
International Journal of Computer Applications (0975 8887)
Volume 101 - No. 5, September 2014

Traffic Flow Maximization using Evolutionary Algorithm

Jiaxing Cui
Carnegie Mellon University

5000 Forbes Ave
Pittsburgh, PA

Quentin de Metz
Carnegie Mellon University
NASA Ames Research Park

Mountain View, CA

ABSTRACT
Traffic Flow maximization is one of the crucial problems in de-
signing a city. It directly affects the daily life of the people
living in that city. It is a complex problem, one that in most
cases cannot be deterministically solved. This paper proposes us-
ing evolutionary algorithms to solve that problem. This paper
compares existing work and traffic flow with solutions yielded
by evolutionary approach, and the results show that it is bene-
ficial to adopt this strategy when designing traffic light timings.

General Terms:
Evolutionary Algorithm, Artificial Intelligence

Keywords:
Evolutionary Algorithm, Traffic Light Optimization, FTGA,
MTGA

1. INTRODUCTION
Traffic infrastructure comes in various forms, and optimizing
traffic flow in road networks is a task that depends highly on
the infrastructure. People commonly considers infrastructure as
being in one of two categories: ”smart” infrastructure and ”legacy”
infrastructure. The first makes use of detectors placed in the
infrastructure to determine the state of traffic, whereas the second
does not.

It is reasonable to assume that achieved solutions will perform
better as a whole when making use of smart infrastructure. For
example, a traffic light that can detect that there is no traffic from
East to West, and that vehicles are waiting to go from North to
South, can react accordingly and change its state to shorten the
wait of these vehicles.

There have been projects in the past where traffic flow was
optimized by combining real-time knowledge of traffic and
communication between lights. The best-known of these projects
is one spearheaded by Carnegie Mellon University in the East
Liberty part of Pittsburgh, with excellent results.

However, this previous study’s approach relies heavily on smart
traffic lights and detectors, which, although quite practical, are
still far and few between throughout the world. In countries such
as China or India, where the number of vehicles is growing most

rapidly, most roads are equipped with legacy traffic equipment.

An effective approach to solving this problem should be applicable
to the maximum amount of scenarios, which is why this paper dis-
cusses only optimizing traffic light timings in a legacy environment.

However, operating in a legacy environment does not mean that this
paper must forgo all knowledge of the traffic flow. It is reasonable
to assume that traffic flow can be measured at specific intersections.
The collection of this data can unearth trends in the traffic flow (ie:
rush hour traffic). Once this data is collected, any period of time
can be split into different sections, where each of these sections has
a different, but constant, traffic flow.

2. EXISTING RESEARCH
Researchers have come up with several different ways to optimize
traffic lights in the past. Many studies have focused on adding
sophisticated detectors at intersections, or on adding features to the
traffic lights to leverage existing traffic theory results and artificial
intelligence once the lights are capable of transmitting the state
of the intersection to their neighbors. This approach is the one
pursued by Ken Walters of Carnegie Mellon University and has
produced good results [8].

Jansson used evolutionary algorithms to optimize traffic, but only
in the context of one traffic light. He produced a microcontroller
implementation for his simulator and his results state that his
evolutionary approach yielded better results than a deterministic
approach as soon as the problem reached a certain size [3].

Sanchez Medina has used evolutionary algorithms to evolve traf-
fic light timings on several major streets throughout Spain. They
implemented a Standard Genetic Algorithm based on truncation
and elitism. Although their paper deals talks mostly about design-
ing and programming a custom simulator, their conclusions state
that they produced good (but not great) results during their experi-
ments [5].

3. SIMULATORS
A common and key ingredient in developing evolutionary algo-
rithms is the choice of a simulator. This paper investigated several
traffic simulators (see below) and chose the one that suits the goal
of this paper the best.

1



International Journal of Computer Applications (0975 8887)
Volume 101 - No. 5, September 2014

3.1 Simple Java Simulator
This Java simulator showed in Figure 1(a) can automatically gen-
erate and plot. Another feature is the ability to to drag any car from
one position to another. The simulator will automatically adjust the
position of the car and continue. Furthermore, it is possible to ad-
just in real-time the timings of traffic lights. For simple road net-
works and light traffic flow, it is a great choice. However, in this
kind of traffic network, there isn’t much to optimize, which is why
this paper didn’t choose it as the final simulator.

