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ABSTRACT  
The Motif Finding Problem is a well-known computationally 

intensive problem in bioinformatics. Exact solutions to 

finding a motif such as brute-force suffer from the 

intractability of their run time. To ameliorate this, different 

solutions relying on different hardware technologies have 

been proposed including the usage of FPGA or multicore 

architectures. Recently, deploying heterogeneous architectures 

that involve CPUs, GPUs, and FPGA kits seems to be very 

promising. The main goal is to speed up processing in order to 

achieve the result in a moderate time. The scheduling strategy 

dealing with such heterogeneity is one of the most important 

factors affecting the performance of the heterogeneous 

systems. In this paper, we introduce a new scheduling strategy 

that depends on the expected finish time when the problem is 

solved by only one type of architecture. The proposed 

scheduling strategy provides the fastest available processor 

type with a specific size of data items and instructs it to 

perform the parallel operations. Other slower architectures 

will get different sizes of data that can be processed exactly in 

the same time granted to the fastest architecture. This 

operation will be iterated until the finish of all the processing 

operations required to get the motif. Evaluation results of 

solving the motif finding problem using our proposed 

approach on a set of heterogeneous architectures versus the 

implementation on an individual architecture are compared. 

Results show that the new scheduling strategy yields much 

more advantageous results over the implementation on 

individual architectures. We believe that the proposed strategy 

is a step towards a well-defined framework for implementing 

run-time systems that support heterogeneous architectures. 

Keywords  

Motif Finding Problem; Heterogeneous architectures; 

Scheduling Strategies 

1. INTRODUCTION 
One of the most important problems in bioinformatics is the 

understanding of gene regulatory networks. This is due to the 

fact that gene regulatory networks help the researchers better 

identify how genes cooperate to perform functions, how any 

species respond to diseases or environmental insults, and how 

organisms are affected by genes disorders. In this context, 

finding regulatory elements, especially the binding sites for 

transcription factors is crucial and constitutes a major 

challenge. The binding sites for expressed genes are called 

motifs. In the DNA sequence, a motif is usually a short 

segment that occurs frequently, but is not required to be an 

exact copy for each occurrence. This property of motifs makes 

motif finding very difficult. Despite considerable efforts to 

date, finding these motifs remains a complex challenge for 

biologists and computer scientists. 

The Motif Finding Problem (MFP) can be simply considered 

as a string matching problem.  Solving the MFP to find a 

motif of length L with permitted mutation d can be 

implemented using a brute-force algorithm.  All the possible 

L-mers (4L) are compared with each possible motif of length 

L.  If we have a sequence of size N then we can have (N-L+1) 

motifs. Pevzner and Sze [1] presented the challenge problem 

(15,4) and (16,4) where the first number is a specific length L 

and the second number a specific mutation d. In this paper, we 

present a problem in which the motif has a length L=16, 

allowed mutations d=4, and the number of sequences we are 

searching in is T=20 each of size N=600.  

 

   Solving such computationally intensive problems can be 

implemented using a set of heterogeneous platforms [2, 3, 4, 

5, 6, 7, 8].  Currently, almost all our home PCs have 

heterogeneous architectures since they have at least CPUs and 

GPUs.  In fact, multicore architectures are now playing an 

important role in solving complex problems.  Moreover, 

FPGA cards could be also deployed in our home environment 

to add more computing power to our PCs.  

  

   The main concern of such heterogeneity is related to the 

scheduling strategy needed to benefit from the capabilities of 

such architectures. Recent scheduling strategies for 

heterogeneous architectures include heterogeneous earliest 

finish time (HEFT) [9], and predict earliest finish time (PEFT) 

[10]. HEFT is performed in two phases.  The first phase is 

intended to prioritize the tasks while the second phase assigns 
tasks to the workers based on its priorities.  PEFT depends on 

an Optimistic Cost Table OCT that is used to rank tasks and 

for processor selection. 

  

   HEFT and PEFT are thinking of the scheduling problem 

from the absolute scheduling mechanism point of view 

without considering other factors that may affect the 

implementation.  For example, when implementing an 

algorithm using CUDA paradigm on NVidia GPUs we have 

to consider the shared memory usage, register usage, and 

thread block size. Also, we have to carefully consider the data 

movement mechanism in order to always process local data 

not to move it among blocks.   

   In this paper, we think of the scheduling problem from a 

different point of view.  We will consider the speed 

differences in architectures in solving a problem such that the 

faster the architecture is, the larger the number of chunks of 

tasks assigned to it. A chunk here  means a complete unit of 

work that we can predict the execution time of on a specific 

architecture.  We will assume that the tasks of each chunk 

assigned to a specific architecture will be executed by this 

architecture only.  In doing so, we eliminate the factors that 

may affect the overall system performance such as shared 

memory, registers, etc.  This is due to the fact that we can use 
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specific parallel computing paradigms that can handle these 

issues efficiently when proper code is developed.  

