
International Journal of Computer Applications (0975 – 8887)

Volume 101– No.5, September 2014

27

A New Scheduling Strategy for Solving the Motif Finding

Problem on Heterogeneous Architectures

H. M. Faheem
Professor of Computer Systems,

Ain Shams University, Cairo, Egypt

B. König-Ries
Chair of Distributed Information Systems,

Jena University, Jena, Germany

ABSTRACT
The Motif Finding Problem is a well-known computationally

intensive problem in bioinformatics. Exact solutions to

finding a motif such as brute-force suffer from the

intractability of their run time. To ameliorate this, different

solutions relying on different hardware technologies have

been proposed including the usage of FPGA or multicore

architectures. Recently, deploying heterogeneous architectures

that involve CPUs, GPUs, and FPGA kits seems to be very

promising. The main goal is to speed up processing in order to

achieve the result in a moderate time. The scheduling strategy

dealing with such heterogeneity is one of the most important

factors affecting the performance of the heterogeneous

systems. In this paper, we introduce a new scheduling strategy

that depends on the expected finish time when the problem is

solved by only one type of architecture. The proposed

scheduling strategy provides the fastest available processor

type with a specific size of data items and instructs it to

perform the parallel operations. Other slower architectures

will get different sizes of data that can be processed exactly in

the same time granted to the fastest architecture. This

operation will be iterated until the finish of all the processing

operations required to get the motif. Evaluation results of

solving the motif finding problem using our proposed

approach on a set of heterogeneous architectures versus the

implementation on an individual architecture are compared.

Results show that the new scheduling strategy yields much

more advantageous results over the implementation on

individual architectures. We believe that the proposed strategy

is a step towards a well-defined framework for implementing

run-time systems that support heterogeneous architectures.

Keywords

Motif Finding Problem; Heterogeneous architectures;

Scheduling Strategies

1. INTRODUCTION
One of the most important problems in bioinformatics is the

understanding of gene regulatory networks. This is due to the

fact that gene regulatory networks help the researchers better

identify how genes cooperate to perform functions, how any

species respond to diseases or environmental insults, and how

organisms are affected by genes disorders. In this context,

finding regulatory elements, especially the binding sites for

transcription factors is crucial and constitutes a major

challenge. The binding sites for expressed genes are called

motifs. In the DNA sequence, a motif is usually a short

segment that occurs frequently, but is not required to be an

exact copy for each occurrence. This property of motifs makes

motif finding very difficult. Despite considerable efforts to

date, finding these motifs remains a complex challenge for

biologists and computer scientists.

The Motif Finding Problem (MFP) can be simply considered

as a string matching problem. Solving the MFP to find a

motif of length L with permitted mutation d can be

implemented using a brute-force algorithm. All the possible

L-mers (4L) are compared with each possible motif of length

L. If we have a sequence of size N then we can have (N-L+1)

motifs. Pevzner and Sze [1] presented the challenge problem

(15,4) and (16,4) where the first number is a specific length L

and the second number a specific mutation d. In this paper, we

present a problem in which the motif has a length L=16,

allowed mutations d=4, and the number of sequences we are

searching in is T=20 each of size N=600.

 Solving such computationally intensive problems can be

implemented using a set of heterogeneous platforms [2, 3, 4,

5, 6, 7, 8]. Currently, almost all our home PCs have

heterogeneous architectures since they have at least CPUs and

GPUs. In fact, multicore architectures are now playing an

important role in solving complex problems. Moreover,

FPGA cards could be also deployed in our home environment

to add more computing power to our PCs.

 The main concern of such heterogeneity is related to the

scheduling strategy needed to benefit from the capabilities of

such architectures. Recent scheduling strategies for

heterogeneous architectures include heterogeneous earliest

finish time (HEFT) [9], and predict earliest finish time (PEFT)

[10]. HEFT is performed in two phases. The first phase is

intended to prioritize the tasks while the second phase assigns
tasks to the workers based on its priorities. PEFT depends on

an Optimistic Cost Table OCT that is used to rank tasks and

for processor selection.

 HEFT and PEFT are thinking of the scheduling problem

from the absolute scheduling mechanism point of view

without considering other factors that may affect the

implementation. For example, when implementing an

algorithm using CUDA paradigm on NVidia GPUs we have

to consider the shared memory usage, register usage, and

thread block size. Also, we have to carefully consider the data

movement mechanism in order to always process local data

not to move it among blocks.

