccan School of
Engineering Science in Rabat. Recently, his researches focuses
on the application of artificial intelligence on big data and perfor-
mance analysis and optimization.

Mohammed OUZZIF : Is a Professor of Computer Science
at High School of Technology of the Hassan II University. He has
prepared his PHD at Mohammed V University in collaborative
work field. His research interesting concerns distributed system
and Formal description.

Abderrahim HASBI : Is a Professor of Computer Science
at the Mohammadia School of Engineering of the University
Mohamed 5 Agdal, Morocco. He is member of the Network
and Intelligent systems Group and he has a lot of contributions
researches.

Rachid SAADANE : He is currently an Associate Professor
in the Electrical Engineering Department at Hassania School
of Labor Works of Casablanca, Morocco. His research interests
include array of UWB channel measurements modeling and
characterization, mobile and wireless communications (GSM,
WCDMA, TD/CDMA, LTE and LTE-A) and finally digital signal
processing for wireless communications systems. Recently, he
is intensively interested to the IR-UWB physical layer for WSN
and WBAN. Rachid is an active reviewer of various international
conferences and journals.

References
[1] V. S. Kumar Samparthi, Harsh K. Verma, Outlier Detection of

Data in Wireless Sensor Networks Using Kernel Density Esti-
mation, International Journal of Computer Applications, Vol.
5, No. 7, August 2010.

[2] H. Cheol Cho, M. Sami Fadali and K. Soon Lee, Online Prob-
ability Density Estimation of Nonstationary Random Signal
using Dynamic Bayesian Networks, International Journal of
Control, Automation and Systems, Vol. 6, No. 1, pp. 109-118,
February 2008.

[3] A. Assenza, M. Valle, M. Verleysen, A Comparative Study of
Various Probabilty Density Estimaton Methods for Data Anal-
ysis, International Journal of Computational Intelligence Sys-
tems, Vol. 1, No. 2, 2008, pp 188-201.

[4] Adriano Z. Zambom and R. Dias, A Review of Kernel Density
Estimation with Applications to Econometrics, International
Econometric Review, Vol. 5, No. 1, 2013, pp20-42.

[5] A. Sinha and S. Gupta, Fast Estimation of Nonparametric Ker-
nel Density Through PDDP, and its Application in Texture Syn-
thesis, International Academic Conference 2008 Visions of
Computer Science, Vol. 5, No. 1, 2008, pp.225-236.

[6] L. Kamberi, T. Zenku, Intrpolation of Functions with Applica-
tion Software, International Journal of Pure and Applied Math-
ematics, Vol. 73, No. 2, 2011, pp 219-225.

[7] B. Eckel, Thinking in C++, Vol. 1 Second Edition, January 13,
2000.

[8] H. Schildt, C++: The Complete Reference, Third Edition,.
[9] M. Jakel, Genetically Evolved Agents for Stock Price Predic-

tion, International Journal of Inventive Engineering and Sci-
ences, Vol. 10, No. 2, 2013, pp 21-35.

[10] L. Lebart, A. Morineay and M. Piron, Statistique Exploratoire
Multidimensionnelle, ISBN 2 10 0028863, Dunod, Paris, 1995.

5


	Introduction
	Related Works
	Mathematical Models Building
	Probability Density Support
	Occurrence Classification
	Lagrange Approximation
	Probability Density Function
	Main Parameters

	Algorithms Design
	Observations Classifier Algorithm
	Complexity Analysis
	Lagrange Fitting Algorithm
	Complexity Analysis
	Density Computer Algorithm
	Complexity Analysis

	Simulation and Discussion
	Density and Distribution Simulation
	Variance and Average Simulation

	Application in Prediction
	Conclusion