The rest of this paper is organized as follows: Section II 

describes the task dependency analysis of the MFP. Section 

III illustrates the proposed scheduling strategy. Section IV 

presents the environment used for the implementation and 

provides the evaluation results. Section V presents the 

conclusion and directions for future work. 

2. TASK DEPENDENCY ANALYSIS OF 

MOTIF FINDING PROBLEM 
MFP has a stereotypical type of comparison operations.  The 

process starts with data expansion such that a total number of 

N–L+1 windows each of length  L are derived from a 

sequence of size N.  This operation is sequential in nature 

such that a sliding window technique with a one position shift 

is required to obtain each window.  To implement the 

expansion operation in parallel we can work on all the 

available sequences concurrently such that we can extract the 

first window W1 from each sequence.  If we have T sequences 

then we can obtain T windows (W1 of each sequence) at the 

first clock CLK0. A total number of N-L+1 units of time are 

required to expand all the T sequences to get a total number of 

[(N-L+1) * T] windows each of size L. 

In principle, parallel comparisons between all possible 4L L-

mers and the generated T windows can start as long as there 

are windows ready to be compared after the expansion 

operations.  A total number of 4L * T comparisons can be 

implemented concurrently.    This means  that a  total number 

of (4L * T) * (N-L+1) can be implemented in N-L+1 units of 

time. Time slots that describe the concurrent operations for 

both data expansion and parallel comparisons are shown in 

Fig.1. It is clear that the comparison operations will start at 

CLK1 since T windows (W1 of each sequence) are derived in 

CLK0. Consequently, deriving T windows (Wi of each 

sequence) at CLKi will be followed with comparison 

operations at CLKi+1. 

 
Fig.1 Data Expansion and Comparison Operations 

3. TASK SCHEDULING STRATEGY 
Due to the nature of the operations required to implement the 

MFP, a simple scheduling strategy can be suggested.  The 

main idea benefits from the fact that the number of the 

operations required to solve the MFP   can be    divided into C    

chunks    each of ((4L * T) + T) operations in almost all cases 

except the first and the last ones which are T and (4L * T) 

respectively.   

 

Consider that we have p heterogeneous architectures (A1, A2, 

…, Ap) capable of performing the operations of each chunk in 

different amounts of time (t1, t2, …, tp)  where ti < ti+1 then: If 

the total execution time required by the fastest architecture A1 

to  find  the motif  which is approximately equal  to (t1 * C) 

where (C = (N–L+1) in case of MFP) is greater than ti (for 

i=2 to p) then allow Ai to perform the operations for a number 

of chunks that is relative to its execution time with respect to 

t1. The pseudo code for the proposed scheduling strategy is 

shown in Fig.2.   
 

The distribute_chunks() function initially decides the 

architectures that will take part in solving the problem. This 

function distributes the chunks proportionally according to the 

execution time of the architectures.  Of course, the 

architecture with less execution time for the chunk will get 

more chunks to perform. The function eventually returns with 

the number of chunks individually assigned to the 

architectures. 
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Pseudo Code for the Scheduling Strategy 

 

 

Input (t1, t2, …, tp)    ; The execution times for performing the operations of a 

; single chunk on A1, A2, …, Ap respectively in ascending order 

 

Input (C)      ; The number of chunks C = N-L+1 in case of MFP 

 

 

Output (C1, C2, …, Cp)            ; The number of chunks assigned to each architecture 

 

 

Function Distribute_Chunks(ti, C) 

 

    For each i:=1 to p  

            if ((t1 * C) > ti)  ; for each architecture satisfies this condition where 

; (2 ≤ i ≤ p) Decide which architectures will be eligible 

; to perform operations on chunks 

           then     Ri :=  C / ti  ; find the weight of each eligible architecture 

           else      Ri := 0                        ; or exclude ineligible architecture 

    End  

 

 

       R := R1 + R2 + … + Rp  ; find the total weights 

 

       Ru :=  C / R   ; find the unit assigned for each weight 

       

    For each i:=1 to P 

            Ci :=  Ri * Ru    ; assign number of chunks Ci to each eligible Ai 

    End 

 

Return (C1, C2, …, Cp) 

 

End  
 

Fig.2 Scheduling Strategy for Solving MFP 

 