 In this paper, we think of the scheduling problem from a

different point of view. We will consider the speed

differences in architectures in solving a problem such that the

faster the architecture is, the larger the number of chunks of

tasks assigned to it. A chunk here means a complete unit of

work that we can predict the execution time of on a specific

architecture. We will assume that the tasks of each chunk

assigned to a specific architecture will be executed by this

architecture only. In doing so, we eliminate the factors that

may affect the overall system performance such as shared

memory, registers, etc. This is due to the fact that we can use

International Journal of Computer Applications (0975 – 8887)

Volume 101– No.5, September 2014

28

specific parallel computing paradigms that can handle these

issues efficiently when proper code is developed.

The rest of this paper is organized as follows: Section II

describes the task dependency analysis of the MFP. Section

III illustrates the proposed scheduling strategy. Section IV

presents the environment used for the implementation and

provides the evaluation results. Section V presents the

conclusion and directions for future work.

2. TASK DEPENDENCY ANALYSIS OF

MOTIF FINDING PROBLEM
MFP has a stereotypical type of comparison operations. The

process starts with data expansion such that a total number of

N–L+1 windows each of length L are derived from a

sequence of size N. This operation is sequential in nature

such that a sliding window technique with a one position shift

is required to obtain each window. To implement the

expansion operation in parallel we can work on all the

available sequences concurrently such that we can extract the

first window W1 from each sequence. If we have T sequences

then we can obtain T windows (W1 of each sequence) at the

first clock CLK0. A total number of N-L+1 units of time are

required to expand all the T sequences to get a total number of

[(N-L+1) * T] windows each of size L.

In principle, parallel comparisons between all possible 4L L-

mers and the generated T windows can start as long as there

are windows ready to be compared after the expansion

operations. A total number of 4L * T comparisons can be

implemented concurrently. This means that a total number

of (4L * T) * (N-L+1) can be implemented in N-L+1 units of

time. Time slots that describe the concurrent operations for

both data expansion and parallel comparisons are shown in

Fig.1. It is clear that the comparison operations will start at

CLK1 since T windows (W1 of each sequence) are derived in

CLK0. Consequently, deriving T windows (Wi of each

sequence) at CLKi will be followed with comparison

operations at CLKi+1.

Fig.1 Data Expansion and Comparison Operations

3. TASK SCHEDULING STRATEGY
Due to the nature of the operations required to implement the

MFP, a simple scheduling strategy can be suggested. The

main idea benefits from the fact that the number of the

operations required to solve the MFP can be divided into C

chunks each of ((4L * T) + T) operations in almost all cases

except the first and the last ones which are T and (4L * T)

respectively.

Consider that we have p heterogeneous architectures (A1, A2,

…, Ap) capable of performing the operations of each chunk in

different amounts of time (t1, t2, …, tp) where ti < ti+1 then: If

the total execution time required by the fastest architecture A1

to find the motif which is approximately equal to (t1 * C)

where (C = (N–L+1) in case of MFP) is greater than ti (for

i=2 to p) then allow Ai to perform the operations for a number

of chunks that is relative to its execution time with respect to

t1. The pseudo code for the proposed scheduling strategy is

shown in Fig.2.

The distribute_chunks() function initially decides the

architectures that will take part in solving the problem. This

function distributes the chunks proportionally according to the

execution time of the architectures. Of course, the

architecture with less execution time for the chunk will get

more chunks to perform. The function eventually returns with

the number of chunks individually assigned to the

architectures.