3.2 MatSim
Matsim showed in Figure 1(b) is a powerful simulator which you
can see from its simulated traffic networks. It is open source, which
means that developers can modify it as they wish and adapt it
closely to their needs. Also it provides and interactive visualizer
which enables users to modify the traffic networks conveniently.
At the same time, it provides detailed analysis which can be used
by this paper.

3.3 SUMO
After comparing carefully among several different simulators, this
paper finally chose SUMO [4] which was developed by employees
of the Institute of Transportation Systems at the German Aerospace
Center. Figure 1(c) shows how it looks like. It can handle complex
situations and have a good perform even when the number of cars
is very large. Also it can deal with collisions, acceleration and de-
celeration.

4. SIMULATED TRAFFIC NETWORKS
In order to test the algorithm, this paper modeled the traffic network
around the Caltrain station located in Mountain View, California.
This choice was informed by the fact that it is a well-known inter-
section among the peers and people have heard complaints about its
long wait times. This paper investigated the traffic situation around
the Caltrain station: during rush hour, and recorded the traffic flow
as well as the traffic light timings. Figure 1(c) shows the traffic net-
work around Caltrain Station.

5. FITNESS FUNCTION
In order to best simulate the real world traffic light, Several ways
have been tried to establish the mapping between real world traffic
measurement with the fitness function in the evolutionary algorithm
of this paper. The following are the fitness function that have been
tested in this paper.

5.1 Average Speed
The first fitness function designed was the average speed of the
vehicles in the network. This is an intuitive metrics, in that if the
average speed of a traffic network is larger than that of another,
then the result can be expected that its traffic flow to be equally
larger. This paper used this fitness function when testing the
algorithms in the grid traffic network.

However, this fitness function did not fit well with the simulator
this paper were using. Indeed, the SUMO simulator had no easy
means of recovering the average speed of a vehicle at a given time.
In the above experiment this paper had resorted to placing detectors
at specific places along the network; these detectors could measure
the velocity of vehicles passing next to them (think of them as speed

(a) Java Simulator

(b) Matsim

(c) SUMO

Fig. 1. Simulators

radars). Whereas this approach worked well in a simple traffic net-
work, placing a number of detectors along multiple roads in a real-
world, intricate network was a tedious task. Furthermore, the fitness
function was not detector-location agnostic, which means that the
placement of the detectors directly impacted the fitness values that
this paper measured, and in turn could greatly impact the results of
the algorithms. Finally this paper decided to move on to a simpler
fitness function.

5.2 Throughput
When modelizing the traffic flow in the simulator, this paper
created many different routes that the vehicles would use. When
the simulator placed a new vehicle in the network, it chose an a
path for the vehicle from within a list of predetermined paths that
this paper had decided upon. It made sense to evaluate how many
vehicles were making it to their destination in the fixed, allocated
time that the simulation was running in, and this paper chose this
as a metric for the fitness function. Intuitively, it is related to the
throughput of the traffic network.

This fitness function was much simpler to implement on larger,
more complex networks. However, one significant drawback is no-
ticed: not all paths had equal length, nor an equal number of traffic
lights on them. This meant that the algorithm tended to optimize
the network for paths that were shorter (an easier target because
there were less traffic lights to optimize). This bias affected the
early results of the algorithms, but this paper nonetheless managed
to achieve significant results.

2



International Journal of Computer Applications (0975 8887)
Volume 101 - No. 5, September 2014

6. ALGORITHMS
6.1 Simple GA
6.1.1 Overview. The first algorithm which this paper imple-
mented was the Simple Genetic Algorithm [1] [7]. This textbook
[2] algorithm is made of several components, among which the fol-
lowing:

—Parent Selection
—Recombination
—Mutation
—Survivor Selection

Each of these components can be implemented in different ways
and will give the algorithm a unique behavior. Furthermore, these
components make use of constants that can be tweaked (muta-
tion rate, parent population size), just as the algorithm’s parameters
(population size, number of rounds). Tuning these values will also
change the behavior of the algorithm.
The implementation contains the following components:

—Parent Selection: Rank-based selection, Stochastic Universal
Sampling

—Recombination: Single Point Crossover
—Mutation: Simple Mutation: replacing one traffic light by a ran-

domly generated traffic light
—Survivor Selector: Rank-based selection, Stochastic Universal

Sampling

The genotype this paper used was the following:

(Light1, Light2, Light3, Light4) (1)

Where each light is represented as follows:

Light1 = (t1, t2, t3, t4) (2)

Where ti represents the timing of the light for its first phase.

