
International Journal of Computer Applications (0975 – 8887)

Volume 101– No.6, September 2014

43

Experimental Analysis of the Linux RT-patched for Data

Acquisition applied to Power Sector

Roberto Alexandre Dias

Federal Institute of Santa
Catarina

Mechatronics

 Tiago Emanoel de Souza
Federal Institute of Santa

Catarina
Mechatronics

Valdir Noll
Federal Institute of Santa

Catarina
Mechatronics

ABSTRACT

The use of SoCs allow a compact and low cost post-

processing system for monitoring electrical magnitudes. The

main idea of this work is to have a small hardware which is

deterministic enough to execute acquisition and sufficiently

power to process data at a low cost.

In this paper, it is presented two problem domains of electrical

systems measurement, one with acquisition of 1 kHz and the

other with 5 kHz. It was built an acquisition test bed with a

SoC with standard and real-time Linux to compare and

evaluate its timing constraints.

General Terms

Data Acquisition

Keywords

Real Time, Linux, acquisition system, System on Chip (SoC).

1. INTRODUCTION
Data acquisition is important to preventive maintenance and

monitoring systems for the utilities industry. Specifically in

the energy sector, a demand for most efficient and sustainable

power generation systems increases the need for a post

processing systems and visualization data. Typical scenarios

include acquisition of electrical and mechanical parameters

for applications in power sector.

The monitoring system for power generators group requires

compact, low cost and powerful processing systems with high

definition graphical interfaces. The use of System on Chip

(SoC) platforms meets this goal. SoCs are not expensive, with

high processing power and easy integration with measurement

systems. In addition, the use of SoC with Linux Operating

System(OS) improves the development curve through

availability of open source applications and libraries.

In this work a data acquisition system based in a SoC over

Linux OS (non real-time and real-time) was evaluated. A test

bed was developed to measure the data acquisition time for

typical applications in energy sector.

2. SYSTEMS ON CHIP – SOC
The progress of microelectronic technology allowed

miniaturization and higher performance of electronic

components. With these advantages, the amount of features in

a single Integrated Circuit (IC) increased.

A SoC can be defined as “an IC that integrates all components

of a computer or other electronic system into a single

chip”[1].The benefits are low cost, low power consumption,

ideal for complex systems with space limitations [1].

The block diagram of Allwinner A20 SoC in Figure 1 shows

the supported variety of features, processors, I/O interfaces

and memories. Today’s best examples of SoC’s use are on

smart phones and tablets due to space limitations and low

power consumption constraints.

Figure 1: Block diagram of Allwinner Tech A20 SoC [9].

Since smart phones and tablets are all about graphic and

sound features, it is notable the concern of multimedia

processing on SoCs. An example is the A20 that has NEON

processor with Single Instruction Multiple Data (SIMD). This

processor has parallel processing of 8, 16, 32 and 64 bit and

single precision floating point. Which is used for signal

processing algorithms such as video encoding/decoding,

2D/3D graphics, gaming, audio, speech and image processing,

telephony, and sound synthesis [2].

As this project is about signal acquisition and post-processing,

it will target especially the FFTW algorithm, which has

optimized implementation for NEON and SIMD technology

[3].

3. THE PROBLEM
The intended application for this system is the monitoring of

electrical systems such as power generating groups. In

addition, the main goal is evaluate if the use of SoC is feasible

for solving two problem domains:

1. Acquiring and post processing electrical energy

parameters like voltage, current, active power, and

reactive power.

2. Acquiring and post processing mechanical

parameters in power generators like vibrations in

bearings

In the first domain the involved signal frequency is around 50

and 60 Hz up to tenth harmonic (500 to 600 maximum

frequency).

In the second domain, the signal frequency is around 500 Hz

up to tenth harmonic (5 KHz maximum frequency).

International Journal of Computer Applications (0975 – 8887)

Volume 101– No.6, September 2014

44

The use of SoC could allow a compact and low cost post

processing system for these two domains. Besides offering

complex and real time computation (e.g. software FFT

computation, stochastic processing, graphical processing) and

a sophisticated Human Machine Interface (HMI), that are

needs in the Power Sector. An example of HMI is shown in

Figure 2.

Figure 2: Graphical Interface for electrical monitoring

systems [4]

In this work, two performance parameters are measured:

 Acquisition time for eight analog input channels of

16 bits resolution;

 Delay variation of acquisition time (jitter) for eight

analog input channels of16 bits resolution.

The delay time between acquisitions is the most important

pre-requisite for a correct conversion between analog to

digital signals using a FTT technique, because this, it was

choose how the main parameter to evaluation.