International Journal of Computer Applications (0975 – 8887)

Volume 101– No.5, September 2014

29

Pseudo Code for the Scheduling Strategy

Input (t1, t2, …, tp) ; The execution times for performing the operations of a

; single chunk on A1, A2, …, Ap respectively in ascending order

Input (C) ; The number of chunks C = N-L+1 in case of MFP

Output (C1, C2, …, Cp) ; The number of chunks assigned to each architecture

Function Distribute_Chunks(ti, C)

 For each i:=1 to p

 if ((t1 * C) > ti) ; for each architecture satisfies this condition where

; (2 ≤ i ≤ p) Decide which architectures will be eligible

; to perform operations on chunks

 then Ri := C / ti ; find the weight of each eligible architecture

 else Ri := 0 ; or exclude ineligible architecture

 End

 R := R1 + R2 + … + Rp ; find the total weights

 Ru := C / R ; find the unit assigned for each weight

 For each i:=1 to P

 Ci := Ri * Ru ; assign number of chunks Ci to each eligible Ai

 End

Return (C1, C2, …, Cp)

End

Fig.2 Scheduling Strategy for Solving MFP

4. IMPLEMENTATION
In order to evaluate the proposed strategy we have worked on

the MFP (16, 4). The block diagram of the used system is

shown in Fig.3 while the architectures used are listed in Table

1. We have deployed a PC machine (core i5, 2.3 GHz, 4 GB

RAM) having both an FPGA card (Stratix III FPGA)

interfaced with it and a GPU (NVidia GT240, 96 cores, 1.34

GHz core clock). In this case, we have three types of

architectures CPU, GPU, and FPGA. CUDA SDK4.0 is used

to solve the MFP on the GPU while MPICH2 for x64 running

on 2 nodes (cores) is examined on the CPU. The FPGA

design used in [11] was selected to be investigated since we

have developed its VHDL code. The block diagram of the

FPGA system used is shown in Fig. 4. The FPGA has a ROM

that holds the T sequences under investigation. The Sequence

multiplexor selects the sequence Ti from the set of sequences

T. The shifter is responsible for selecting windows starting

from W1 and ending at WN-L+1 from a given sequence. The

motif generator is responsible for generating all the possible

4L L-mers each of size L. The matching unit is responsible for

comparing the window W provided by the shifter with the L-

mer generated by the motif generator. A single matching unit

is used in this block diagram while a modified version of this

architecture utilizes 20 matching units to accelerate the

comparison process. The FPGA with multiple matching units

is shown in Fig.5.

Table 1 Hardware Configuration

Architecture Vendor Model

CPU Intel Core i5, 2.3 GHz

GPGPU NVidia GT240, 96 Cores, 1.34

GHz core clock

FPGA Altera Stratix III

International Journal of Computer Applications (0975 – 8887)

Volume 101– No.5, September 2014

30

Fig. 3 Block Diagram of the system consisting of

heterogeneous architectures (CPU, GPGPU, and FPGA)

 Initially, we have to determine the execution time required

by an individual architecture to perform a chunk of

comparison operations. Results of performing (416 * 20

Operations) on different architectures are listed in Table 2.

 Since we have N-L+1 chunks then we have C=585.

Applying the rules of scheduling strategy yields the number of

chunks assigned to each architecture results shown in Table 3.

A total execution time of 92,610 seconds (25.7 hours

approximately) is achieved. This of course provides a

significant improvement when compared with the total

execution time of an individual architecture as shown in Table

4.

 When implementing the scheduling strategy using the

FPGA architecture with 20 matching units, the execution time

of the chunk is (approximately 23 seconds). Consequently,

when applying the scheduling strategy a new chunk

distribution will take place. This is shown in Table 5. A total

execution time of 12,489 sec. is achieved (3.46 hours

approximately). Relative speed up when solving the MFP on

heterogeneous architectures as compared to the individual

architectures is shown in Fig. 6 and Fig. 7 for (CPU, GPU,

and FPGA(1)) and (CPU, GPU, and FPGA(20)) respectively.

5. CONCLUSION
A scheduling strategy for solving MFP has been introduced.

The strategy can be used to assign tasks to heterogeneous

architectures in a way that ensures different load balancing

depending on both the computing power and the paradigm

used on the architecture. Mainly, the execution times required

for the architectures will be used to decide the number of

chunks assigned to each one. Almost 53% reduction in the

execution time as compared to pure FPGA implementation

has been achieved when a single matching unit is used in the

FPGA. Also, 7% reduction in the execution time has been

achieved when compared to pure FPGA implementation with

20 matching units. In principle, having small gaps between

the speeds of architectures will lead to significant

enhancement in the execution time. The enhancement in

execution time is inversely proportional with the speed gaps

between architectures. We believe that the proposed strategy

is a step towards much more advanced strategies for task

scheduling intended for heterogeneous architectures.