After some initial parameter tweaking, the first batch of pa-
rameters used was:

—Population size: 20
—Number of rank-selected parents: 6
—Number of offspring created: 6
—Mutation of one out of the six offspring
—Selection of the top 20 individuals from the new population to

form the basis for the next generation

6.1.2 Issues encountered. The major encountered with this
algorithm was premature convergence. The initial version reached
a local optimum in less than ten generations, and did not budge
afterwards. This usually means that the algorithms was lacking
in diversity maintenance mechanisms. At first, this paper decided
to ensure that the population’s worst individual was always
maintained from one round to another. This by itself did not bring
about an important improvement.

It is then decided to systematically remove the best individual from
the population. The combination of these two modifications al-
lowed us to notice that the algorithm continued to improve on a
steady basis, even after the ten first rounds. The algorithm was ex-
ploring more of the search space thanks to the increased diversity
of its population.

(a) F=10

(b) F=20

(c) F=30

Fig. 2. Different Factor

6.2 Simulated Annealing
6.2.1 Overview. In order to find the global optimum, this paper
tried another algorithm which is called Simulated Annealing [6].
The basic idea of this algorithm is to simulate the process of an-
nealing. At the beginning, a high temperature is used, in which
the acceptance probability of individuals with bad fitness is high.
Then temperature goes down slowly. The acceptance probability
goes down as well. The way this paper encode the algorithm is as
follows:

T1, T2, T3, T4 (3)

Here T1, T2, T3, T4 represents the four traffic lights measured
around Caltrain Station respectively. The neighbor function used
is to randomly choose a gene in the individual and replace it with a
new one. The function for calculating acceptance rate is:

1

1 + e∆F
T

(4)

Figure 2 is the result for using different scale factors. X-axis rep-
resents time and y-axis represents acceptance of bad individuals.

6.2.2 Issues Encountered. Basically, SA can be treated as a kind
of EA. However, it has only one individual in the population. Dur-
ing the process of solving the optimization problem, SA encoun-
tered the same problem with SGA. As it doesn’t have a large popu-
lation, therefore, it can get stuck by local optimum. Another reason
SA cannot get the global optimum easily is that it also treats the
whole time interval as a whole. Therefore, when the traffic flow

3



International Journal of Computer Applications (0975 8887)
Volume 101 - No. 5, September 2014

can be divided into several different traffic flows microscopically,
it is not possible for SA to find the global optimum.

6.3 Mutable Time-interval Genetic Algorithm
(MTGA)

The initial assumption was to work on time intervals during which
the traffic flow is constant. However, after many simulations, what
is realized is that even in a situation where the overall traffic flow
is constant, the interaction between intersections and traffic lights
creates a somewhat chaotic system where traffic flow at specific
intersection can vary quite a bit.

It became clear that better results can be achieved by further di-
viding the time intervals into smaller sub-intervals. This paper de-
signed a new algorithm, in which the individuals also contain in-
formation about how to split the time interval: the Mutable Time-
interval Genetic Algorithm (MTGA). It is a sort of Genetic Algo-
rithm, and has the following features which will be explained later.

—Hybrid Gene Type.
—No Crossover
—Special Mutation Type

The first and most important feature of MTGA is that it has a hybrid
gene type. Below is how this paper encode the chromosome.

T1,1 . . . T1,4, T2,1 . . . T2,4 . . . Tn,1 . . . Tn,4, I1 . . . In (5)

In the above equation, the a in the subscript of Ta,b represents the
time for the ath time interval and b represents the bth phase of a
traffic light. For simplicity, in the example, only 1 traffic light is
used. This traffic light has 4 phases which is the reason that b can
be 4 at max. And the whole time interval is subdivided that the
algorithm can be optimized in into sub regions. I1, I2, ... represents
the length of each phase respectively. One thing that needs to be
mentioned is that the sum of I2, I2, ... should be a fixed constant
which represents the length of the time interval where the algorithm
can be estimated. It can be expressed like this:

I2 + I2 + I3 + ...+ In = T (6)

where T represents the time interval between start time and end
time.

