
International Journal of Computer Applications (0975 8887)
Volume 101 - No. 6, September 2014

Intelligent Linear Data Structure with Self Performance
Optimization Capacity: Application on Big Data

1Smail TIGANI, 2Mouhamed OUZZIF, 3Abderrahim HASBI and 4Rachid SAADANE
1RITM/ESTC, National High School of Electricity and Mechanics. Casablanca, Morocco

2RITM/ESTC, High School of Technology. Casablanca, Morocco
3RSE/EMI, Mohamadia School of Engineering. Rabat, Morocco

4SIRC/LaGeS-EHTP, Hassania School of Labor Works. Casablanca, Morocco

ABSTRACT
The access to relevant information from a big data container is gain-
ing immense significance. This depends on storage technics and
the organization level. This work proposes an intelligent linear data
structure with an integrated cognitive agent reorganizing periodi-
cally the data structure content. The reorganization is based on a
confidence interval of a random variable estimated by the agent.
This random variable represents the demand frequency for each
element. The cognitive agent studies the client behavior and puts
most popular data in the beginning of the array in order to be found
quickly. That increases considerably the search algorithm perfor-
mance and solves by that one of most problems of the big data field.
Models and algorithms in this work are implemented with Java pro-
gramming language and simulated and that proves the reliability of
the approach.

Keywords:
Data Structures, Big Data, Statistic Modelling, Algorithms and
Computational Complexity, Auto-adaptive Systems, High Perfor-
mance Systems.

1. INTRODUCTION
The Web 2.0 described by D. Dougherty (2003) allows internet
end-users to interact with web pages content and exchange millions
of comments, pictures and also massive data over social networks
and personal pages... By that we mean that Modern information
systems needs processing a huge quantity of data and manage an
important network traffic : it is the Big Data. The big quantity
of data presents an asset for inference algorithms by increasing
precision and in the same time harms the performance witch is a
very important aspect that many researches are focused on and still
up to now. Z. Yang and al (2010) talks, in (1), about one of the
most important aspect of information system performance : it is
the availability of data and servers hosting those data.

This paper presents a new linear data structure having the
ability to reorganize the data is self in order to optimize the
performance of operation research of data on it. By self reorganize
we means, the determination of most popular data subset and put
them on first ranges of the list to be found quickly. The estimation

of popular and non popular data is done by un internal agent
making the perception of the client behavior and then estimate
some statistical parameters on which the decision making relies.

The content of his paper is organized as follows : the section
2 introduces some related works and some critics with discussions,
while section 3 presents the statistical models. Algorithms design
and computational complexity analysis are reported to the section
4, while simulation results and curves with comments are pre-
sented in section 5. Finally, Section 6 presents concluding remarks
followed by discussion of future work.

2. RELATED WORKS
In (3), R. Gupta (2014) talked about the evolution time line of
intelligent information technologies from the data mining fields
moving to the web mining arriving actually (2014) to the big
data technology. By big data we means all technics allowing the
processing of very huge quantity of data and the extraction of
useful information keeping performance aspects. That comes to
design intelligent data container able to assure the availability of
data as described by Z. Yang and al (2010) in (1). One of works
touching to the all those sides are works of I. Ioannidis and al
(2003) who described in (2) the idea of adaptive data structures
providing performance guarantee as an IP addresses lookups
application.

K. Greer and al (2009) introduces the idea self-organising
infrastructure of services in (5) and, in the same year, D. Lefeb-
vre presents in (7) some challenges for adaptive systems. The
discussed last works allows us to think about the incorporation
of the auto-adaptive aspect in a linear data structure in order to
reorganise the content of it and then optimize some performance
indication to define posteriorly.

The organization of the content of the data structure must be
done based on some criteria, this is the reason of the choice of the
confidence interval of the random variable representing the average
of demand of each element on the data structure. M. Tanusit
present in (8) the technics of estimations of a two-sides confidence
intervals for a poisson means. In this case, the judgment that the
means of demand follows Poisson law seems to be impossible.
Knowing the average X denoted Xei and the variance of the

1



International Journal of Computer Applications (0975 8887)
Volume 101 - No. 6, September 2014

sample denoted sn, that allows to build the confidence interval
using works of S. Niwitpong and al (2013) found in (9) and
statistical reference (11) of L. Lebart and al (1995).