It was used standard and real time Linux OS for measuring

these parameters.

The platform and test bed are shown in section 5.

4. RELATED WORKS
The paper [5] shows the RT-patch implementation. It explains

the use of a real-time OS to provide deterministic behavior

and not necessarily improving performance of real time

applications. As well as in our results, the author illustrates

the concept for a hypothetical algorithm that can complete

some calculation in 250 microseconds in a standard

operational system (non real-time) and it can execute same

calculations in 300 microseconds(deadline) in a real time one.

In the first case (non real-time), the non-deterministic

behavior can be impractical for real time application because

in some instances the execution times exceed the deadline of

350 milliseconds. In the second (real time), although it had

longer runtime, the jitter is smaller and compatible with

deterministic real time applications. The work shows the real

time APIs, provided by RT-patch to control latencies using

high-resolution timers and Priority Inheritance (PI). The PI

allows applications to use a fast mutex (futex) completely in

user space. The author compares the deterministic behavior

through execution of the gettimeofday() function in standard

and RT-patched Linux. The Figure 3 and Figure 4 show this

test and prove that latency in RT-Linux is better than STD

Linux.

Figure 3: GTOD Latency with RT-Linux [5].

Figure 4: GTOD Latency with STD Linux [5].

In paper [6] the authors present a test bed to evaluate the

response of Linux OS RT-patched kernel version 2.6.25-4-rt4.

It executes a synthetic real time application under a best effort

background application with a single user.

In these tests is measured real time application’s jitter and

activation time using two experiment conditions: (i) without

RT-patch and (ii) with RT-patch for four sets of execution

duration (10ms, 5ms, 1 ms e 0.5 ms). As the result, the jitter´s

performance in RT-patch proves to be better without RT-

patch.

In paper [7] the authors present a study and evaluation of the

use of a standard (non-real time) Linux OS for real-time

robotics and manufacturing control systems, with commercial

off-the-shelf (COTS) embedded hardware. The authors

argument that the dramatic increase of power processing in

general purpose embedded systems allow developing of real

time applications in industry on certain fields of application.

By using RTC threads [8], they obtain good results for 1 KHz

acquisition and actuators frequencies for industrial

applications.

International Journal of Computer Applications (0975 – 8887)

Volume 101– No.6, September 2014

45

5. DATA ACQUISITION SYSTEM

USING SOC AND LINUX
To attend the goal discussed in the section 3, a system was

developed according to the model on Figure 5. The main idea

is to have a small hardware, which can execute acquisition

and processing data in the same piece.

Figure 5: Acquisition schema.

In one side, the “Data Acquiring” block which is responsible

for getting data from A/D chip through the Serial Peripheral

Interface Bus (SPI) has to be able to acquire all 8 channels of

16 bits every 200µs, each generate a 640kb/s of data load. On

the other side, the “Data Management” block has to be able of

processing the sampled data and send it by the Ethernet

interface on a rate that doesn´t exceed the data sampled buffer.

Due to the high processing load, it is necessary a SoC with the

peripherals and processing power consistent with that rate. In

this work it was used the Allwinner A20 SoC[9]. This is a

SoC that has a dual core ARM7 processor with a 1.2GHz

clock; some of its features are listed below [9]:

 256KiB L2-Cache (shared between two cores);

 32KiB (instruction) / 32 kB (Data) L1-Cache per

core;

 Large physical Address Extensions (LPAE)

1TBLPDDR2/DDR3/DDR3L controller;

 NAND Flash controller and 64-bit ECC;

 GPU Mali400MP2;

 Video decoder of 2160P;

 Video encoder of H.264 1080P@30fps;

 HDMI 1.4, CPU/RGB/LVDS LCD interface;

 NEON processor with SIMD capability.

A simple way to use an analog to digital converter (ADC) on

Linux is through the SPI. SPI is a standard serial four-wire

synchronous data bus that can operate in full duplex. Devices

communicate in master/slave mode with a single master

initiating data frames [10].

Looking toward the prerequisites of this work, two ADCs ICs

were chosen for testing purpose, the ADS8568 from Texas

Instruments [11] and the ADAS3022 from Analog Devices

[12].Both are 16-bit 8-Channel, successive approximation

register (SAR) based ADC and support SPI interface, analog

input signals with amplitudes up to ±12V and signal

acquisition up to 650kSPS.

The Allwinner A20 has three available SPI interfaces. Each

SPI interface has two available slave select (SS) lines for use

[13]. It can be used one ADC chip per interface or two on the

same one using SS0 and SS1lines. For this project, it was used

the first option. The SPI is available in the Linux kernel but a

module must be installed when compiling it[11] and the FEX

file must be configured. The FEX is a hardware configuration

file, and among other things, it defines ports configuration of

the SoC [14].