Another important feature is that you cannot really perform
crossover in MTGA although they align with each other very well.
The reason comes from its special chromosome. Because people
usually want to optimize the traffic light for a fixed time interval,
therefore, I1 + I2 + ... + In has to be fixed to the length of the
time interval. If crossover is performed between two individuals,
the sum of these numbers will change. Although there is a way
to perform crossover between two individuals, this feature isn’t
added into the algorithm.

The last feature is that special mutation has to be performed in
MTGA. In the first part of the chromosome, normal mutation can
be performed. However as stated above, at least two genes have
to be changed together because of equation 6. For example, I1
needs to be changed. Assumption can be made that, previously,
I1 = 40, I2 = 40, I3 = 100. If such mutatioin has to be make
like changing I1 from 40 to 20. It can results in set I1 = 20. How-
ever, the following operations have to be made, either I2 = 60 or
I3 = 120 as well in order to keep consistent to equation 6.

6.4 Fixed Time-interval Genetic Algorithm (FTGA)
Based on the above algorithm, this paper came up with a modified
version of the MTGA: the Fixed Time-interval Genetic Algorithm
(FTGA). The simple idea is to get rid of I1, I2, ..., In which are
encoded in equation6. This paper decides to split the time interval
into a number of equal-length sub-intervals: I1 = I2 = ... = In.
This means that there is no need to store the intervals in the chromo-
somes anymore. The chromosome’s representation is the following:

T1,1 . . . T1,4, T2,1 . . . T2,4 . . . Tn,1 . . . Tn,4 (7)

By limiting Ta,b to a certain domain such as (1,100), there is even
no need to perform the special mutation either. What can be done
with normal Genetic Algorithm can be applied to this chromosome
as well. And another important feature that FTGA has is that it has
fewer parameters which means it takes a shorter time to get the
result.

7. EXPERIMENT & RESULT
7.1 Experiment Setup
During these experiments, the algorithm fixed the population size
of SGA, FTGA and MTGA to 20 and the number of offspring size
to 6 which means that during each generation, evaluation has to
be performed for 26 individuals. This paper fixed the number of
generations to 40. And 40 random number sequences is choosen
to evaluate these algorithms. Therefore, with 1 random number
sequence, 40 ∗ 26 = 1040 individuals have to be evaluated. And
this paper run each algorithm 40 times.

In order to measure the performance of all these algorithms, this
paper fixed the traffic flow, number of simulation step, and the to-
tal number of cars input into the simulator. Therefore, exactly the
global optimum of this problem is known and this paper try to find
out whether each algorithm can achieve it.

7.1.1 Successful Rate. Figure 7.1.1 shows the successful rate of
each algorithm. This paper define the success of an algorithm as
equation 8

IF best fitness = global optimum
RETURN True

ELSE
RETURN False

(8)

According to the experiment setup stated before, this paper counted
the number of successes for each algorithm and plotted them in
Figure 7.1.1

7.1.2 Average Fitness. During these experiments, this paper also
recorded the average fitness of each algorithm. This paper analyzed
all the data recorded. Figure 7.1.2 shows a representative run of
each algorithm. From this figure, it can be seen that the average fit-
ness of FTGA is the best among the four algorithms for most of the
time. SGA starts at a low fitness and increases quickly. The aver-
age fitness of SA tends to fluctuate. In this case, MTGA remains a
relatively high average fitness. It can be seen that, although MTGA
is more flexible than FTGA, it tends to have a lower average. The
reason for the conclusion is that since MTGA has a more flexible
chromosome, crossover and mutation are more likely to destruct its
good individuals. And the chromosome of FTGA has fewer genes,
therefore it is less likely to be affected by these effects.

4



International Journal of Computer Applications (0975 8887)
Volume 101 - No. 5, September 2014

Fig. 3. Successful Rate

Fig. 4. Average Fitness

Fig. 5. Best Fitness

7.1.3 Best Fitness. Besides average fitness, this paper measured
the best fitness during the process. Figure 7.1.3 shows the result
of this experiment. It can be seen that even the average fitness of
MTGA may be lower than FTGA, it is more likely to get the global
optimum since it is a more precise representation of the problem.
SGA tends to behave badly in the beginning. As time goes by, the
best fitness it can achieve increases dramatically. SA can achieve its
best fitness at any time during its process and it is hard to predict.

8. CONCLUSION & FUTURE WORK
8.1 Conclusion
Having investigated a lot work done by others, this paper found
out that almost all of them are based on traditional methods which
treat the time interval as a whole. It is a trivial way to solve the
problem since EA can deal with this situation perfectly with the
unnecessary constraint that the time interval cannot be subdivided.