3. MATHEMATICAL MODELLING
Designed algorithms in this work are based on some mathematical
models. This section focuses on statistical modelling aspects and
explains also the classification criteria of data in the array.

3.1 Basic definitions
Let consider a finite state E containing all data in the linear data
structure. In theory, the data is represented with elements e1...em
and, in practice, with a Java class introduced in the appendix 2.
Formally :

E = {ei}i=mi=1 (1)

Let consider a random experience repeated n times : the experi-
ence is looking for an element from E defined previously. Let Xei

be the random variable representing the average of the demand of
the element ei during all the process and mn the mean of Xei .
Mathematically :

mn =
1

n

n∑
k=1

1{ei=e∗k} (2)

With e∗k is the researched element at the instant k. The function
1{ei=e∗k} is equals to 1 if ei = e∗k and equals to 0 if not. Let’s
call alsomn and sn the average and the standard deviation, respec-
tively, of the variable Xei .

3.2 Probability Law
This subsection discuses the probability law of the variable Xei .
Based on this low, the confidence interval of the previous variable
is build with a fixed confidence rate : 90%, 95%... S. Niwitpong
and al (2013) affirms in (9) that with unknown standard deviation
σ. That comes to use a random variable with Student law based on
non-biased estimator sn. Formally :

Xei −mn

sn/
√
n

v Tn−1 (3)

With Tn−1 is the Student distribution with n − 1 degrees of free-
dom.

3.3 Confidence Interval Estimation
The confidence interval of Xei denoted ζ95(Xei) with
LB(ζ95(Xei)) is the left bound of the interval ζ95(Xei)
and RB(ζ95(Xei)) the right one. See the proof on appendix 1.
Formally :

ζ95(Xei) =

mn − 1.96
sn√
n︸ ︷︷ ︸

LB(ζ95(X
ei ))

,mn + 1.96
sn√
n︸ ︷︷ ︸

LB(ζ95(X
ei ))

 (4)

3.4 Classification Criteria
In order to optimize the time of research in the linear array, The
internal agent reorganizes periodically the content of the array. The

organization will be done by moving most demanded class of data
to the beginning of the array, and the less demanded at the end.
The CI1 of the average of demand allow the agent to pin point the
element having the biggest chance to appear in next demand. The
CI of demand average takes in consideration the popularity of
the element and also the stability of it. By stability we mean,
the homogeneity of the element demand, it is represented by
the standard deviation. It is evident so that the element having
the biggest lower bound of the CI is the most demanded stable
element. This one needs to be moved in first range. Finally the
agent makes an descending sort of all element of the array by
the lower bound of the CI.

4. ALGORITHMS DESIGN
4.1 Reorganization Algorithm
In this section is the design of algorithms implementing models
discussed in section 3. The algorithm 1 reorganizes data in the ar-
ray according to the left bound of the confidence interval ζ95(Xei)
: the algorithm makes a descending sort of elements according to
the worst frequency of demand2. That makes most demanded ele-
ments reorganized in the beginning of the array in order to be found
quickly. See the algorithm :

Algorithm 1: Data Reorganizer
Input: E: Data Set

for i = 1 to m− 1 do
for j = i+ 1 to m do

if LB(ζ95(Xei)) < LB(ζ95(Xej )) then
vTmp← ej
ej ← ei
ei ← vTmp

Computational complexity of the algorithm 1 is quadratic O(m2).

4.2 Simulation Algorithm
In order to evaluate the performance and the reliability of the
approach, this work proposes three key performance indicator to
compute during the simulation. Those keys are the cost of research
after each research operation, the average of total costs after all the
process of simulation and finally the cumulative cost. See the next
section for more discussions.

The algorithm 2, whose computational complexity is O(mn),
generates a fixed number of data and store them, one by one, in a
traditional array in one hand and proposed intelligent array in the
other hand. The testing data are stored initially with the same way
in the two arrays. The next step is making a search operation of the
same randomized value in the two arrays and collecting costs in
each case in order to compare them. This last operation is repeated
quite a few times to have enough data to plot curves.