The benefits of the chosen architecture is to use the powerful

hardware largely used on tablets and smart phones, this

includes processors with multiples cores and several

peripherals at low cost. The other benefit is open-source

community linux-sunxi dedicated to develop drivers and

porting for Linux platform that provides documentation and a

git repository [15].

Looking for hardware that can be easily attached to a carrier

board, it was chosen the AW-SoM A20 SODIMM Module,

which brings the Allwinner A20 chip, 1GB/RAM and

4GB/flash memory, ethernet phyceiver and a Real Time

Clock on a module with 68x52mm size [13].

The main advantages of the AW-SoM A20 Module, shown on

Figure 6, is that it makes all features of the Allwinner A20 be

easily accessible with less effort, with lower development cost

and with an easy to plug and change adapter like SODIMM.

Figure 6: The AW-SOM A20 SODIMM Module [13].

The AW-SOM provides a full Linux image (uboot – kernel –

rootfs) and a self-repository. The image can be transferred to

the module through a USB port. From the repository the

Linux kernel can be downloaded to be personalized.

The use of SoC with Linux brings some advantages that was

sought on this work, like royalties free libraries and

development tools, software packages and ease to deploy and

maintain [6].

As the ability of integrating several features was specially

sought on this work, it was explored the advantages of Linux

such as the use of many protocols and applications like

ethernet, TCP/IP stack, dhcp-client, ssh-server, file-system,

etc. But “Linux is a General Purpose Operating System

(GPOS) and as such is designed to provide good overall

throughput rather than guarantee deterministic response for

applications requiring real time” [16] [17]. A preemptive

GPOS allows the scheduler switch to a higher priority task to

take over from a lower priority task and can do the context

switch so soon the process of higher priority has been

released. That usually also leads to better deterministic

response. [17].

To force the acquisition application to have the highest

priority the nice command was used. Nice is a Linux

application to run a program with modified scheduling

priority, it adjusts the niceness of the program. It ranges from

-20 (most favorable scheduling and no niceness) to 19 (least

favorable and full of niceness) [18].

Changes in the scheduling priority brings an improvement to

determinism (which will be seen on the performance test

section) but, despite of the great advantages of Linux use, it is

necessary to face the disadvantage of dealing with a big non-

International Journal of Computer Applications (0975 – 8887)

Volume 101– No.6, September 2014

46

deterministic jitter caused by Linux scheduling policies and

by synchronization mechanisms, such as semaphores and

mutexes[15][17]. The attempt to reduce the jitter to make this

project viable is the main cause of this study.

There are two approaches to try to bring determinism to

Linux, the “patching kernel approach” and the “micro-kernel

approach”[16][7]. The “micro-kernel approach” [17] or “sub-

kernel approach” [7] divides the typical features of a normal

kernel in two layers. Where sub-kernel is a very small and

minimal operating system that provides all the real-time

functionalities such as scheduling and interrupts [16][17]. On

the other, layer the typical kernel, run as a low priority

process. This approach provides a good set of task

synchronization and communication mechanisms [7].

The “patching kernel approach” is a patch of a diff file on the

source code of Linux kernel in order to improve its real-time

performance. A diff file keeps the difference of two files,

when it is patched, these differences are applied to the original

source code [5]. In this work, it was chosen the “patching

kernel approach” in order to use the same kernel and drivers

available in the open-source community. Also because of the

advantage of comparing the same kernel version with and

without real-time features. The specific patch was the RT-

PREEMPT patch from http://rt.wiki.kernel.org project.

The RT-PREEMPT patch does the following change to make

the Linux real-time [19]:

 Making in-kernel locking-primitives preemptible

though reimplementation with rt-mutexes;

 Critical sections protected by i.e. spinlock_t and

rwlock_t are now preemptible;

 Implementing priority inheritance for in-kernel

mutexes, spinlocks and rw_semaphores;

 Converting interrupt handlers into preemptible

kernel threads;

 Converting the old Linux timer API into separate

infrastructures for high-resolution kernel timers plus

one for timeouts, leading to user space POSIX

timers with high resolution.

The next section shows the experimental test bed to evaluate

de use of SoC with Linux OS to make data acquisition system

for the two real time applications domains listed in section 3.

6. VALIDATION EXPERIMENTS
A test bed acquisition system was implemented to measure

the acquisition time and jitter for two problems domain: (i) 1

kHz maximum signal frequency and (ii)5 kHz maximum

signal frequency.