Table 1. Performance of Algorithms
Algorithm Maximum Fitness Success Times
Original 123 N/N
SGA 143 11/40
SA 143 34/40
FTGA 143 38/40
MTGA 143 38/40

Actually, when it comes to real-world, unpredictable accident
happens. Therefore, these factors can affect the traffic flow from
time to time. Human beings may not find the subtle difference
easily. However, properly designed algorithms are able to find
them out.

SGA and SA represent two kinds of traditional algorithms that
treat the time interval this paper wants to optimize as a whole.
They showed some ability to improve the traffic flow. However,
they reach their bottlenecks easily. In some scenarios, they can
never get the global optimum.

FTGA and MTGA are specially designed for subdividing the whole
time interval into sub-regions. Therefore, they both have the ability
to improve the max fitness that SGA and SA and achieve. Although
they use different approaches to divide the time interval, they turned
out to be feasible to find the global optimum.

According to the result from table 1, it can be seen that, SGA and
SA can optimize the traffic to a certain extent. Although SGA and
SA and achieve the global optimum at times, they are not guaran-
teed to find ti. As FTGA and MTGA have the ability to subdivide
the whole time interval into smaller ones, they can further improve
the traffic timing. Therefore, they are more likely to find the global
optimum. Also, this paper have stated that FTGA is a simplified
version of MTGA. However, it behaves almost as well as MTGA.
And it is much easier to implement.

8.2 Future Work
In this paper, it is presented that FTGA and MTGA work better
than SGA and SA to optimize the traffic network around Caltrain
Station. In the future, these two algorithm be further tested on other
traffic networks and traffic flows to see how these algorithms per-
form. And due to the computational cost, this paper has only en-
coded the timing of 1 traffic light in FTGA and MTGA. More traf-
fic lights will be tried to be encoded into the chromosome to test
their ability to find the global optimum.

9. ACKNOWLEDGMENTS
We take this opportunity to express the profound gratitude and deep
regards to our teacher Professor Jason D Lohn, Associate Research
Professor in the Dept. of Electrical and Computer Engineering in
Carnegie Mellon University, for his exemplary guidance, monitor-
ing and constant encouragement throughout this report. We also
thank Irina Brinster, full-time PhD in Carnegie Mellon University,
for her technical support and valuable information, which helped
us in completing this project through various stages.Thanks also go
out the the developers of the SUMO simulator.

10. REFERENCES

[1] Wolfgang Banzhaf, Peter Nordin, Robert E Keller, and Frank D
Francone. Genetic programming: an introduction, volume 1.

5



International Journal of Computer Applications (0975 8887)
Volume 101 - No. 5, September 2014

Morgan Kaufmann San Francisco, 1998.
[2] Agoston E Eiben and James E Smith. Introduction to evolu-

tionary computing. springer, 2003.
[3] Gustaf Jansson. Traffic control with standard genetic algo-

rithm, 2010.
[4] Daniel Krajzewicz, Jakob Erdmann, Michael Behrisch, and

Laura Bieker. Recent development and applications of SUMO
- Simulation of Urban MObility. International Journal On Ad-
vances in Systems and Measurements, 5(3&4):128–138, De-
cember 2012.

[5] Javier J Sanchez Medina. Evolutionary computation applied to
urban traffic optimization, 2008.

[6] Peter JM Van Laarhoven and Emile HL Aarts. Simulated an-
nealing. Springer, 1987.

[7] Michael D Vose. The simple genetic algorithm: foundations
and theory, volume 12. MIT press, 1999.

[8] Ken Walters. Smart traffic signals pilot results: Pollution
plunges, traffic clogs cleared, 2012.

6


	Introduction
	Existing Research
	Simulators
	Simple Java Simulator
	MatSim
	SUMO

	Simulated Traffic Networks
	Fitness Function
	Average Speed
	Throughput

	Algorithms
	Simple GA
	Overview
	Issues encountered

	Simulated Annealing
	Overview
	Issues Encountered

	Mutable Time-interval Genetic Algorithm (MTGA)
	Fixed Time-interval Genetic Algorithm (FTGA)

	Experiment & Result
	Experiment Setup
	Successful Rate
	Average Fitness
	Best Fitness


	Conclusion & Future Work
	Conclusion
	Future Work

	Acknowledgments
	References