1Confidence interval.
2Lower Bound of the Confidence Interval.

2



International Journal of Computer Applications (0975 8887)
Volume 101 - No. 6, September 2014

Algorithm 2: Performance Simulator
Output: iCost : Costs on Intelligent Array
Output: sCost : Costs on Simple Array

// Testing Data
for i = 0 to n do

sArray[i]← i
iArray[i]← i

// Researched Data
for i = 0 to m do

// Random Data with Normal Law
e← GenerateRandomV alue()

for j = 0 to n do
if sArray[j] 6= e then

// Cost on simple array
sCost[i]← sCost[i] + 1

else
break

for j = 0 to n do
if iArray[j] 6= e then

// Cost on intelligent array
iCost[i]← iCost[i] + 1

else
break

// Reorganize data for each 100 opertaion
if m = 0[100] then

DataReorganizer()

4.3 Normal Law Generation Algorithm
The function GenerateRandomValue(), called in the algorithm 2,
generates values with normal law with a specific mean and vari-
ance. Most programming languages allows the generation of uni-
form random variable that are transformable to an other proba-
bility law using different methods. Let consider U1 and U2 two
uniform random variables on [0, 1] and X a given random vari-
able. K. Ranga and al (2011) presents, in (12), the method intro-
duced by Box-Muller (1958) allowing the generation of normal law
X ∼ N(µ, σ2) with :

X = µ+ σ sin (2π.U2)
√
−2ln(U1) (5)

The algorithm 3 is able to generate random values with gaussian
law, it is introduced in order to make simulation with a normal dis-
tribution. This algorithm relies on Box-Muller method explained in
equation 5. See the algorithm :

Algorithm 3: Normal Distribution Generator
Output: µ : Desired mean
Output: σ : Desired standard deviation
Output: X : X ∼ N(µ, σ2)

// All programming language provide this function
U1 ← UniformeRandomV alue()
U2 ← UniformeRandomV alue()

// Box-Muller method
return µ+ σ sin (2π.U2)

√
−2ln(U1)

5. SIMULATION RESULTS
5.1 Research cost KPI
The algorithm 2 making the simulation computes the arrays iCost
and sCost containing costs to find the same data in the intelligent
array and the simple array respectively. In order to assure the vis-
ibility of curves in the figure, The algorithm makes sampling each
100 operation research and that gives the figure 1 :

Fig. 1: Research Cost Variation

The figure 1 shows that the adoption of the proposed intelligent
array optimizes considerably after a small training period.

5.2 Cost average KPI
Based on the two arrays iCost and sCost, Let define the average
of cumulative cost on the intelligent array Λi in all the simulation
process on m operation research as :

Λi =

∑m
k=1 iCost[k]∑m

k=1(iCost[k] + sCost[k])
(6)

With the same way, the average of cumulative cost on the simple
array Λs during all the process is the following :

Λs =

∑m
k=1 sCost[k]∑m

k=1(iCost[k] + sCost[k])
(7)

The simulation program affirms in all cases that Λi < Λs. The table
5.2 shows the result of cumulative cost average comparative study
between the two approaches after 1100 iteration. See the table :

Cumulative Cost Average n = 1100

Λi for Intelligent Array 42%
Λs for simple Array 58%

3



International Journal of Computer Applications (0975 8887)
Volume 101 - No. 6, September 2014

5.3 Cumulative Cost KPI
Let θi(n) be the cumulative cost for the intelligent array until the
nth operation research defined in the equation 8. Formally :

θi(n) =

n∑
k=1

iCost[k] (8)

With he same way, let define θs(n) for the simple array given by
the equation 9. Formally :

θs(n) =

n∑
k=1

sCost[k] (9)

The figure 2 represents the variation of θs(n) and θi(n) during the
process of simulation. See the figure :

Fig. 2: Cumulative Cost Variation

Based on previous KPI, The figure 2 shows that the gain on re-
sponse time is increasing using the proposed intelligent array.

6. CONCLUSION
This work proposes an intelligent array having the capacity to
self-organize its content in order to optimize some performance
aspects. The reorganization is based on the unilateral confidence
interval of a random variable representing the average of demand
of each element of the array. The approach is validated by
simulation and results are more competitive comparing than the
traditional approach.