Table 2 Execution time of performing a chunk of

comparison operations
Architecture Execution Time (sec.) for a

chunk (416 *20 Operations)

FPGA 343

GPU (CUDA) 400

CPU (MPICH2) 1100

Table 3 Chunks assigned to different Architectures

Architecture No. of Chunks Assigned

FPGA(1) 270

GPU 231

CPU 84

Table 4 Execution Time

Architecture Individual Execution Time

(Sec.)

FPGA(1) 200,655

GPU 234,000

CPU 643,500

Heterogeneous 92,610

International Journal of Computer Applications (0975 – 8887)

Volume 101– No.5, September 2014

31

Table 5 Chunks assigned to different Architectures

(FPGA has 20 matching units)

Architecture No. of Chunks Assigned

FPGA(20) 543

GPU 31

CPU 11

Fig. 6 Relative speedup when solving the MFP using

heterogeneous architectures (FPGA with 1 matching unit,

CPU, and GPGPU)

Fig. 7 Relative speedup when solving the MFP using

heterogeneous architectures (FPGA with 20 matching

unit, CPU, and GPGPU)

6. REFERENCES
[1] P. Pevzner and S. Sze, “ Combinatorial approaches to

finding subtle signals in DNA sequences,” Proceedings

of the 8th International Conference on Intelligent

Systems for Molecular Biology, 269–78, 2000.

[2] H. M. Faheem, “Accelerating Motif Finding Problem

using Grid Computing with Enhanced Brute Force,” The

12th International Conference on Advanced

Communication Technology (ICACT), Korea, 2010.

[3] M. Raddad, N. El-Fishawi, and H. M. Faheem,

“Implementation of Recursive Brute Force for Solving

Motif Finding Problem on Multi-Core,” International

Journal of Systems Biology and Biomedical

Technologies, 2 (3):1-18, 2013.

[4] R. Inta and D. J. Bowman, “An FPGA/GPU/CPU hybrid

platform for solving hard computational problems,” in

Proceedings of the eResearch Australasia, Gold Coast,

Australia, 2010.

[5] S. J. Park, D. R. Shires, and B. J. Henz, “Coprocessor

computing with FPGA and GPU,” in Proceedings of the

Department of Defense High Performance

ComputingModernization Program:Users Group

Conference—Solving the Hard Problems, pp. 366–370,

Seattle,Wash, USA, 2008.

[6] M. Showerman, J. Enos, A. Pant et al., “QP: a

heterogeneous multi-accelerator cluster,” in Proceedings

of the 10th LCI International Conference on High-

Performance Cluster Computing, vol. 7800, pp. 1–8,

Boulder, Colo, USA, 2009.

[7] D. B. Thomas, L. Howes, andW. Luk, “A comparison of

CPUs, GPUs, FPGAs, and massively processor arrays for

random number generation,” in Proceedings of the 7th

ACM SIGDA International Symposium on Field-

Programmable Gate Arrays (FPGA ’09), pp. 63–72,

Monterey, Calif, USA, 2009.

[8] K. Underwood, “FPGAs vs. CPUs: trends in peak

floatingpoint performance,” in Proceedings of the 12th

International Symposium on Field-Programmable Gate

Arrays (FPGA ’04), pp. 171–180, New York, NY, USA,

February 2004.

[9] H. Topcuoglu, S. Hariri and M. Wu, ”Performance-

Effective and Low-Complexity Task Scheduling for

Heterogeneous Computing”, IEEE Transactions on

Parallel and Distributed Systems, vol. 13, no. 3, pp. 260-

274, 2002.

[10] L.C. Canon, E. Jeannot, R. Sakellariou and W. Zheng,

”Comparative evaluation of the robustness of dag

scheduling heuristics”, in Sergei Gorlatch, Paraskevi

Fragopoulou and Thierry Priol, Grid Computing -

Achievements and Prospects, pp. 73-84, Springer, 2008.

[11] Y. Farouk, T. El-Deeb, and H. M. Faheem, “Massively

Parallelized DNA Motif Search on FPGA,”

Bioinformatics - Trends and Methodologies, INTECH,

2011

0

1

2

3

4

5

6

7

8

FPGA(1) CPU GPU

Speedup

0

10

20

30

40

50

60

Speedup

IJCATM : www.ijcaonline.org