A Linux application was developed on SoC AW-SOM to send

data by SPI acquisition command, after that the A/D converter

sends back 128 bits of data (16x8 bits). The time interval

between an acquisition request command and the next request

is called “Measure Time” and it is logged in the Tektronics

TDS2024B digital oscilloscope. A sample acquisition

waveform is showed in Figure 7.

Figure 7: Sample acquisition waveform in Tektronics

TDS2024B

To evaluate system’s performance of RT-patch, two sets of

experiments, each one with 200 samples, were executed. In

the first test, the RT-patch was disabled and in the second, it

was enabled again.

In both experiments, two applications were running in the

SoC. The first application simulates a processing background

stressing one core of the AW-SOM with several computation

loops. The second is a desired data acquisition application.

The Figure 8 shows a code fragment of the background

application.

Figure 8: Code fragment of background application.

By running this application, one CPU core was stressed near

to 100%. The acquisition application runs in another core.

In the second round of experiments the RT-patch was enabled,

the data acquisition application was executed by calling

scheduled prioritization functions of the RT-patch API. The

Figure 9 shows a fragment of code of this application, with

max priority OS schedule set to 90.

Figure 9: Code fragment of real time data acquisition

application

International Journal of Computer Applications (0975 – 8887)

Volume 101– No.6, September 2014

47

The Figure 10 shows the acquisition time variation (jitter) for

the two experiment sets in the first application domain (1 kHz

maximum signal frequency). In this scenario, a SPI master

clock was configured to 250 kHz with SPI slave A/D

converter with 16 bits and 8 data channel.

In Figure 10 it’s possible to see that the RT-patched time is

equivalent to anon real time, the jitter and measure time is

slightly higher in RT-patched. The table VII.1 summarizes the

comparison of these two sets of experiments.

The Figure 11 shows the jitter of the two experiments in the

second application domain (5 KHz maximum signal

frequency).

In this scenario, a SPI master clock was configured to 2 MHz

with SPI slave A/D converter with 16 bits and 8 data channel

Figure 10: Measure Time for non-real time (blue color) and RT-patch experiments sets (red color) at 1 KHz maximum signal

frequency.

Figure 11: Measure Time for non-real time (red color) and RT-patch experiments sets (blue color).

The Table 1 shows that for 1 KHz maximum signal frequency

the RT-patch is not necessary.

Having only the standard SO installed in the AW-SOM is

efficient enough to acquire and process the desired signal.

International Journal of Computer Applications (0975 – 8887)

Volume 101– No.6, September 2014

48

Table 1: Experimentation comparison of non-real time

and RT-path sets (1 kHz)

 Non RT
(ms)

Jitter %
Non-RT

RT-patched
(ms)

Jitter %
(RT)

Mean 1.000000 1.000000

Std.dev. 0.003216 0.003836

Max 1.012000 1.20 1.008000 0.80

Min 0.994000 -0.60 0.984000 -1.60

Jitter 1.80 2.40

In the second experiment, shown in Table 2,the global jitter

with non-real time is 69.34%. With RT-path the global jitter is

reduced to 32.9%.

Table 2: Experimentation comparison of non-real time

and RT-path sets (5 kHz)

 Non RT
(ms)

Jitter %
Non-RT

RT-patched
(ms)

Jitter %
(RT)

Mean 0.194899 0.199939

Std.dev. 0.019153 0.013983

Max 0.272800 36.67 0.242800 22.87

Min 0.134400 -32.66 0.178800 -9.514

Jitter 69.34 32.39

The results show a significant reduction of the jitter by using

the RT-patch, which means that the acquisition time is

suitable for all application domains discussed in section IV.

The higher jitter is not appropriate for FFT processing but

some alternatives for mitigation can be used, like FFT

interpolation [20].

7. CONCLUSIONS AND FUTURE

WORK
The current work shows the comparison of an acquisition and

post processing system in a SoC with a standard Linux and

RT-Linux. It was delimited two problem domains, which were

specified for 1 KHz and 5 KHz maximum signal frequencies.

A test bed was implemented to acquire and measure 200 SPI

reading samples of each acquisition system.

It was viable to meet the needs of the first problem domain

(acquisition at 1 KHz rate) through a jitter of 2.4% on RT-

Linux and 1.8% on the standard-Linux.

For the second problem domain (acquisition at 5 kHz rate)

was verified a notable improvement of the jitter on RT-Linux,

which was of 32.39% against the 69.34% of standard-Linux,

still the jitter is too high for the target application.