This work presents also the algorithms designed implement-
ing adopted statistical models and the algorithm of simulation
designed and implemented in order to prove the reliability of the
approach. Algorithms in this work are implemented with Java
programming language following the Java reference of B. Eckel
(2006) described in (13). The approach is validated by simulation
and that gives satisfying numerical results.

Next works will continue on this way by using more ad-

vanced automatic learning technics to optimize complex systems
efficiency and then increase performance.

APPENDICES
6.1 Appendix 1 : Proof on confidence interval.
In order to find the upper and lower bound of Xei with 100(1 −
α)%. Let suppose :

π(tn−1α/2 ≤
Xei −mn

sn/
√
n
≥ tn−11−α/2) = 1− α (10)

With π is a probability function. Let fixe α = 0.05, according
to Student law table, we have Tn−11−α/2 = −Tn−1α/2 = 1.96 for an
infinite freedom degree. The choice of infinite freedom degree is
due to the big quantity of data that will be stored in the array. Some
simplifications of equation 5 gives :

π(mn − 1.96
sn√
n︸ ︷︷ ︸

LB(ζ95(X
ei ))

≤ Xei ≤ mn + 1.96
sn√
n︸ ︷︷ ︸

RB(ζ95(X
ei ))

) = 1− α (11)

Based on equation 11, a percentage of 95%, gives Xei ≥
LB(ζ95(Xei)) and Xei ≤ LB(ζ95(Xei)).

6.2 Appendix 2 : Data container with Java.
In order to implement the approach with a programming language,
let develop a Java class to contain necessary parameters. See pro-
posed class denoted CData :

import java.io.FileWriter;
import java.io.IOException;
import static java.lang.Math.*;
import java.util.ArrayList;
import java.util.Random;

/*
@author : Smail TIGANI
@version : 1.0

*/
class CData {

// Data
private int element;
// Avarage of demand of the data
private double average;
// Standard deviation of demand
private double SDeviation;
// Left bound of the confidence interval of demand
private double LeftBoundUIC;
public CData() {
}
public CData(int element) {

this.element = element;
this.average = 0;
this.SDeviation = 0;
this.LeftBoundUIC = 0;

}
public int getElement() {

return element;
}
public void setElement(int element) {

4



International Journal of Computer Applications (0975 8887)
Volume 101 - No. 6, September 2014

this.element = element;
}
public double getAverage() {

return average;
}
public void setAverage(double average) {

this.average = average;
}
public double getSDeviation() {

return SDeviation;
}
public void setSDeviation(double SDeviation) {

this.SDeviation = SDeviation;
}
public double getLeftBoundUIC() {

return LeftBoundUIC;
}
public void setLeftBoundUIC(double LeftBoundUIC) {

this.LeftBoundUIC = LeftBoundUIC;
}

}

Acknowledgment
I would like to express all my gratitude to my supervisors Dr
Mohamed OUZZIF, Dr Abderrahim HASBI and Dr Rachid
SAADANE for excellent human behavior and technical support.
Special thank to the Director of RITM Lab and the Director of
High School of Technology - Casablanca, Dr Mounir RIFI.

Authors would like also to thank all reviewers for helpful
comments and recommendations.

Thank to Dr Hafid GRIGUER, Mr Anis BOULAL, Miss As-
sya BENHIMA and Dr Hicham LAALAJ for all efforts done to
encourage scientific research in EMSI Rabat.

Biography
Smail TIGANI : Is a network and telecommunication systems
engineer and Phd Student in artificial intelligence and systems
modelling. He worked as software engineer and now an infor-
mation systems engineer and professor at Moroccan School of
Engineering Science in Rabat. Recently, his researches focuses
on the application of artificial intelligence on big data and perfor-
mance analysis and optimization.

Mohammed OUZZIF : Is a Professor of Computer Science
at High School of Technology of the Hassan II University. He has
prepared his PHD at Mohammed V University in collaborative
work field. His research interesting concerns distributed system
and Formal description.