4. IMPLEMENTATION 
In order to evaluate the proposed strategy we have worked on 

the MFP (16, 4).  The block diagram of the used system is 

shown in Fig.3 while the architectures used are listed in Table 

1. We have deployed a PC machine (core i5, 2.3 GHz, 4 GB 

RAM) having both an FPGA card (Stratix III FPGA) 

interfaced with it and a GPU (NVidia GT240, 96 cores, 1.34 

GHz core clock).  In this case, we have three types of 

architectures CPU, GPU, and FPGA.  CUDA SDK4.0 is used 

to solve the MFP on the GPU while MPICH2 for x64 running 

on 2 nodes (cores) is examined on the CPU.  The FPGA 

design used in [11] was selected to be investigated since we 

have developed its VHDL code. The block diagram of the 

FPGA system used is shown in Fig. 4. The FPGA has a ROM 

that holds the T sequences under investigation.  The Sequence 

multiplexor selects the sequence Ti from the set of sequences 

T. The shifter is responsible for selecting windows starting 

from W1 and ending at WN-L+1 from a given sequence.  The 

motif generator is responsible for generating all the possible 

4L L-mers each of size L. The matching unit is responsible for 

comparing the window W provided by the shifter with the L-

mer generated by the motif generator.  A single matching unit 

is used in this block diagram while a modified version of this 

architecture utilizes 20 matching units to accelerate the 

comparison process. The FPGA with multiple matching units 

is shown in Fig.5.   

 
Table 1 Hardware Configuration 

Architecture Vendor Model 

CPU Intel Core i5, 2.3 GHz 

GPGPU NVidia GT240, 96 Cores, 1.34 

GHz core clock 

FPGA Altera Stratix III 
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Fig. 3 Block Diagram of the system consisting of 

heterogeneous architectures (CPU, GPGPU, and FPGA) 

 

 
   Initially, we have to determine the execution time required 

by an individual architecture to perform a chunk of 

comparison operations. Results of performing (416 * 20 

Operations) on different architectures are listed in Table 2.  

 

   Since we have N-L+1 chunks then we have C=585.  

Applying the rules of scheduling strategy yields the number of 

chunks assigned to each architecture results shown in Table 3. 

A total execution time of 92,610 seconds (25.7 hours 

approximately) is achieved.  This of course provides a 

significant improvement when compared with the total 

execution time of an individual architecture as shown in Table 

4. 

 
   When implementing the scheduling strategy using the 

FPGA architecture with 20 matching units, the execution time 

of the chunk is (approximately 23 seconds). Consequently, 

when applying the scheduling strategy a new chunk 

distribution will take place.  This is shown in Table 5. A total 

execution time of 12,489 sec. is achieved (3.46 hours 

approximately).  Relative speed up when solving the MFP on 

heterogeneous architectures as compared to the individual 

architectures is shown in Fig. 6 and Fig. 7 for (CPU, GPU, 

and FPGA(1)) and (CPU, GPU, and FPGA(20)) respectively.  

 

5. CONCLUSION    
A scheduling strategy for solving MFP has been introduced.  

The strategy can be used to assign tasks to heterogeneous 

architectures in a way that ensures different load balancing 

depending on both the computing power and the paradigm 

used on the architecture.  Mainly, the execution times required 

for the architectures will be used to decide the number of 

chunks assigned to each one.  Almost 53% reduction in the 

execution time as compared to pure FPGA implementation 

has been achieved when a single matching unit is used in the 

FPGA. Also, 7% reduction in the execution time has been 

achieved when compared to pure FPGA implementation with 

20 matching units. In principle, having small gaps between 

the speeds of architectures will lead to significant 

enhancement in the execution time. The enhancement in 

execution time is inversely proportional with the speed gaps 

between architectures.  We believe that the proposed strategy 

is a step towards much more advanced strategies for task 

scheduling intended for heterogeneous architectures. 

 

Table 2 Execution time of performing a chunk of 

comparison operations 
Architecture Execution Time (sec.) for a 

chunk (416 *20 Operations) 

FPGA 343 

GPU (CUDA) 400 

CPU (MPICH2) 1100 

 
Table 3 Chunks assigned to different Architectures 

Architecture No. of Chunks Assigned  

FPGA(1) 270 

GPU 231 

CPU 84 

 
Table 4 Execution Time 

Architecture Individual Execution Time  

(Sec.) 

FPGA(1) 200,655 

GPU 234,000 

CPU 643,500 

Heterogeneous   92,610 
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Table 5 Chunks assigned to different Architectures 

(FPGA has 20 matching units) 

Architecture No. of Chunks Assigned  

FPGA(20) 543 

GPU 31 

CPU 11 

 

Fig. 6 Relative speedup when solving the MFP using 

heterogeneous architectures (FPGA with 1 matching unit, 

CPU, and GPGPU) 

 

Fig. 7 Relative speedup when solving the MFP using 

heterogeneous architectures (FPGA with 20 matching 

unit, CPU, and GPGPU) 
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