As future work, it is proposed the use of a Field-

programmable gate array (FPGA) for the acquisition part, as

the FPGA can be almost fully deterministic, with a negligible

jitter and the possibility of high acquisition rates. The SoC can

still be used for the post-processing and transmission part. The

block diagram of this proposition can be seen on Figure 12.

Figure 12: Block diagram of the acquisition system with

FPGA

8. REFERENCES
[1] Rajesvari.R, Manoj.G, Angelin Ponrani. M. "System-on-

Chip (SoC) for Telecommand System Design".

International Journal of Advanced Research in Computer

and Communication Engineering, Vol. 2, Issue 3, March

2013.

[2] "ARM NEON technology brief". Available online at:

http://www.arm.com/products/processors/technologies/n

eon.php

[3] Pacheco. L, 2013: "Desenvolvimento De Sistema

Distribuído Microprocessado Para Diminuição De

Tempo De Transitório De Bancadas De Ensaio De

Compressores". Available online at:

https://repositorio.ufsc.br/bitstream/handle/123456789/1

03561/317173.pdf

[4] "AQX700+ Product Brochure". Avaible online at:

http://www.aqtech.com.br/produtos/AQT700/Folder_AQ

T700.pdf

[5] Rosted, Steven. Hart, Darren V. "Internals of RT Patch",

In Proceedings of Linux Simposium, June 2007, Ontario,

Canada, Pages 161-172.

[6] Betz, Wolfgang. Cereia, Marco. Bertolotti, Ivan C.

"Experimental Evaluation of the Linux RT Patch for

Real-Time Applications", In Proceedings of IEEE

Emerging Technologies & Factory Automation, 2009,

ETFA 2009.

[7] Bruzzone, G. Caccia, M. Ravera, G. Bertone, A.

"Standard Linux for Real-Time Robotics and

Manufacturing Control Systems". Robotics and

Computer Integrated Manufacturing. Elsevier. 2009.

Pages 178-190.

[8] Oikawa, S. Tokuda, H. "User-Level Real-Time Threads".

In Proceedings of IEEE of Real-Time Operating Systems

and Software. RTOSS ´94. 1994. Seatle, WA.

[9] "A20 Processor Features and Highlights" Available

online at:

http://www.allwinnertech.com/en/clq/processora/A20.ht

ml

International Journal of Computer Applications (0975 – 8887)

Volume 101– No.6, September 2014

49

[10] Grusin M., at Sparkfun, 2014: "Serial Peripheral

Interface (SPI)", available online at:

https://learn.sparkfun.com/tutorials/serial-peripheral-

interface-spi/all.

[11] "ADS8568: 12-, 14-,16-Bit, Eight-Channel,

Simultaneous Sampling ANALOG-TO-DIGITAL

CONVERTERS Data Sheet", 2011 Available online at:

http://www.ti.com/lit/ds/symlink/ads8568.pdf.

[12] "ADAS3022: 16-Bit, 1 MSPS, 8-Channel Data

Acquisition System Data Sheet" Available online at:

http://www.analog.com/static/imported-

files/data_sheets/ADAS3022.pdf

[13] "AW-SoM A20 Dual Core SODIMM Module

Datasheet", Available online at: http://docs.aw-

som.com/public/products/AWSOM-A20-

SD_DATASHEET.pdf

[14] "FEX Guide - linux-sunxi.org", august, 2014. Available

online at: http://linux-sunxi.org/Fex_Guide.

[15] [15] "Linux-sunxi.org - What is sunxi", august, 2014.

Available online at: http://linux-sunxi.org/Main_Page

[16] Arthur, V., Emde, C,. Guire, N. M., 2007: "Assessment

of the Realtime Preemption Patches (RT-Preempt) and

their impact on the general purpose performance of the

system", Real-Time Linux Workshop 2007, Linz, Austria

[17] Vun, N., Hor, H. F., Chao, J. W., 2008: "Real-time

Enhancements for Embedded Linux", in 14th IEEE

International Conference on Parallel and Distributed

Systems, pages 737-740.

[18] “nice(1) Linux man page", 2010. Available online at:

http://linux.die.net/man/1/nice

[19] Fu, L., Schwebel, R., 2014: "RT PREEMPT HOWTO".

Available online at:

https://rt.wiki.kernel.org/index.php/RT_PREEMPT_HO

WTO

[20] Wen, He et all. "Simple Interpolated FFT Algorithm

Based on Minimize Side lobe Windows for Power-

Harmonic Analysis". In IEEE TRANSACTIONS ON

POWER ELECTRONICS, VOL. 26, NO. 9,

SEPTEMBER 2011.

IJCATM : www.ijcaonline.org