Abderrahim HASBI : Is a Professor of Computer Science
at the Mohammadia School of Engineering of the University
Mohamed 5 Agdal, Morocco. He is member of the Network
and Intelligent systems Group and he has a lot of contributions
researches.

Rachid SAADANE : He is currently an Associate Professor
in the Electrical Engineering Department at Hassania School
of Labor Works of Casablanca, Morocco. His research interests
include array of UWB channel measurements modeling and

characterization, mobile and wireless communications (GSM,
WCDMA, TD/CDMA, LTE and LTE-A) and finally digital signal
processing for wireless communications systems. Recently, he
is intensively interested to the IR-UWB physical layer for WSN
and WBAN. Rachid is an active reviewer of various international
conferences and journals.

References
[1] Z. Yang, J. Tian and Y. Dai, Towards a more accurate avail-

ability evaluation in peer-to-peer storage systems, Interna-
tional Journal of High Performance Computing and Network-
ing, Vol. 6, Nos. 3/4, 2010.

[2] I. Ioannidis, A. Grama and M. Atallah, Adaptive Data Struc-
tures for IP Lookups, IEEE INFOCOM, Twenty-second An-
nual Joint Conference of the IEEE Computer and Communi-
cations Societies, Vol. 1, pp 75 - 84, 2003.

[3] R. Gupta, Journey from Data Mining to Web Mining to Big
Data, International Journal of Computer Trends and Technol-
ogy, Vol. 10, No. 1, October 2014.

[4] A. Habibizad Navin, M. Naghian Fesharaki, M.K. Mirnia and
M. Teshnelab, A Novel Method for Improving the Uniformity
of Random Number Generator Based on Data Oriented Mod-
eling, International Journal of Computer Science and Net-
work Security, Vol.7 No. 7, July 2007, pp 269-273.

[5] K. Greer, M. Baumgarten, M. Mulvenna and C. Nugent, An
infrastructure for developing self-organising services, Inter-
national Journal of Adaptive and Innovative Systems, Vol. 1,
No. 1, 2009, pp 88-103.

[6] M. Beck Rutzig and A. Carlos Schneider Beck, An infras-
tructure for developing self-organising services, International
Journal of High Performance Systems Architecture, Vol. 4,
No. 1, 2012, pp 13-24.

[7] D. Lefebvre, Introduction : Some challenges for adaptive and
innovative systems in the next future, International Journal of
Adaptive and Innovative Systems, Vol. 1, No. 1, 2009, pp 1-
12.

[8] M. Tanusit, Two-Side Confidence Intervals for the Poisson
Means, International Journal of Modeling and Optimization,
Vol. 2, No. 5, October 2012.

[9] S. Niwitpong and S. Niwitpong, On Simple Confidence Inter-
vals for the Normal Mean with a Known Coefficient of Vari-
ation, International Journal of Mathematical, Computational,
Physical and Quantum Engineering Vol:7 No:9, 2013, pp 1-
12.

[10] M. Tanusit, A Novel Method for Improving the Uniformity of
Random Number Generator Based on Data Oriented Model-
ing, International Journal of Computer Science and Network
Security, Vol.7 No. 7, July 2007, pp 269-273.

[11] L. Lebart, A. Morineay and M. Piron, Statistique Exploratoire
Multidimensionnelle, ISBN 2 10 0028863, Dunod, Paris,
1995.

[12] K. Ranga, N. Kumar and M. Reddy, Generation of standard
normal random variables, Indian Journal of Scientific Re-
search, No. 4, Vol. 2, pp. 83-85, 2011.

[13] B. Eckel, Thinking in Java 4th Edition,ISBN 978-
0131872486, Prentice Hall, 2006.

5


	INTRODUCTION
	RELATED WORKS
	MATHEMATICAL MODELLING
	Basic definitions
	Probability Law
	Confidence Interval Estimation
	Classification Criteria

	ALGORITHMS DESIGN
	Reorganization Algorithm
	Simulation Algorithm
	Normal Law Generation Algorithm

	SIMULATION RESULTS
	Research cost KPI
	Cost average KPI
	Cumulative Cost KPI

	CONCLUSION
	Appendix 1 : Proof on confidence interval.
	Appendix 2 : Data container with Java.


